Software Watermarking
Deterring Software Piracy
Beaux Sharifi

CS591
Fall 2005

Table of Contents

1Introduction

1Anti-piracy Approaches

2Software Watermarking

3Fingerprinting

3Watermark Quality

4Watermark Attacks

4Distortive Attacks

5Subtractive Attacks

5Additive Attacks

6Collusive Attacks

6Statistical Attacks

6Software Watermarking Types

7Static Software Watermarking

7Data Watermarks

8Code Watermarks

8Dynamic Software Watermarking

8Easter Eggs

9Execution Trace Watermarks

10Dynamic Data Structure Watermarks

10Dynamic Graph Watermarks (DGW)

11Constructing a DGW

12DGW Attacks

13DGW Defenses

15Conclusion

17Related Work

17References

Introduction

According to the International Data Corporation (IDC), an industry leader in global market research, 35 percent of software installed on personal computers worldwide was pirated in 2004, down from 36 percent in 2003. While the percentage of software piracy dropped by a percent, the losses from software piracy increased from $29 billion to $33 billion from 2003 to 2004. The IDC estimates that over the next five years, software piracy will account for more than $200 billion in losses to software makers worldwide in contrast to the $300 billion that will be earned [1].
The worldwide epidemic of software piracy is a growing concern to the software industry. With the increasing speed of the internet and the growing number of households gaining broadband access, software piracy is likely to expand over the coming years. Software piracy causes huge losses in sales and intellectual property. This, in turn, leads to lost jobs, decreased innovation, and higher prices for software. For all these reasons, the software industry is continually trying to find additional ways to stop piracy [5].
Anti-piracy Approaches
A number of approaches in the past have been tried to prevent piracy. Some of these include [6]:
· Requiring the use of a special key to install software.

· Anti-piracy software and hardware designed to prevent media-copying.

· Linking the software to the hardware of a specific machine. This is the approach taken by Microsoft’s Product Activation.
· Requiring a connection to a license server in order to use an application.
· Linking the software to a piece of movable hardware such as a “hardware dongle”.
While the above approaches help curb piracy, they are not always practical. For example, requiring the use of a “hardware dongle” is not feasible for companies who want to allow purchasing and downloading of their software online. Likewise, restricting software to a particular machine is cumbersome when a customer wants to legitimately move the software to a different machine.
The main problem with the above approaches is that they do not provide any protection once the anti-piracy device is broken. For example, once a cracker has disabled the anti-piracy device, he can begin distributing or selling the non copy-protected software as his own. Furthermore, a cracker may even reverse engineer the software and steal some of the key algorithms for use in his own application. Reverse engineering is becoming easier with the distribution of intermediate language code such as Java byte code or .NET assemblies [6].

In order to protect their intellectual property rights, software makers are looking for additional ways to prove ownership of their software. If they can prove ownership, then they can prosecute crackers by proving in a court of law that the cracker’s software is not original. This, in turn, would help to deter future theft.
Software Watermarking

Software watermarking is a technique for proving ownership to the intellectual rights of software by using an extension of steganography. Where traditional steganography embeds hidden information into media (such as music, video, or pictures), software watermarking embeds hidden information into a program. In this case, the hidden information is typically the digital rights of the software (e.g. license number, copy restrictions, etc) [4]. By embedding secret copyright information into a program, software makers can prove ownership of a stolen piece of software by being able to extract the hidden software watermark. Note that software watermarking does not prevent illegal copying of software. Instead, it aims to deter software piracy by providing a means for prosecution once a program has been stolen.
Fingerprinting

Software watermarks can be individualized by embedding a unique watermark within each distributed copy of software. In this case, the watermark would contain the digital rights of the company as well as information about the purchaser of the software. This form of watermark is known as a Fingerprint. Fingerprints are useful for tracking pirated software back to the original copyright violator. For example, say company XYZ sells a copy of its software to Alice. Alice decides that she will distribute the software herself and sell copies online. If company XYZ finds a copy of the software online, they can extract the unique fingerprint and discover that the original copyright violator was Alice. They can then file charges against Alice in order to recover any losses [2].
Fingerprinting makes software watermarks vulnerable to collusion attacks. Collusion attacks will be discussed later with the rest of the types of software watermark attacks.
Watermark Quality
In order for software watermarks to be effective, they must demonstrate several properties. First and foremost, a software watermark must be resilient to attacks. If an attacker suspects a software watermark exists, he may try and remove or destroy the watermark before illegally distributing the software. A good software watermark is one that is immune or highly resistant to attacks. Second, a software watermark must be stealthy. The presence and location of a software watermark should not be easy to analyze from the distributed copy of the software. If an attacker can reliably locate the software watermark, it will be much easier to remove. Third, a software watermark must be efficient. It should not adversely affect the performance of the software program. Finally, a software watermark must be mathematically deliberate. That is, it must be easy to prove that the watermark was inserted into the program with deliberate intention and not as the result of coincidence [2].

Watermark Attacks

As mentioned previously, software watermarks must be resilient to de-watermarking attacks that can remove the watermark or render them useless. Collberg and Thomborson [2] define several classes of attacks against software watermarks. These attacks include: distortive, subtractive, additive, collusive, and statistical attacks. The following is a description of each of these types of attacks.
Distortive Attacks

A distortive attack on a software watermark aims to distort a program in such a way that the program is still useful, but has changed significantly enough that the watermark can no longer be recognized. Distortive attacks apply “semantic-preserving program transformations” that don’t change program behavior, but may drastically change its form [6]. Examples of distortive attacks are translations (compilation, decompilation, binary translation), optimization, and obfuscation [2]. For example, a software watermark could be embedded in a constant string of a program like this:

if (bShowWatermark == true)

{

 printf(“XYZ Software, copyright 2005”);

}

In this case, a distortive watermark attack could apply obfuscating transformations over the entire program that would break any string constants into separate smaller substrings or build the strings dynamically using code. In this case, the watermark would no longer be recognizable in the program.

Subtractive Attacks

A subtractive attack aims to discover the location of a watermark in a program and then remove it in such a way that the program is still useful. Subtractive attacks can be aided by reverse engineering the software or by various tools that perform static or execution analysis on the program. For example, a static analyzer could locate dead code (code that has no effect on program output) which could be an indication of a software watermark. Once located, the attacker could remove the software watermark. Subtractive attacks are also known as cropping attacks [2].
Additive Attacks

An additive attack tries to add additional software watermarks into an already watermark program, thereby obscuring the original ownership of the program. An additive watermark attack is successful if it disables the original watermark or if it appears to precede the original watermark in time [2].

Collusive Attacks

A collusive attack attempts to discover the location of a watermark by comparing two or more uniquely watermarked programs (fingerprints) for their differences. If only the fingerprints are different, then comparing multiple fingerprinted programs quickly reveals the location of the watermarked code. Once located, an attacker can reconstruct the original program without the watermark by attempting a subtractive attack [2].
Statistical Attacks

A statistical attack attempts to discover the location of a software watermark by analyzing the execution of the program. It may monitor the program heap, instruction registers, the lifetime of data structures, etc. in order to discover anomalies that indicate the location of the watermark [6]. Once the location of the watermark is discovered, an attacker could then attempt to remove it.

Software Watermarking Types
The previous section discussed a variety of de-watermarking attacks. We will now turn our attention to the various types of software watermarking techniques and analyze how well these techniques withstand de-watermarking attacks.

There are two basic types of software watermarks: static and dynamic. Static software watermarks refer to watermarks that are embedded within the static structure of the software program. These types of watermarks do not change while the application runs but are just part of the physical structure of the program itself. Dynamic software watermarks, on the other hand, are embedded within the execution state of the program. Watermarks of this type are built as the program runs, typically after a particular input, and are represented in the program’s data structures or execution sequence [2].
Static Software Watermarking

Static watermarks are again distinguished as being one of two types: a data watermark or a code watermark. A data watermark is one in which the static watermark is part of the data section of the program (its headers, static strings, debugging information, etc). A code watermark is one in which the static watermark is part of the code section of the program (the instructions) [2].
Data Watermarks

Data watermarks are the most common form of software watermark because they are the easiest to create. Watermarks of this form involve embedding the watermark within any of the static data used by the target program. For example, the following snippet of code demonstrates a data watermark where a copyright notice is embedded within a string constant:
char copyright[] = “Property of XYZ Corporation, 2005”;

Extracting watermarks of this type involve searching the program for any static printable strings (using GNU strings for example) [2].
Data watermarks, though easy to create, are unfortunately very susceptible to distortive attacks through obfuscation. An automatic obfuscator can break strings apart into sub-strings or replace string constants with code to destroy any recognition of the original watermark. Furthermore, because data watermarks exist in printable form, they are not very stealthy. This results in being easily susceptible to subtractive attacks [2].
Code Watermarks

Code watermarks refer to watermarks that are represented by a particular ordering of instructions within the code of a target program. For example, a code watermark could be represented by the particular order of case statements within a C-style switch statement. Any collection of program instructions that can be reordered without affecting program correctness can be used to encode a watermark of this type. Extracting a code watermark can be accomplished by analyzing the order of instructions using a debugger [4].
Code watermarks are more stealthy than data watermarks because they are hidden in the ordering of code rather than visible in the static data. Unfortunately, like data watermarks, they are susceptible to distortive attacks. Code watermarks can easily be destroyed by local optimization of code and obfuscation. Furthermore, they can be destroyed by additive attacks since reordering watermarked code effectively removes the old watermark and inserts another [2].

Dynamic Software Watermarking

Dynamic software watermarks are represented in the program’s execution state rather than in the static program’s structure. There are three basic types of dynamic software watermarks: easter eggs, execution trace watermarks, and dynamic data structure watermarks [2].
Easter Eggs

Easter eggs are another common watermark and are characterized by displaying an unexpected visual effect on the user interface after entering an unusual combination of input. For example, Microsoft Excel ‘97 has a flight simulator that can be invoked by typing “X97:L97” into a new worksheet and pressing a particular sequence of the shift, control, and tab keys. Extracting an easter egg watermark only involves entering the required sequence of input to make the easter egg appear [3] [4].
Easter eggs have the advantage of not suffering from distortive attacks like static watermarks. Because they are part of the program behavior, semantic-preserving code obfuscation has no effect on this type of watermark. Unfortunately, easter eggs are relatively easy to recognize once they occur and are therefore unstealthy. Once the proper input sequence is discovered to invoke the easter egg, standard debugging techniques can be used to determine where the easter egg lies in the code. Once this is determined, the easter egg can be removed or disabled [2].

Execution Trace Watermarks

An execution trace watermark is represented by the execution order (trace) of a program, often with a particular input. Execution order can be represented by a sequence of instructions, addresses, or data references. For example, the order in which data elements are pushed onto a stack after a particular input could characterize an execution trace watermark. Recognizing a watermark of this type can be accomplished by analyzing the execution order or sequence of operations within the target program when fed the particular input [2] [4].

Execution trace watermarks are much stealthier than easter egg watermarks since their watermark can only be observed by monitoring the target program’s execution trace. Unfortunately, like the static watermarks, execution trace watermarks are susceptible to distortive attacks. Since extracting the watermark depends on recognizing a particular ordering within the program, many obfuscating transformations such as optimization and translation can be devised that will make it impossible to recognize the original watermark. An extreme example of this is translating a program into virtual machine code which is then interpreted [2].

Dynamic Data Structure Watermarks

Dynamic data structure watermarks are represented by the state of a program (stack, heap, globals, etc.) after it is run with a particular input sequence. For example, the value contained within a particular variable at the conclusion of an input sequence could represent a watermark. Extracting watermarks of this type can be accomplished by analyzing the memory state of the program immediately after the input sequence by using a debugger or by linking in a recognizer program [2].
Dynamic data structure watermarks are stealthy like execution trace watermarks. Since the watermark does not produce any program output, it is difficult to tell whether a program contains a dynamic data structure watermark. In addition, since the recognizer program is typically not shipped with the program, there is nothing to indicate the location of the software watermark. Unfortunately, dynamic data structure watermarks that depend upon simple data structures, like the state of an array or a variable, are susceptible to distortive attacks. Obfuscators can destroy simple program states by splitting or merging variables, splitting or merging arrays, and modifying object oriented inheritance hierarchies [2].

Dynamic Graph Watermarks (DGW)
Because all traditional software watermarking techniques are susceptible to semantic-preserving distortive attacks (except easter eggs which are unstealthy), Collberg and Thomborson [2] devised a new class of dynamic data structure watermarks called Dynamic Graph Watermarks (DGW). DGW represent a software watermark as the topology of a dynamically built graph structure.
Representing the watermark as a graph has two main advantages over existing watermarking techniques. First of all, because the graph structure is composed of pointers, it is very difficult to devise distortive attacks that make fundamental changes to the graph. In order to do so, it requires a very detailed pointer analysis of the particular graph structure. Furthermore, because the DGW can use different types of graphs to represent the watermark, the distortive transformations must be unique for each type of graph. Second, representing a watermark as a graph allows tamperproofing to be added to the program to further protect against distortive or subtractive attacks. Tamperproofing is a method for protecting a software watermark by making the program malfunction if the watermark has been modified [4].
Constructing a DGW
Constructing a dynamic graph watermark involves the following steps [4]:

1. Choose a watermark number.

2. Represent the watermark number as a graph structure.

3. Create the code that will build the graph structure at runtime.

4. Embed the watermark code into the program such that the graph is built when a special input sequence is entered.

The first step in constructing a DGW is to choose a watermark number to represent as a graph. Collberg and Thomborson recommend embedding the product of two prime numbers since the probability of such a number existing at random is small [2]. After a watermark number is chosen, it needs to be represented as a graph. There are many ways to represent a number as a graph, but one popular example is using a planted plane cubic tree (PPCT) graph. This graph structure has the added benefit of being able to easily find the origin from any node in the graph. In addition, Collberg and Thomborson give other example graph structures such as Radix-k encoding, Parent-Pointer tree encoding, and Permutation Encoding [2]. Once the watermark number is represented as a graph, code is constructed that will dynamically build the graph structure at run time. Finally, the graph code is embedded within the target program to be built when the special input sequence is entered.

Recognizing a DGW involves first running the watermarked program with the special input sequence. Once this is complete, a heap dump of the watermarked program can be taken and then analyzed for the watermark graph structure. Finally, the watermark graph structure can then be translated back into its watermark number in order to prove that the watermark was intentionally inserted into the program.
DGW Attacks
While DGW are highly resilient to distortive attacks due to their complicated pointer structure, Collberg and Thomborson suggest some advanced distortive attacks that can still destroy a DGW. Some of these potential forms of attacks are [2]:
· Adding extra pointers to the nodes of graphs.

· Renaming and reordering the pointers in a graph node.

· Adding extra levels of indirection to the graph.

· Adding extra bogus nodes to the graph structure.

Any of the above attacks could alter the watermark graph structure enough in order to make the watermark unrecognizable.
DGW Defenses

In order to defend a DGW from advanced attacks such as the ones listed above, several suggestions have been made.
Originally, Collberg and Thomborson suggested a few counter-attacks. First of all, they suggest using a graph structure where nodes only have a single pointer. This makes adding, renaming, and reordering pointers within nodes easily detectable. If detected, tamperproofing code could then exit the program. Another suggestion they make is to periodically check the integrity of the watermark graph structure within the program [2]. For example, if a balanced binary tree is used to represent the watermark, the tree could be checked periodically to make sure it is still balanced. If not, the program could terminate.

Another suggestion for protecting Dynamic Graph Watermarks was made later by He [4]. He suggests a further tamperproofing idea by inserting an additional graph structure similar to the watermark graph within the target program. This second graph structure could then be used as a source for constant values within the target program by replacing program constants with code that selects the equivalent sub-trees from the constant graph. By converting the sub-trees back into numbers, the constant values could then be recovered. The main advantage of using this technique is that by creating dependencies between the program and the constant graph, it become much more difficult to analyze the dead code in the program. Furthermore, since the constant graph is similar in structure to the watermark graph, it is difficult to distinguish between the two graphs thus making it harder for an attacker to determine which graph to remove. If an attacker removes the wrong graph, the correctness of the program will be altered.
Palsberg et al. [6] makes similar suggestions to He [4] for tamperproofing a DGW. Palsberg suggests that instead of using a constant graph, “opaque-predicates” could be added that add false dependencies between the program and the watermark. For example, a statement S could be replaced with the code:
if (x != y) then S

If x and y are different nodes within the watermark graph, the statement S will always be executed. This is another example of defeating dead code analysis by creating false dependencies between the program and the watermark code.
Palsberg et al. also suggest using an integration of protection techniques for achieving the best overall defense against various types of de-watermarking attacks. For example, in addition to tamperproofing, watermarking code should be randomly inserted within the program thereby making its location distributed throughout the program. Randomization helps protect against collusion attacks by making each program copy completely unique from one another. Another defense against collusion attacks is to obfuscate each copy of watermarked programs. Obfuscation can help protect against subtractive attacks as well by making the program and the watermark code indistinguishable from one another and making reverse engineering extremely difficult. Finally, Palsberg suggests using a pool of different and even proprietary graph structures for representing the DGW in order to further protect against de-watermarking attacks that look for specific DGW structures [6].
Conclusion

Software watermarking provides a method for protecting the intellectual property rights to software by embedding hidden copyright information into a program. A variety of software watermarking techniques are available including traditional static and dynamic watermarking techniques as well as a new dynamic data structure watermarking technique called Dynamic Graph Watermarking (DGW).
Software watermarks are susceptible to a variety of de-watermarking attacks. The five types of attacks outlined above are distortive, subtractive, additive, collusive, and statistical. Where all the traditional types of software watermarks are either unstealthy or susceptible to distortive attacks, Dynamic Graph Watermarking is a new type dynamic data structure watermark that is both stealthy and highly resilient to distortive attacks. Furthermore, by applying other protection techniques on top of the DGW, several other forms of attacks can be defended as well. For example, subtractive attacks can be defended by applying tamperproofing and obfuscation. Collusive attacks can be defended by randomizing the insertion of watermark code throughout the program and by applying obfuscation. Statistical attacks can be defended by making sure the watermark graph structure is mixed with other large heap structures within the program and by not creating the watermark structure until a particular input has been entered.

While DGW is the most resilient software watermark to date, there is further work that needs to be done. In particular, there is little published information on protecting DGW from additive attacks [2]. In addition, further work is needed on integrating several watermarking and protection techniques in order to provide simultaneous protection against all forms of de-watermarking attacks [6]. When these goals are accomplished, software watermarking will ensure that software makers can reliably prove ownership of their software without fear of de-watermarking attacks.
Related Work

Sandmark
References

[1] Business Software Alliance. Sixth Annual BSA global software piracy study. http://www.bsa.org/globalstudy/upload/2005-Global-Study-English.pdf.
[2] C. Collberg and C. Thomborson. Software Watermarking: Models and Dynamic Embeddings. In Proceedings of POPL’99, 26th Annual SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 311-324, 1999.
[3] EEGGS.com. The Easter Egg Archive. http://www.eeggs.com.
[4] Y. He. Tamperproofing a Software Watermark by Encoding Constants. Masters Thesis. 2002, entire thesis.
[5] Microsoft.com. How Piracy Affect You. http://www.microsoft.com/piracy/how_intellectual.mspx.
[6] J. Palsberg, S. Krishnaswamy, K. Minseok, D. Ma, S. Qiuyun, and Y. Zhang. Experience with Software Watermarking. In Proceedings of 16th Annual Computer Security Applications Conference (ACSAC’00), IEEE Computer Society, pages 308-316, 2001.
[image: image1.png]

Software Watermarking, CS591, F2005
Sharifi
Page i
PAGE
15
Software Watermarking, CS591, F2005
Sharifi

