A Case Study on Computer Worms

Balaji Badam
University of Colorado Springs

Abstract
Securing a computer network is pretty essential in this modern era of computer world. To understand the threat posed by computer worms, it is necessary to understand the classes of worms, the attackers who may employ them, and the potentials payloads. [5] This paper describes some of the techniques that are currently used by internet worms and looks at the various types of systems that are in place which take the necessary precautions in order to reduce the vulnerability of the system and take evasive actions as needed. The key is to find a worm and mitigate its propagation through the network. In most cases it is seen that the impact of the threat is minimized if not completely avoided. The paper describes an internet worm in perspective of why it is an important problem and what the existing approaches currently available and if they work, what is the effectiveness of these algorithms. Also it tries to answer if these different schemes are practical and cost effective.
1. Introduction

A computer worm is a program that self-propagates across a network exploiting security or policy flaws in widely-used services.[5] In these modern days of digital internet age and digital content usage, it is highly essential for a modern day computer network to be secure enough. The need for an ideal network is becoming highly crucial, day by day. Due to the fast spreading nature and great damage of Internet Worms, it is necessary to implement automatic mitigation such as dynamic quarantine defense or non-threshold based worm detection. [1] If not completely thwart it is becoming immensely important to at least minimize the threat to a certain extent.
2. Worms vs. Viruses

What differentiates virus from a worm? It is very hard to make a clear distinction between the two. Let’s see what the attack vector and mode of propagation of these two look like.

Virus Attack Vector: A virus requires user interaction such as a user executing an email attachment. It is not an ideal hacker entry method as it requires user interaction.
Virus Propagation: Once a machine gets infected it will try to infect other machines by sending an email to other users or some other means of communication, which might results in affecting other machines, so very slow.
Worm Attack Vector: A worm usually tries to takes advantage of vulnerability on an unpatched computer system to exploit a machine. This method gives hackers premium access to server machines and work stations that are connected to the internet at any time without needing a user to do a thing.

Worm Propagation: A worm can propagate through the internet targeting vulnerable machines without any user interaction. The worst case scenario results in a worm traversing the Internet in a matter of minutes, infecting numerous machines.

We distinguish between worms and viruses in that the latter infect otherwise non-mobile files and therefore require some sort of user action to abet their propagation. As such, viruses tend to propagate more slowly. They also have more mature defenses due to the presence of a large anti-virus industry that actively seeks to identify and control their spread.

Viruses
· Require user interaction.
· Propagate slower than worms, because of the need for human interaction.
· Primarily attack workstations, as users must be on the console machine to initiate the virus infection.
· Are not the primary mechanism of attack of hackers.
· Can be caught via the user of antivirus software.
· Do not leverage vulnerabilities; they mostly rely on end users making un-intelligent decisions (like opening an attachment from an unknown person).
· Are single parted in nature - meaning they tend to infect using one mechanism and then infect subsequent machines using the same mechanism.
Worms
· Do not require any interaction.
· Propagate quickly, because there is no need for human interaction.
· Can attack any unpatched machine that is on the network - both servers and workstations.
· Are a hacker’s best friend.
· Cannot be easily detected by antivirus software.
· Require the presence of security vulnerability on the machine to compromise it.
· May obtain confidential data from that machine (like usernames and passwords), once the worm has compromised the machine, that can be used to compromise other machines - even machines that are patched (i.e. Code Red, Nimda).
· Can attack a machine via one vector and then attack subsequent machines using any of 25+ other attack vectors (worms can enter using Blaster and then attack other machines via open file shares, Nimda, Code Red, Slammer, etc.).
3. Types of worms
In order to understand the worm threat, it is necessary to understand the various types of worms, payloads and attackers. [5] This can be based on several factors such as target discovery, carrier, activation, payloads, and attackers.

Target discovery represents the mechanism by which a worm discovers new targets to infect.
Carrier is the mechanism the worm uses to transmit itself onto the target.

Activation is the mechanism by which the worm’s code begins operating on the target.

Payloads are the various non-propagating routines; a worm may use to accomplish the author’s goal.

Attackers have different motives and would therefore utilize different payloads.

In addition, it is important to note that worms need not be confined to a single type within each category. Some of the most successful worms are multi-modal, employing multiple means of target discovery, carrier, payload, etc., where the combination enables the worm to surpass defenses (no matter how effective) that address only a single type of worm. [5]
3.1. Target Discovery

For a worm to infect a machine, it must first discover that the machine exists. There are a number of techniques by which a worm can discover new machines to exploit: scanning, external target lists, pre-generated target lists, internal target lists, and passive monitoring or use a combination of these strategies. If a defense blocks a given strategy, this can prevent an entire class of worms from propagating.

Scanning: Probing a set of addresses to identify vulnerable hosts. Two simple forms of scanning are sequential (working through an address block using an ordered set of addresses) and random (trying addresses out of a block in a pseudo-random fashion). Due to its simplicity, it is a very common propagation strategy. Scanning worms spread comparatively slowly compared with a number of other spreading techniques, but when coupled with automatic activation, they can still spread very quickly in absolute terms.

Pre-generated Target Lists: An attacker could obtain a target list in advance, creating a list of probable victims. A small list could be used to accelerate a scanning worm, while a complete list creates a flash worm, capable of infecting all targets extremely rapidly. Creating a comprehensive list requires some effort; either a distributed scan or the compromise of a complete database is required.

Like scanning worms, most of the code is application independent, suggesting that flash worms can also use toolkits in their implementation. That is probably one of the reasons we have not yet detected a list based worm.

Externally Generated Target Lists: An external target list is one which is maintained by a separate server, such as a matchmaking service’s meta server. (A meta server keeps a list of all the servers which are currently active. A meta server worm first queries the meta server in order to determine new targets. Such a worm could quickly spread, even when the target population is relatively small, as there are meta servers which can be queried to discover the vulnerable machines. This technique could also be used to speed a worm attacking web servers, for example by using Google as a meta server in order to find other web servers to attacks.

There is no meta server worm seen yet, but the risk is significant due to the great speed such a worm could achieve.

Internal Target Lists: Many applications contain information about other hosts providing vulnerable services. Such target lists can be used to create topological worms, where the worm searches for local information to find new victims by trying to discover the local communication topology.

Passive: A passive worm does not seek out victim machines. Instead, they either wait for potential victims to contact the worm or rely on user behavior to discover new targets. Although potentially slow, passive worms produce no anomalous traffic patterns during target discovery, which potentially makes them highly stealthy. Contagion worms are passive worms which rely on normal communication to discover new victims.

3.2. Propagation Carriers and Distribution Mechanisms
The means by which propagation occurs can also affect the speed and stealth of a worm. A worm can either actively spread itself from machine to machine, or it can be carried along as part of normal communication.

Self-Carried: A self-carried worm actively transmits itself as part of the infection process. This mechanism is commonly employed in self-activating scanning or topological worms, as the act of transmitting the worm is part of the infection process. Some passive worms also use self-carried propagation.

Second Channel: Some worms require a secondary communication channel to complete the infection. Although the exploit uses RPC, the victim machine connects back to the infecting machine using TFTP to download the worm body, completing the infection process.

Embedded: An embedded worm sends itself along as part of a normal communication channel, either appending to or replacing normal messages. As a result, the propagation does not appear as anomalous when viewed as a pattern of communication. The contagion strategy is an example of a passive worm that uses embedded propagation.

An embedded strategy, although relatively stealthy, only makes sense when the target selection strategy is also stealthy. Otherwise, the worm will give itself away by its target selection traffic, and reaps little benefit from the stealth that embedded propagation provides. Thus a scanning worm is unlikely to use an embedded distribution strategy, while passive worms can benefit considerably by ensuring that distribution is as stealthy as target selection.

3.3. ACTIVATION

The means by which a worm is activated on a host also drastically affects how rapidly a worm can spread, because some worms can arrange to be activated nearly immediately whereas others may wait days or weeks to be activated.

Human Activation: The slowest activation approach requires a worm to convince a local user to execute the local copy of the worm. Since most people do not want to have a worm executing on their system, these worms rely on a variety of social engineering techniques. Some worms such as the Melissa email-worm indicate urgency on the part of someone you know (“Attached is an important message for you”); others, such as the Iloveyou attack, appeal to individuals’ vanity (“Open this message to see who loves you”); and others, such as the Benjamin worm appeal to greed (“Download this file to get copyrighted material for free”).

Human Activity-Based Activation: Many worms are activated when the user performs some activity not normally related to a worm, such as resetting the machine, logging in and therefore executing login scripts, or opening a remotely infected file. This activation mechanism is commonly seen in open shares windows worms which will begin execution on the target machine either when the machine is reset or the user logs in, as these worms write data to the target disk without being able to directly trigger execution.

Scheduled Process Activation: The next fastest worms activate using scheduled system processes. Such programs can propagate through mirror sites or directly to desktop machines. Many desktop operating systems and applications include auto-updater programs that periodically download, install and run software updates. Early versions of these systems did not employ authentication, so an attacker needed only to serve a file to the desktop system to infect the target.
Self Activation: The worms that are fastest activated are able to initiate their own execution by exploiting vulnerabilities in services that are always on and available. Such worms either attach themselves to running services or execute other commands using the permissions associated with the attacked service.

Execution occurs as soon as the worm can locate a copy of the vulnerable service and transmit the exploit code. Currently, preventing these attacks relies on running software that is not vulnerable, although the effect of an attack can be reduced by limiting the access of services that are always on.
3.4. PAYLOADS

The payload, the code carried by the worm apart from the propagation routines, is limited only by the goals and imagination of the attacker. Different sorts of attackers will desire different payloads to directly further their ends. Most of the following types of payloads have been seen in the wild.

None/nonfunctional: By far the most common is simply a nonexistent or nonfunctional payload. A worm with a bug in the propagation code usually fails to spread, while bugs in the payload still leave the worm able to spread. Such a worm can still have a significant effect, both through traffic and machine load (as seen with both the Morris worm and Slammer) and by actively advertising vulnerable machines.

Internet Remote Control: Code Red II opened a trivial to use privileged backdoor on victim machines, giving anyone with a web browser the ability to execute arbitrary code. This even gave rise to anti-Code-Red sites which exploited the backdoor to issue the commands to disable IIS and reset the machine.

Spam-Relays: Part of the Sobig worm’s associated trojan, creates an open-mail relay for use by spammers. By creating numerous relay machines across the Internet, spammers can avoid black hole-based mechanisms which block known-spamming IP addresses.

HTML-Proxies: Another aspect of Sobig’s trojan is the distribution of web-proxies. By redirecting web requests (through DNS) to randomly selected proxy machines, it becomes significantly more difficult for responders to shut down compromised websites which are used for various illegal activities, including scams which attempt to entice users to input financial data (a technique called phishing).

Internet DOS: Another common payload is a Denial of Service (DOS) attack. Code Red, Yaha, and others have all contained DOS tools, either targeted at specific sites or retargetable under the attacker’s control. Distributed DOS (DDOS) tools such as Stacheldraht have included stealthy and encrypted communication channels.

Data Collection: Computers are increasingly used to store and manipulate sensitive data. A worm could use target these capabilities and some already have. Criminals are sometimes interested in identity theft, and significant subsets of the black hat community are involved in harvesting credit cards and could use worms to search for this information. After discovery, the results could be encrypted and transmitted through various channels.

Access for Sale: An extension on remote control and data-collection payloads is access for sale. With this payload, the worm will allow remote access to paying customers, but only to the specific victims to which the customer desires access.

Data Damage: There have been many viruses and email worms, such as Chernobyl or Klez, which contained time-delayed data erasers. Since worms can propagate much faster, they could start erasing or manipulating data immediately after infecting a system. Data could also be encrypted instead of destroyed as part of an extortion scheme. In addition, a worm could distribute sensitive information to cause general confusion.

Physical-world Remote Control: In addition to altering the attacked computer and network, attacks can affect non-Internet objects, services and expectations. Networked computers are used to control physical-world objects, often through supervisory control and data acquisition (SCADA) systems, and a worm could target those computers.

Computers can also be used to influence the actions of humans. A coercive payload might do no damage unless the worm is disturbed. Such a worm attempts to remain entrenched by giving the user a choice: allow the worm and suffer no local damage, or attempt to eliminate the worm and risk catastrophic results.

Physical-world DOS: In addition, computers can deny service in the physical world. For example, a worm can use attached modems to dial emergency services such as 911 or other telephone targets, or use catalog-registration features to saturate the physical mailboxes of a large number of targets.

Physical-world Reconnaissance: As an example of this type of attack, a computer worm could “wardial” via an attached modem to conduct further reconnaissance for later, non-Internet based attacks.

Physical-world Damage: The most direct object to damage is the infected computer. Although the diversity of BIOSs prevents a general reflashing, it would be possible for a worm to include reflashing routines for several common BIOSs. Since the FLASH ROMs are often soldered to the motherboard, such an attack could effectively destroy particular motherboards when there doesn’t exist a protected recovery BIOS or similar mechanisms.

Worm Maintenance: The final class of payload is one that is used to maintain the worm, like querying web sites for new code. A controllable and updateable worm could take advantage of new exploit modules to increase its spread, enable sophisticated additions to the worm’s functionality after release, and fix bugs after release.

3.5. ATTACKERS

Although it is important to understand the technology of worms, in order to understand the nature of the threat, it is also important to understand the motivations of those that launch the attacks, and to identify (where possible) who the attackers are. This is a representative list organized by motivation; it is not an exhaustive enumeration.

Experimental Curiosity: Although the technology is well understood, there is a continual tendency for various individuals to experiment with viruses and worms. The Morris worm was not only a pioneering event, but an experiment which escaped. Likewise, the ILoveYou worm was designed by a student and proposed as a thesis project before it was released.

Pride and Power: Some attackers are motivated by a desire to acquire (limited) power, and to show off their knowledge and ability to inflict harm on others. The people who do this are typically unorganized individuals or small groups who target randomly; if they discover a system that is vulnerable to an attack they possess, then they are likely to execute the attack.

Commercial Advantage: Since the U.S. economy has grown heavily dependent on computers for day-to-day operation, a major electronic attack targeted against a single domain could seriously disrupt many companies that rely on Internet-based transactions. Such disruption could be used by an attacker wishing to profit by manipulating financial markets via a synthetic economic disaster, or by competitors that wish to limit buyers’ access to a seller’s wares. International companies or organized crime members could participate in this type of attack, and the targets range from specific companies to economic infrastructure.

Extortion and Criminal Gain: Another potential profit motive is extortion or other criminal gain. Since a well constructed worm could launch an effective DOS attack, major e-commerce or portal companies could be threatened unless payment is arranged. Such a worm could be launched by individuals or organized groups. Likewise, a worm which searches for credit-card information would represent another criminally-motivated payload.

Political Protest: Some groups wish to use the Internet to publicize a specific message and to prevent others from publicizing theirs. Individuals or organizations with local, national, and international presence can be involved. Targets include organizations with competing goals, or media outlets that are perceived as critical of an organization’s goals.
Terrorism: Terrorist groups could employ worms to meet some of their objectives. Since Internet-connected computers are a First World development, and major multinational concerns rely heavily on desktop machines for day-to-day operation, payloads could be selective to only execute in large, networked environments, making worms attractive economic weapons for those who believe that large corporations are an evil, as well as those with animosity directed against particular nations or governments. Or, if desired, the attack could target all infectible computers, in an attempt to cause the maximum damage.

Cyber Warfare: As the U.S. is heavily dependent on computing infrastructure for both economic and governmental needs, other nations with a significant interest in U.S. economic disruption could plausibly launch an electronic attack, either as a preemptive strike, or in response to U.S. action, or in conjunction with a physical strike. Along with large e-commerce sites, critical infrastructure, networked military and governmental computers would be primary targets for such worms. Such attacks would be particularly appealing to nations without well-developed Internet infrastructure, as they would stand little to lose in terms of the worm attacking their hosts, too, or from a possible cyber counter-attack. The potential anonymity of cyber attacks also makes its use attractive for “cold war” situations, and for possibly framing others as the apparent perpetrators.

4. Defense Strategies
While research in this field is nascent, traditional epidemiology suggests that the most important factors determining the spread of an infectious pathogen are the vulnerability of the population, the length of the infectious period and the rate of infection. These translate into three potential interventions to mitigate the threat of worms: prevention, treatment, and containment. Let’s take a closer look at these:
A. Prevention

Prevention technologies are those that reduce the size of the vulnerable population, thereby limiting the spread of a worm outbreak. In the Internet context, the vulnerability of the population is a function of the software engineering practices that produce security vulnerabilities as well as the socio-economic conditions that ensure the homogeneity of the software base. For example, a single vulnerability in a popular software system can translate into millions of vulnerable hosts.

B. Treatment

Treatment technologies, as exemplified by the disinfection tools found in commercial virus detectors [8] and the system update features in popular operating systems [9], are an important part of any long-term strategy against Internet pathogens. By deploying such measures on hosts in response to a worm outbreak, it is possible to reduce the vulnerable population (by eliminating the vulnerability exploited by the worm) and reduce the rate of infection (by removing the worm itself from infected hosts). However, for practical reasons, these solutions are unlikely to provide short-term relief during an acute outbreak.
The time required to design, develop and test a security update is limited by human time scales – usually measured in days – far too slow to have significant impact on an actively spreading Internet worm. Worse, if the installation of such updates is not automated, the response time can be substantially longer. Finally, creating a central authority for developing, distributing, and automatically installing security updates across hundreds of thousands of organizations will require a level of trust and coordination that does not currently exist [10].

C. Containment

Finally, containment technologies, as exemplified by firewalls, content filters, and automated routing blacklists, can be used to block infectious communication between infected and uninfected hosts. In principal, this approach can quickly reduce, or even stop, the spread of infection, thereby mitigating the overall threat and providing additional time for more heavy-weight treatment measures to be developed and deployed.
Now we will see the three different approaches to thwart the threat of internet worms, they are dynamic quarantine, monitoring and early warning and containing self-propagating code.
4.1. Dynamic Quarantine
Automatic mitigation is not very difficult for known worms. Firewalls or routers can inspect packet contents according to the signatures of known worms. A worm’s packets can be dropped automatically when firewalls or routers find out the signature of the worm. However, no signature is available for an unknown worm — we have to rely on behavior-based anomaly detection methods to detect an unknown worm. The great challenge for automatic mitigation now is that the current behavior-based anomaly detection methods have the common problem of having high false alarm rate. If we rely on automatic mitigation to block an unknown worm, it will also block many legitimated connections or healthy computers. If we release the block on an alarmed host only after security staffs check and find out that the host is healthy, then many innocent healthy hosts will be blocked too long due to human’s slow manual inspection.
Current Trend: Then how can the current imperfect anomaly detection systems used to build an automatic mitigation defense against fast spreading worms? Enlightened by the methods used in epidemic disease control in the real world, there is present a dynamic quarantine method based on the principle “assume guilty before proven innocent”. This dynamic quarantine method can alleviate the negative impact of false alarms generated by worm anomaly detection systems. This method quarantines a host whenever its behavior looks suspicious, and releases the quarantine automatically after a short time. If the worm anomaly detection program used in the system can determine which service port has suspicious activities, then the quarantine means, it only block traffic on the suspicious port without interfering normal connections on other ports. Once some hosts give alarms and are quarantined, security staffs should inspect these quarantined hosts as quickly as possible. However, in order not to severely interfere normal activities, the quarantine on a host will be released automatically after a short time, even if the host has not been inspected by security staffs yet. In this way, a falsely quarantined healthy host will not be blocked too long.
In a dynamic quarantine system, a worm still propagates according to traditional epidemic models, but with slower propagation speed and higher epidemic threshold.
Future Trend: A more advanced dynamic quarantine system should have dynamically changing quarantine time and detection threshold during a worm’s propagation. Like what people act in epidemic disease control in the real world, if a worm is more infectious and poses more damage to our networks, the dynamic quarantine defense should be more aggressive — the anomaly detection should be more sensitive to the worm’s activities, and the quarantine time should become longer to further constrain quarantined infectious hosts. The long-term objective is to develop a “feedback control dynamic quarantine system”. This feedback quarantine system can optimally adjust the anomaly detection threshold and the quarantine time in order to minimize the cost of false alarms and at the same time to slow down a worm’s spreading speed as much as possible. This method is a first step into that direction.
4.2. Monitoring and Early Warning

Given the fast spreading nature of Internet worms and their heavy damage to the society, it seems appropriate to setup a nation-scale worm monitoring and early warning system.

In order to detect an unknown (zero-day) worm, a straightforward way is to use various threshold-based anomaly detection methods to detect the presence of a worm. Directly using some well-studied methods established in the anomaly intrusion detection area makes sense. However, many threshold based anomaly detections have the trouble to deal with their high false alarm rate. In the case of worm detection, there is a major difference between a worm’s propagation and a hacker’s intrusion attack: the propagation of a worm code exhibits simple attack behaviors and usually follows some dynamic models because it is usually a global large-scale propagation; on the other hand, a hacker’s intrusion attack, which is more complicated, usually targets one or a set of specific computers and does not follow any well-defined dynamic model in most cases.

Current Trend: Therefore, it does not make sense to use any threshold-based anomaly detection methods. Instead it is better to fully exploit a worm’s simple behavior based on well-studied epidemic models. This method makes use of a Kalman filter to detect the propagation of a worm in its early stage based on observed illegitimated scan traffic, which includes both real worm scans and background noise. The Kalman filter will not only make use of the correlation of the history trace of observation data (not just a burst of traffic at one time), but also the dynamic trend of the propagation of a worm — at the beginning of a worm’s spreading when there are little human counteractions or network congestions, a worm propagates almost exponentially with a constant, positive infection rate.
The Kalman filter is activated when the monitoring system encounters a surge of illegitimated scan activities. If the worm infection rate estimated by the Kalman filter stabilizes and oscillates a little bit around a constant positive value, we can claim that the illegitimated scan activities are mainly caused by a worm, even if the estimated value of the worm’s infection rate is still not well converged. If the illegitimated scan traffic is caused by non-worm noise, the traffic will not have the exponential growth trend, then the estimated value of infection rate would oscillate around without a fixed central point, or it would oscillate around zero. In other words, the Kalman filter is used to detect the presence of a worm by detecting the trend, not the rate, of the observed illegitimated scan traffic. In this way, the unpredictable, noisy illegitimated scan traffic we observe everyday will not cause many false alarms to our detection system — such background noise will cause great trouble to traditional threshold-based detection methods.
Future Trend: The epidemic model is used for the estimation and prediction. While it gives good results for now, the need to develop more detailed models to reflect a future worm’s dynamics is also important. For example, if a worm spreads through a topology, or spreads by exploiting multiple vulnerabilities, or is a meta-server worm, then the dynamics will not always follow the epidemic model.

For non-uniformly scanning worm, such as the Code Red II, we can have different observations by setting up the monitors on different places. The non-uniform scanning behavior of a worm may also affect the bias correction. [7] For a future unknown worm, through analysis of the worm scan distribution by using the data from egress scan monitors, this method can determine if the worm is uniformly scanning the Internet or not.

This method uses a monitoring interval Δ that is an important parameter in the system design. For slow spreading worm, it could be set to be long, but for fast spreading worm such as the Slammer, the time interval should be quite small in order to catch up with the worm’s speed. Selecting the appropriated Δ before the worm’s presence and its speed is known remains a big challenge. Further research should be on designing a recursive estimation algorithm that uses adaptive sampling rate.

This method could also be useful to develop distributed estimation algorithms to reduce the latency and traffic for the report to a central server. The worm detection method here assumes that only worm scans can cause exponential increasing scan traffic to monitors, while other background scan noise cannot.

For a fast spreading worm such as the SQL Slammer, human’s manual actions will not catch up with its speed even if the early warning is provided at the beginning of the worm’s spreading. Automatic mitigation is the only way to defend against such kind of worm attack. How to decrease false alarm rate, detect a worm earlier, and collect observation data in time are the key factors in incorporating the early warning system with automatic mitigation.
Monitoring and early warning system for Internet worms can be used to provide an accurate triggering signal for mitigation mechanisms in the early stage of a future worm. Such system is needed in view of the propagation scale and speed of the past worms. Although it has been lucky that the previous worms have not been very malicious, the same can not be said for the future worms.
4.3. Containing self-propagating code
There are strong reasons to believe that containment is the most viable of the three strategies of prevention, treatment and containment of internet worms. First, there is hope that containment can be completely automated, since detecting and characterizing a worm – required before any filtering or blocking can be deployed – is far easier than understanding the worm itself or the vulnerability being exploited, let alone creating software to patch the problem. Second, since containment can potentially be deployed in the network it is possible to implement a solution without requiring universal deployment on every Internet host.

Future Trend: Various aspects of containment systems for worm epidemics:

Reaction time: To prevent widespread infection in the Internet, containment systems will require automated methods to detect and react to worm epidemics. If containment systems are unable to activate filtering mechanisms within minutes of the start of an epidemic, such systems will be ineffective in the wide area.

Containment strategy: Content filtering is significantly more effective than address blacklisting and can contain worms an order of magnitude more aggressive. To support this capability, network equipment vendors are encouraged to provide flexible high-speed packet classification and filtering services – extending into the application layer.

Blocking location: Nearly all of Internet paths, such as those covered by the 100 largest ASes, need to employ content filtering for a containment system to be effective. As a result, cooperation and coordination among ISPs will need to be extensive.

5. Practicality and effectiveness
It looks like all the methods we have see are practical and effective, but in the future as the bandwidth of Internet connections keeps increasing, future worms will require even less time to finish the infection task. For those fast spreading worms, human’s manual counteractions cannot catch up with the worms’ propagation speed.
Dynamic Quarantine:
Automatic mitigation is necessary for defending against fast spreading worms in the future. Currently, the popular Intrusion Prevention System (IPS) [6] on the security market can be thought as a product combining intrusion detection with primary automatic mitigation techniques.
While important research is going on in this direction, to increase the security and heterogeneity of software systems on the Internet, widespread software vulnerabilities will persist for the foreseeable future. Therefore, pro-active prevention measures alone are unlikely to be sufficient to counter the worm threat.

Monitory and Early Warning:
The analysis and studies indicate that such systems are feasible, and the “trend detection” methodology poses many interesting research issues. Sufficient research and studies are already in progress and it is hoped that it would generate interests of discussion and participation in this topic and eventually lead to an effective monitoring and early warning system.
Containing Self-Propagating Code:
It will be a challenge to build Internet containment systems that prevent widespread infection from worm epidemics. In particular, designing and implementing systems that automatically detect the start of worm epidemics and then invoke distributed algorithms to activate widespread filtering mechanisms on the order of minutes is a daunting task. And the inevitable emergence of significantly more aggressive worms further complicates the problem.

6. CONCLUSION

In this paper we have seen the different types of worms and their propagation strategy. Also we have looked at worms, based on target discovery, carrier, activation, payload, and attackers. The carrier, activation, and payload are independent of each other, and describe the worm itself. Those who want to help develop more robust defenses can focus on preventing worms that use one or more of the techniques described here. We have also seen different types of attackers and their motivations, because worms are ultimately written by humans, and sometimes the easiest way to defend against a worm is to remove the motivation for writing a worm in the first place.
When the attackers are more sophisticated, probing is fundamentally not a costly process. From the discussions above, it seems that it would favor the attackers when the Internet links are fast enough and the size of the code is not critical to the propagation speed.

This does not imply that monitoring is of no use. In future, an efficient traffic monitoring infrastructure will be an important part of the global intrusion detection systems. A consequence of the worm detection method is that the attackers will have to use a limited number of IP addresses to scan the Internet. Therefore, the impact of worm scanning on the Internet traffic will be reduced.

In this paper, we discussed different types of scan methods and their effects on future worm propagation. We find that as the backbone link speeds and hosts of greater capacity are affordable to the attackers, it will be more difficult for us to detect worm scanning from the Internet traffic. However, the detection methods can still be useful in that it forces the attacker to use lesser traffic and scan more slowly and cautiously.

Future work lies in this direction of developing an integrated approach to further improve all the above mentioned techniques and develop an efficient mechanism to fight worm attacks.
6. References
[1] Cliff Changchun Zou, Weibo Gong, Don Towsley. Worm Propagation Modeling and Analysis under Dynamic Quarantine Defense.
[2] David Moore, Colleen Shannon, Geoffrey M. Voelker, Stefan Savage. Internet Quarantine: Requirements for Containing Self-Propagating Code.

[3] Cliff Changchun Zou, Lixin Gao, Weibo Gong, Don Towsley. Monitoring and Early Warning for Internet Worms.
[4] Jiang Wu, Sarma Vangala, Lixin Gao, Kevin Kwiat. An Effective Architecture and Algorithm for Detecting Worms with Various Scan Techniques.
[5] Nicholas Weaver, Vern Paxson, Stuart Staniford, Robert Cunningham. A Taxonomy of Computer Worms.
[6] O. Kreidl and T. Frazier. Feedback Control Applied to Survivability: a Host-Based Autonomic Defense System, IEEE Transactions on Reliability, Vol. 52, No. 3, 2003.

[7] eEye Digital Security. .ida ”Code Red” Worm. 2001. http://www.eeye.com/html/Research/Advisories/ AL20010717.html
[8] Symantec, “Symantec Security Response,” http://securityresponse.symantec.com/.

[9] Microsoft Corporation, “Microsoft windows update,” http://windowsupdate.microsoft.com.

[10] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet in Your Spare Time,” in Proceedings of the 11th USENIX Security Symposium, San Francisco, CA, Aug. 2002.

PAGE
13

