CTF Challenge
Mike Gerschefske

Justin Gray

3Introduction

4Basic Rules

4Rules given during competition

4The Vulnerable Image

4Scoring System

5Network Topology

5Overall Network Topology

6Our Network Topology

6The live network layout

8The test network layout

8Analysis of our Network Topology

9Analysis of our competition

9Port Scanning

10Packet Response Times

10Areas of improvement

10Adaptable Processes

10Management

10Firewall

11Conclusions

Introduction
The UCSB
 sponsored iCTF
is a live exercise event aimed to test security skills in identifying, patching and exploiting software that was intentually written to include security holes to simulate real world situations. This exercise is based closely off of the CTF events held in Las Vegas at Defcon. Unlike Defcon, this event lasts for 8 hours; the first two allow for preparation of the vulnerable operating system and the last 6 are live.
This year, the iCTF featured 22 teams which has been the largest capture the flag war game yet. The 22 teams were from around the world.
We have chosen as our project to participate in this exercise to document and gain experience in these live simulations. This will hopefully provide future teams with an understanding of the competition.
Basic Rules
The primary focus of this competition is that of protecting and attacking systems. Because of the nature of this, the rules are very limited as they want to encourage people to be creative.
The main rules are as follows:

· No DoS
 Attacks

· Circumventing the private network and using public routable ip addresses to attack is forbidden

· All traffic is penalized

· Compromising a system to generate traffic is forbidden

Rules given during competition

Before the exercise began we were asked to not have our port scanners aggressively scan all 22 subnets as the Main Box may run out of sockets/ports while trying to fulfill all the requests.

The Vulnerable Image

Each team will have an exact copy of an image (VMWare in our case) of a vulnerable image. The image was made available approximately 8 hours before the competition for download. The image was encrypted and password protected
 and the key was not provided until the beginning of the competition. An initial two hours was given at the beginning of the competition to allow teams to explore and patch the system before going live.

The image we downloaded was encrypted with gpg. Using the password we were able to decrypt it as a tarball and the extracted contents where a vmware image. The root account was password protected so the first step is to hack into the box to reset the password. We did this by modifying the grub boot loader to string to read:

kernel /boot/vmlinuz-2.6.7-1-86 root=/dev/sda1 rw init=/bin/sh

This dropped us down to a command prompt. The passwd command did not function correctly
 so we modified the /etc/shadow file and removed root’s password. On reboot we set the password and brought up the network interfaces.
The operating system used was Debian linux.

Scoring System

Scoring was mainly based off being able to attack and defend. The score bot had a URL to submit flags that were stolen and rewarded offense points to the team that submitted other teams’ flags. The score bot also sent ping requests to all the systems on 30 second intervals; it is not clear if this was used for scoring or not. Additionally, the score bot would probe all the services on the machine and check to see if the flag currently on the box was the one it had previously put on there. If it was and it was able to set a new flag on the box it would reward full defense points, provided no other team had compromised and already submitted the old flag.
The score bot used a form of IP masquerading to hide it’s self among all the attack traffic. The example from the competition website was if 35% of the traffic came from Team A, the score bot had a .35 chance of using Team A’s IP address to set and check the flags. By doing this, this prevents teams from simply firewalling off all the other teams and makes the competition more interesting.

It is also our understanding that the score bot checks/sets the flags on an interval of 30 seconds. Outside of this, not much more is known about the score bot.

During the last couple of minutes before the competition we were told that the additional points would be rewarded to the first teams that identify, document and email (in the correct format) any exploits on the vulnerable image to the iCTF.

Network Topology

The iCTF competition has designed a private network that connects everyone together.

Each team is given a class c network to work with. The iCTF has stipulation over what the first four addresses of the network are used for. The rest may be used for anything the team wishes.
Overall Network Topology

Since the over-arching network topology for iCTF has been predefined, everyone will know the private IP addresses of everyone else’s Team Box, Image Box, Vulnerable Box and Test Box.
The following picture has been provided from the UCSB iCTF website
:

[image: image1.png]

The score box is not shown in this picture, however, it connects to the main box.

Our Network Topology

In our implementation of the iCTF network topology we used Fedora Core 4 for the Team Box and Image Box. This was not required but was recommended incase the iCTF needed to help setup connections.
The final network topology that we came up with was actually broken up into two completely separate networks; live and test. This would allow research to occur with out having to worry about breaking the live system.
The live network layout

[image: image2]
In this case here, a real success was the monitor box. We were able to successfully dump all network traffic occurring on our subnet to disk. Because of how the monitor box was connected to the network (in promiscuous mode), it was not susceptible to being attacked and provided us a pretty good understanding of what was going on.

The other key here was the use of an unmanaged hub. This allowed all packets to be broadcast to everyone which made it easier to sniff the packets.

The network monitor box was running Auditor
 Security Linux, which is a live knoppix cd distribution. We had installed all of our Auditor Linux to the actual hard drives rather then booting to the cd, for performance reasons.
As it turned out here, the monitor machine actually used a lot more processor and ram than we had originally thought. We set the log files to dump to files every 10MB so we didn’t have to keep everything in memory. However, to process the log files was extremely processor intensive. It would be our recommendation that the monitor machine run on either the fastest possible machines available, or some sort of cluster. In some cases to process additional fields on the logs took upwards of two minutes to do.

In parallel to the live exercise network we created a test network that sat on top of the UCCS
 network.
The test network layout

[image: image3]
In our test network, we exposed multiple copies of the vulnerable. This allowed us to test attacks on one image, and in parallel, test patches on another. With out having two images for this, it would make it difficult to research exploits on a patched system.

Analysis of our Network Topology

Overall the network topology worked well overall. However, we did not account for having a backup system for the image box. Two thirds through the competition our image box’s vmware client started to malfunction. We ultimately failed over to the image box on our test network to try and maintain availability.

It would ultimately be a good idea to maintain a spare image box always ready to go on the live exercise network. This is one of the areas where we went wrong.

In our network we had absolutely no firewalls. Because of how the scoring system works it was deemed to be too difficult to configure firewalls so they were left off. An area of improvement would be to have some sort of firewall or IPS
 to detect malicious content in packets and prevent it from coming in the network.

Those packets may be easy to identify by noticing, but not limited to, common Unix commands, sql and assembly in the payload of the packet. Those on an operational web server should rarely if ever be seen as incoming packets.

Analysis of our competition

At the start of the competition we decided to keep our servers offline for a period of time so that we could begin patching them before placing them in the competition. After an hour of patching we decided to push our servers live because we were losing a great deal of points because we were not providing services. Once the servers were placed online we saw the attacks flood in.
We were actually able to identify several of the attacks using the monitor box and then re-issue those attacks against other teams. At this point our team began attacking the other teams using our attack boxes, unfortunately when vulnerabilities were found during attack there was no process to create a patch and apply it to our servers, so a large number of vulnerabilities went unpatched.

At the end of the competition it became clear that we were unable to catch up with all of the attacks and defenses moving in over the network. We decided to focus on keeping all services up and running for as long as possible as a last ditch effort to win points. We did this by propping up an un-tainted image of the vulnerable box and preparing a copy of the image for when it was completely compromised, at that point we would swap the images and build another fresh one. This strategy was a desperate act, but was better than the alternative of no defense points.

Logging of packets

All the packets have been logged and captured via the monitoring computer running ethereal. These logs contain a complete snapshot of the entire event through the eyes of out network. Currently Dr. Chow maintains copies of these logs.
Port Scanning

We noticed port scanning across our network. Initially we were assuming that port scanning wouldn’t really be occurring, because all the teams knew the critical parts of everyone’s network. Additionally, compromising systems that weren’t part of a team’s critical system almost seems like a waste of time and resources.

Knowing ahead of time that port scanning is going to occur, one possibility is to fill up the subnet with fake hosts with all 65K ports open to drastically slow down and port scanning that is occurring.
Packet Response Times
An interesting point that was brought up was to use the packet response times to determine where the packet came from. As part of the TCP/IP hand shaking processes, it may be possible to determine the relative latency of a packet. Packets with large response times can be assume to not be legit. An example would be, a latency detected of 200ms would certainly be of a team oversees. While it may not be possible to detect the teams local to UCSB, it may provide an upper hand in determining legitimate traffic. Further research is needed in this area.
Areas of improvement
We have learned a lot from this competition and have identified some areas in which improvement is needed to better participate in this event.

Adaptable Processes
While this is almost always the case, as we learned with the new scoring requirement minutes before the competition, it is a must. There must be a clear precise way to re-organize people and resources on the fly to account for any change that may occur. This is also probably the most difficult to plan for.
Management

Clear management is a key role for this competition. A management process needs to be setup that is able to allocate people on specific problems and reallocate those people as needed. People need to be assigned tasks based off their strengths and potentially be teamed together to do tasks.

Firewall

In our current setup, we chose not to employ firewalls. We shutdown all unnecessary services on the Team Box and Image Box and hardened them that way. What we noticed during the competition was other teams would come in and setup remote sessions on unauthorized ports. If we had implemented a firewall that only let through services required, this would have prevented remote unauthorized connections over random ports.

Preparation

Forming small sub-teams within the group and having them train in their assigned roles for the competition would prove invaluable. Groups of people with experience working together and knowledge of each others strengths and weaknesses would lead to specialized and efficient teams for attack and defense.

Conclusions
We believe that while we did not win this competition, everyone involved learned a great deal about computer security. Next year, with proper preparation and a better understanding of how the competition works, we believe the team from UCCS will perform much better.

Live Network

P3 1Ghz�512 Mb ram

Ran in promiscuous mode to prevent from being detected on network

Monitor Box

Only Ran

Ethereal

10.10.1.9

P3 1Ghz�512 Mb ram

Ran Auditor Linux (Live CD)

Attack 3

10.10.1.64

Attack 2

10.10.1.37

Attack 1

10.10.1.69

Test Box

Image

10.10.1.4

Vuln Image

10.10.1.3

Image Box -- 10.10.1.2

P4 3.2Ghz/HT – 2GB

Dual Homed

12 port

unmanaged

Hub

128.198.61.100

Team Box

10.10.1.1

P3 – 512MB

GRE Tunnel

UCCS Standard Winxp

UCCS Standard Winxp

UCCS Standard Winxp

Test Network

Test Box

For patch

x.y.61.172

Vuln Image

For Attack

x.y.61.171

Image Box -- 128.198.61.170

P4 3.2Ghz/HT – 2GB

UCCS

Network

� University of California, Santa Barbara

� International Capture The Flag

� Denial of Service

� The password for Fall 2005 was gotsp4m?

� This may have been because of not doing a chroot

� http://www.cs.ucsb.edu/~vigna/CTF/

� http://www.remote-exploit.org/index.php/Auditor_main

� University of Colorado, Colorado Springs

� Intrusion Prevention System

