 Group Number:______

Member Names: ____________ _____________
ECE 4112 Lab 4:

Buffer Overflows
Last Edited: 10/28/04

Date Issued: 9/14/04

Due Date: 9/21/04

Lab Goal

This lab will introduce you to the memory stack used in computer processes and demonstrate how to overflow memory buffers in order to exploit application security flaws. You will then execute several buffer overflow attacks against your Linux and Windows XP machines in order to gain root or administrative access using application vulnerabilities.

Pre-Lab

Carefully read the entire article Smashing the Stack for fun and profit by Aleph One. It is essential that you have a thorough understanding of this article before you attempt these attacks, and although the author’s computer system differs from ours, it will be useful as a reference during the lab. After completion of the lab, turn in answers to the questions found at the end this document.

Background

Although computer programs are frequently written in English-based user-friendly languages such as C, they must be compiled to an assembly language built for the machine on which they will be executed. The assembly language has much fewer commands than C, and these commands are much less varying in structure and less obvious semantically. Commands are stored in memory so that each is referenced by its location in memory rather than its line number in the code. Commands are executed sequentially, and functions are executed by jumping to a particular memory location, continuing sequential execution, and jumping back at the end of the function.

A tutorial describing conversion from C code to x86 assembly can be found at:

http://linuxgazette.net/issue94/ramankutty.html

When a computer process is executed, it gains access to a portion of the computer’s memory system. In the lower set of addresses of the allocated memory, the compiled assembly instruction set is placed so that the computer can execute these instructions directly from memory. This part of memory is generally flagged as read-only, and attempting to modify it results in a segmentation fault. Segmentation faults can occur for other reasons as well, such as if an invalid instruction is executed. At a higher portion of addresses, variables are allocated and stored. Whenever a process saves some data to memory (e.g. int a=4), they are placed in this region.

Finally, the highest portion of addresses contains the memory stack. The stack helps coordinate the hierarchical execution of functions within applications. When a function is called, a variable known as the frame pointer is pushed onto the stack, which references the memory locations of variables local to the function. Next, since a function is executed by a jump from a different location in memory, a return address is pushed onto the stack so that the computer knows where in memory to return once the function has been completed. Finally, when a function is passed variables (e.g. myfunc(a,b,c)) these variables are also placed on the stack.

Theoretically, stack manipulation should be accomplished entirely by the process, which allocates and sets pointers and variables at appropriate stages of execution, such as function calls. The key to buffer overflow attacks is to maliciously manipulate the data in the stack. By changing the return pointer, for example, it is possible for the process to jump to a memory location containing user data rather than the correct location in the instruction set. If the user data is crafted to include malicious assembly commands, such as a backdoor, these will be executed.

Finally, we’ll be taking a look at heap-overflows. Although heap overflows can be exploited just as easily as stack overflows, they’re much less known. System administrators often implement patches and precautions to prevent stack overflows but leave the heaps completely open to attacks! Although we won’t be doing any exercises in the lab about heap overflows, more information about it has been included as an appendix (Appendix B).

Lab Scenario
For most of the lab, you will be using only your RedHat 8.0 host machine. You will need to use your Redhat 7.2 virtual machine for remote buffer overflow attacks and you will use your Windows XP virtual machine in an exercise to see how contemporary attacks compromise windows systems.

Section I – Experimentation with “Smashing the Stack for fun and profit” by Aleph One
Connect to Network Attached Storage, and copy the file Lab4/stacksmash.tgz to your RedHat8.0 machine. Decompress it with the command:

tar zxvf stacksmash.tgz
Enter the stacksmash directory, and type make to compile. To recompile during the rest of this section, follow the instructions specific to the exercise or simply take make again.

Exercise 1: The Stack Region

Source file: example1.c

For this section, the make file has compiled the source to assembly code using the command:

gcc –S –o example1.s example1.c

Open the original c file and the assembly (.s) file in text editors and observe how the assembly code maps to the c source. The assembly code will be slightly different than what appears in the paper, because Aleph One’s computer is different from ours.

Draw a diagram of the process memory at the time that function is called.

Exercise 2: Buffer Overflows

Source file: example2.c

The make file has compiled our second example using the command

gcc –o example2 example2.c

Observe the source code then execute the binary by typing ./example2
What are your results? Why?

Exercise 3: Return Pointer Redirection

Source file: example 3.c

Observe the source file. This exploit attempts first to create a pointer (ret) to the function return address, then modify the return address value (*ret). At the end of the function call, the function will return to an incorrect address.

The purpose of this exercise is to attempt to redirect the pointer and skip the “x=1” line, so that the example prints “0.” Unfortunately, because your memory stack is different than Aleph One’s, it is not successful.

Read the paper carefully and try to understand how the exploit works. Use the following commands to view the assembly code for the example:

gdb example3

disassemble main

Observe the assembly code memory addresses to determine the correct change of the return address value in order to skip the x=1 line. Modify line 7 of the code appropriately.

Next, modify the return variable pointer (line 6 of example.c). The location of the return address pointer in memory cannot be calculated explicitly, because it is dependent on your memory stack. You must therefore use trial and error to determine the offset between buffer1 and the return pointer. As a guide, remember that the offset must be at least the size of buffer1 and the frame pointer, and that although the offset is in bytes, it must be an integral number of words.

Record the necessary code changes.
Exercise 4: Creating a Shell
Source file: shellcode.c

Shellcode.c executes a shell within its process, which we can then use to execute other system commands. Observe the source file.

Type the following:

gcc –o shellcode –ggdb –static shellcode.c

gdb shellcode

disassemble main

diassemble __execve

Make sure you have a clear understanding of the assembly code, using the paper as a guide.

We are going to use this code to execute a shell from a victim program. First, however, we want to make sure that after our shell code is executed our process quits. Otherwise, if we were executing our code from inside data memory, the computer could continue to execute data in memory, causing a core dump or segmentation fault. We should view the assembly translation of the exit command so that we can use this to stop the execution of our shell code after the __execve call. This can be done by observing exit.c.

gcc –o exit –ggdb –static exit.c

gdb exit

disassemble _exit

In this case, the exit function is operating by pushing 0x1 to %eax and the exit code (%edx) to %ebx.

Now, we must add a hex representation of the binary code to our program’s data memory so that we can execute the binary code at runtime. First, let’s observe the assembly code for our task. In separate windows, open the disassembled shellcode, the disassembled exit, and the source file shellcodeasm.c. Notice that the essential components of shellcode and exit have been placed into shellcodeasm. We have changed our error code to a static zero.
Type:

gcc –o shellcodeasm –g –ggdb –static shellcodeasm.c

gdb shellcodeasm

disassemble main

to view your code.

Our intentions are now to copy these assembly commands into memory so that we can have a process execute them. To do this, you must see the binary machine code representations of the assembly code. Type x/bx main to see the representation of the first line. For any other line (e.g. main+3) simply include the offset (e.g. x/bx main+3).

We can now test our shell code by placing this machine code in data memory and executing it. Observe testsc.c. The machine code values determined from x/bx above have been placed in the character array shellcode. We then change the return pointer to point to the beginning of this array so that the data is executed.

gcc –o testsc testsc.c

./testsc

After running this, you should have access to the shell prompt

$ exit
This exploit worked, but because we are storing it as an array of characters, the null character (\x00) in our string could potentially cause problems. To solve this problem, we rewrite the assembly code to remove all null bytes (shellcodeasm2.c). Using the same process as above, we then extract the machine code once again, this time without any null characters for our string.

gcc –o shellcodeasm2 –g –ggdb shellcodeasm2.c

gdb shellcodeasm2

gcc –o testsc2 testsc2.c

./testsc2

You should now have a shell

$ exit

Explain why it was important to make this change to eliminate NULL characters.

How did we modify the assembly code to remove null characters? (What simple ways did we avoid using 0x00?)

Exercise 5: Writing an Exploit
Source file: exploit1.c

Observe the source code for this exercise. As in the previous case, we have copied the machine code to execute a shell to the data memory. Next, we repeatedly copy the memory address of this code, overflowing the memory stack and overwriting the return address to our buffer location.

gcc –o exploit1 exploit1.c

./exploit1

You should now have a shell

$ exit
In all of the previous examples, we have created our shell by manipulating the source code. When executing a buffer overflow attack, however, the hacker does not have access to the source code itself. We will now try to execute an attack on the program vulnerable.c.
The program vulnerable can be exploited using the buffer overflows seen above. Look at the source code for this file. You can see that this application is vulnerable because it copies an input value, of arbitrary length and at the discretion of the user, to memory without any bound check. The buffer is only 512 bytes long, so the user can overflow this buffer by setting more than 512 bytes and manipulating other values, such as the return pointer.

exploit2 is an attempt to gain access to a shell with root privileges by running vulnerable. The exploit will create a buffer of data that includes the binary shell code, and then contain a pointer value written many times, one of which will hopefully overwrite the return pointer. The pointer value will hopefully contain the location of the beginning of the buffer, so that the shell code will then be executed. exploit2 will store this to an environment variable ($EGG) which we will then pass as input to our vulnerable program.

Unfortunately, unlike in our previous examples, we do not know exactly where in memory vulernable will place our buffer. We therefore most manually set the address we wish to place into the return pointer by entering an offset: our guess as the distance from the stack pointer to our malicious code. We also must determine a size of a buffer to create to attempt to overwrite the return pointer. The buffer size created by exploit2 must be large enough to overflow the return pointer, but small enough to avoid a segmentation fault.

Using the instructions below and your knowledge of buffers, attempt to use exploit2 to create a shell. If you do not receive a shell or you receive an error message, you have failed and should attempt a different buffer size and offset. If you are not successful after ten tries, record your attempted values and why you chose them, and continue with the lab. You will not lose credit for not succeeding in this exploit as long as you justify your choices for buffer sizes and offsets.

./exploit2 [buffersize][offset]

./vulnerable $EGG

exit (if you succeeded in creating a shell)

exit (to leave a shell that exploit2 has spawned)

You may have realized that it is fairly hard to guess the correct exact offset to execute the shell code. The next variation includes a string of NOP instructions to simplify redirection.

Observe the file exploit3.c. Rather than placing our shell code at the beginning of our buffer, we now fill the first half of the buffer with NOPs, or instructions that have no effect, and start our shell code halfway through the buffer. Modify your buffer size and offset, repeating until your exploit succeeds.

./exploit3 [buffersize][offset]

./vulnerable $EGG

exit (if you succeeded in creating a shell)

exit (to leave a shell that exploit3 has spawned)
Record your successful offset and explain why this exploit was easier than exploit2.

Now that you have exploited vulnerable.c, re-open the file and observe where exactly the buffer overflow has taken place. Add/change the code in the file to remove the vulnerability, then re-run “./vulnerable $EGG”
9) What changes did you make to vulnerable.c?
Sections II – A Real World Exploit

imapd is a mail server program released by the University of Washington. This is a beta version that is vulnerable to buffer overflows. An exploit on imap is particularly dangerous because the daemon can be run as root, therefore anyone who compromises the application has root access to the entire system. The following links give more information about this exploit.

· CERT Advisory CA-1997-09 and CA-1998-09

http://www.cert.org/advisories/CA-1997-09.html
http://www.cert.org/advisories/CA-1998-09.html
· Bugtraq Mailing List – this link gives detailed explanation of the exploit

http://www.securityfocus.com/archive/1/9929

· Imapd Buffer Overflow Discussion

http://www.securityhorizon.com/whitepapers/hvah/imapd.html
http://www.washington.edu/imap
Running imapd exploit on the same machine as the imapd server:

Open RedHat 7.2 which will be used for this exploit. Connect to the Network Attached Storage and copy Lab4/imapd_exploit.tgz to your local machine.

Extract the file by typing:

tar zxvf imapd_exploit.tgz
then enter the directory by typing

cd imapd_exploit

View the network services currently running by typing

nmap localhost

Imap should not be running at this time. Install imapd and netcat by typing

make

make install

make restart

Rerun nmap to make sure that imap2 is now running on the machine. Note the port on which imap2 is running.

The exploit code needs netcat (/usr/sbin/nc, installed above) and cat in combination to perform the buffer overflow. Netcat is the swiss army knife of the Internet, and has many functions including the ability to send streams of data to a destination.

The exploit code makes use of a string of 942 NOP instructions and allows the user to input an offset from which to attempt the attack.

To run the exploit, execute the following command:

(./imapd-ex offset; cat) | nc server port

server is the server to be attacked, or in this case localhost.

port is the port number to be attacked, and is the port of imap2.

offset is the offset from which to attempt the attack. Keep in mind the 942 NOP instructions. A sample offset given by Xinzhou is 3000.

After running the exploit, type ls . If you receive a list of files, you have successfully exploited imap2!

Running imapd exploit from a remote machine:

Copy the imapd-ex file created in the above step to your RedHat 8.0 machine, or recopy the tar file from NAS and recompile. Execute imapd-ex again, this time using your RH7.2 IP as the server.

Again type ls to view files on your Virtual Machine without logging in. Try typing other commands, such as /sbin/ifconfig, /usr/sbin/addusr, and whoami to see the privileges you have gained through the exploit. If a hacker were able to gain root privileges, he or she would have complete control over the victim.

Record the successful offset used and the privileges gained
Section III – Common Vulnerabilities

Introduction:

In order to further experiment with buffer overflows and their effects, four programs have been created with specific types of vulnerabilities. Copy the file Lab4/Vulnerable.tgz to your RedHat8.0 machine and then extract the file. We employ the last exploit program from Section I to attack the vulnerable programs.

Type make to compile the programs: adjacent, cmdline, input, and remote. The Aleph One exploit has also been included, and has been entitled exploit.

Buffer Overrun:

Before getting into the more detailed stack smashing attacks we will show a simple buffer overrun vulnerability. The source file adjacent.c (compiles to adjacent) has two adjacent buffers, storeddata and userinput, both 16 characters (or bytes) long. If you read the source file, you will notice that both buffers have their contents unconditionally set to zero. Occasionally you may encounter a dirty stack frame and your buffers will not be completely empty. The string function bzero(buffer_pointer, buffer_length) is used to clear out a buffer.

The program will print out the contents of the two buffers to show you what is in them. The buffer storeddata will always contain the string "abcdefghijkl" . In the source file you will notice an explicit null character, '\0', is added to the end of the string. Without a terminating null character, most string functions will not stop at the end of the string's buffer. This is a critical piece of information.

A buffer overrun occurs when a string function reads past the end of a string (or character) buffer. In this example, you will see that the program does not allow the user to input more data into storedata than the size of the array, 16. Logically it is correct. Now lets try out the "adjacent" program.

1. Enter a string of some length less than 16 (not including the newline or carriage return) by typing

./adjacent

and then at the prompt enter your own string. The final print statement will show you the proper length and contents of the each buffer on the screen. Note this works just as you expect.

2. Enter a string of length exactly 16 (not including the newline or carraige return)

In the final print statement, you will notice that inputbuffer is now 28 characters long. storeddata remains the same length and its contents are untouched. How can inputbuffer have 28 characters in it, it is only allowed 16?

3. enter a string of length greater than 16 (not including the newline or carriage return)

In the final print statement you will notice that inputbuffer is again 28 characters long and storeddata is untouched.

What is the cause of this behavior?

Modify adjacent.c to remove this “undesired” behavior

The Exploit Program:

This program is similar to the final exploit of Section 1, but has been reformatted for legibility with comments added to it.

In Section 1, we used the exploit program to overflow a relatively large buffer, so we were able to copy all of the shell code to this buffer and then copy the return address afterwards to the return pointer. The exploit program does not work very small buffers, because the NOP sled or shellcode itself would overwrite the return instruction pointer. In order to target a small buffer you should instead start with the memory locations, followed by the NOP sled leading into the shellcode.

Open the include file stackinfo.h, which contains a simple macro called SHOW_STACK and a function called inspect_buffer. The two combine to provide users with information about the original saved return instruction pointer and let one see if the return instruction pointer if will redirect to somewhere in the NOP sled.

SHOW_STACK prints:

· The value of the Stack pointer register

· The value of Frame pointer register and the value that the Frame pointer register points to (which is the saved frame pointer of the previous stack)

· The memory location of the saved return pointer and the memory location that the saved return pointer points to.

Example:

Stack:bffff4c0, Frame:bffff6c8[bffff708], Next Instruction:bffff6cc[40046507]

The function inspect_buffer takes as input the buffer containing attack code. If you don't run exploit before this function is called, you are very likely to crash the example programs because they search for the environment variable called EGG. inspect_buffer will report back to the user what memory locations contain NOPS so as to help us find if the return instruction pointer points to somewhere in the NOP sled. This may not be the case if we have not over written the return instruction pointer or have not put our buffer into the stack at a good point.

Here is some sample output from inspect_buffer:

 Targetting range bffff775 to bffff88e [280 byte range]

 Stack Overwrite from bffff8c1 to bffff9d5 [280 byte range]

 bffff88e <= bffff898 < bffff775? 281 <= 291 < 0

The line

Targetting range <lower address> to <high address>
[<byte range>]

reports the lower and upper memory address of the NOP sled and the range of bytes that it spans. Now we know where the NOPS are located.

The line

Stack Overwrite from <lower address> to <high address>
[<byte range>]

shows the range of address that the memory redirection address overwrites. Now we know where the desired return address values are written. We want one of these locations to be the stack return address memory so that when the stack goes to the return address memory location, it will get a value the hacker wants it to use instead of the good original value that was in that memory location.

The line

Upper Address<= Target < Lower Address?
Upper bound <= Target < 0

shows the upper and lower memory address for the NOP sled. The NOP sled high memory location is on the left, the return address that the exploit program has identified for us to use and overwrite with is in the middle, and the right hand value is the lower memory address that contains NOPS. We want the middle value to be in between the other two values. (Note that we actually want the less than signs reversed: upper address should be larger than target should be larger than lower address) If that is the case then the return instruction value points into the NOP sled as desired by the hacker.

The part after the question mark has the lower address subtracted from both values to give you an idea if your return address value is within this desired range.

One condition for this whole thing to work is that the return address must point to our NOP sled. A second condition that must also be met is that the return address must have been overwritten with that value. To see if we did in fact overwrite the return address we use the values from show_stack both before and after the exploit program and the actual buffer overflow have occurred. If the value of the return instruction memory location is the same both before and after, we have failed to overwrite. We need to either change the buffer size we are writing into the stack or the offset where the buffer is written into the stack. As an example of a failure:

===========================

Stack:bffff4c0, Frame:bffff6c8[bffff708], Next Instruction:bffff6cc[40046507]

Stack:bffff4c0, Frame:bffff6c8[bffff708], Next Instruction:bffff6cc [40046507]

===========================
As an example of a success:

===========================

Stack:bffff400, Frame:bffff608[bffff648], Next Instruction:bffff60c[40046507]

Stack:bffff400, Frame:bffff608[bffffa78], Next Instruction:bffff60c[bffffa78]

===========================

 Task 1: Use a buffer overflow to exploit command line vulnerabilities

Cmdline is very similar to the first program we observed, vulnerable. A value of arbitrary size from the command line is copied to a buffer which is only 512 bytes. Cmdline differs in that it displays a significant amount of extra information about the stack at runtime. Because the program includes new functions and function calls, the results will not be identical to that of vulnerable. The functions will, however, give extra data that will aid in the analytical selection of buffer sizes and offsets, rather than simply using trial and error.

Example of exploiting cmdline:

Observe a sample run of cmdline using the default buffer size and offset.

[root@fred lab]# ./exploit

Using address: 0xbffffa88

[root@fred lab]# ./cmdline $EGG

Inspect environment variables

 Targetting range bffffc95 to bffffd7c [230 byte range]

 Stack Overwrite from bffffdad to bffffe91 [232 byte range]

 bffffd7c <= bffffa88 < bffffc95? 231 <= -525 < 0

Inspect argument variables

 Targetting range bffff83d to bffff924 [230 byte range]

 Stack Overwrite from bffff955 to bffffa39 [232 byte range]

 bffff924 <= bffffa88 < bffff83d? 231 <= 587 < 0

===========================

Stack:bffff4c0, Frame:bffff6c8[bffff708], Next Instruction:bffff6cc[40046507]

Stack:bffff4c0, Frame:bffff6c8[bffff708], Next Instruction:bffff6cc[40046507]

===========================

Inspect stack variables

 Targetting range bffff4c0 to bffff5a7 [230 byte range]

 Stack Overwrite from bffff5d8 to bffff6bc [232 byte range]

 bffff5a7 <= bffffa88 < bffff4c0? 231 <= 1480 < 0

[root@fred lab]# exit

This did not result in the shell we desired. Let’s observe why.
In the output, the value 0xbffffa88 is the target for the NOP sled. Next we see some information about the memory contents.

The ENV part of the stack contains our environment variable, $EGG.

Inspect environment variables

 Targetting range bffffc95 to bffffd7c [230 byte range]

 Stack Overwrite from bffffdad to bffffe91 [232 byte range]

 bffffd7c <= bffffa88 < bffffc95? 231 <= -525 < 0

NOPS have been found in the address range of bffffc95 to bffffd7c

We are not overwriting the stack in this part, so ignore the second line.

The third line tells us that the place where the NOP sled was found (which is in $EGG) is –525 locations away from the local stack pointer. Since this is the environment part of the stack we do not really care where the NOP sled is in the environment part of the stack, we just wanted the program to put it in there somewhere so we can copy it later.

The next part of the example output is from the ARGV part of the stack, to which we have copied $EGG.

Inspect argument variables

 Targetting range bffff83d to bffff924 [230 byte range]

 Stack Overwrite from bffff955 to bffffa39 [232 byte range]

 bffff924 <= bffffa88 < bffff83d? 231 <= 587 < 0

Here we see the location of the copy of $EGG’s NOP slide.
The last line tells us that the target address bffffa88 does not fall within the NOP sled that is in the argument part of the stack.

The output now shows us

===========================

Stack:bffff4c0, Frame:bffff6c8[bffff708], Next Instruction:bffff6cc[40046507]

Stack:bffff4c0, Frame:bffff6c8[bffff708], Next Instruction:bffff6cc[40046507]

===========================

The important values here are the contents of the next instruction pointers. The next instruction which is contained in memory location bffff6cc has the value of [40046507] both before and after our copy. The next instruction has not changed, therefore we have not successfully overwritten the next instruction pointer.

The output now shows us some information from the Stack “part of the stack.”

Inspect stack variables

 Targetting range bffff4c0 to bffff5a7 [230 byte range]

 Stack Overwrite from bffff5d8 to bffff6bc [232 byte range]

 bffff5a7 <= bffffa88 < bffff4c0? 231 <= 1480 < 0

We have overwritten our return address in the stack from bffff5d8 to bffff6bc, but we know from above that we did not change the return address pointer, so it is not in this range.

The return address we have written, bffffa88, is outside of our NOP sled, bffff4c0 to bffff5a7.
We have two problems at the moment with the values we are using in the exploit program. First, we did not overwrite the return instruction value. Second, the address we overwrote many times would not place us on our NOP slide.

Let’s first try to fix the first problem of not overwriting the next instruction pointer value. We do this by adding an argument to use a buffer size of 612 instead of the default 512. (After all the buffer we are trying to overflow is 512 bytes in size).

Now we try again by doing the commands

./exploit 612

./cmdline $EGG

 [root@fred lab]# ./exploit 612

Using address: 0xbffffa78
[root@fred lab]# ./cmdline $EGG

….

Stack:bffff400, Frame:bffff608[bffff648], Next Instruction:bffff60c[40046507]

Stack:bffff400, Frame:bffff608[bffffa78], Next Instruction:bffff60c[bffffa78]

===========================

Inspect stack variables

 Targetting range bffff400 to bffff519 [280 byte range]

 Stack Overwrite from bffff54c to bffff660 [280 byte range]

 bffff519 <= bffffa78 < bffff400? 281 <= 1656 < 0

Once again we did not get the shell we wanted . We did get a segmentation fault and noticed that the next instruction changed, so we successfully overwrote the instruction pointer. Unfortunately what we overwrote did not point to our NOP sled.
We can see from the last line that we have missed were we want to be by about 1500 and thus need to re-run the “./exploit” with an offset to move where we start writing our NOP sled.

Now we try again by doing the commands

./exploit 612 1500

./cmdline $EGG

===========================

Stack:bffff400, Frame:bffff608[bffff648], Next Instruction:bffff60c[40046507]

Stack:bffff400, Frame:bffff608[bffff48c], Next Instruction:bffff60c[bffff48c]

===========================

Inspect stack variables

 Targetting range bffff400 to bffff519 [280 byte range]

 Stack Overwrite from bffff54c to bffff660 [280 byte range]

 bffff519 <= bffff48c < bffff400? 281 <= 140 < 0

Note we did get the shell we were after.

Do this exercise yourself, identifying a correct buffer size and offset. If the exploit runs properly, you should have access to the shell. You will not have a prompt but you will be able to do commands like ls. Typing exit will get you out of the shell and back to prompt. A second exit will get rid of the exploit process that is running

Copy your output to a text file using cut and paste and turn in the successful output proving you were able to create a shell with this overflow.

Modify cmdline.c to remove this vulnerability
Task 2: Use buffer overflow to exploit user input vulnerabilities

Observe the source code for input.c. This program, similar to adjacent, allows a user to input a set of text. You can use the exploit program to send the $EGG environment variable to input with the command:

./exploit [buffersize][offset]

(echo $EGG;cat) | ./input

If this exploit runs properly, you should have access to the shell at the end.

Example:

[root@fred lab]# ./exploit 512 900

Using address: 0xbffff6e4

[root@fred lab]# (echo $EGG;cat) | ./input

Inspect environment variables

 Targetting range bffffc99 to bffffd80 [230 byte range]

 Stack Overwrite from bffffdb1 to bffffe95 [232 byte range]

 bffffd80 <= bffff6e4 < bffffc99? 231 <= -1461 < 0

Stack:bffff6d0, Frame:bffff8d8[bffff918], Next Instruction:bffff8dc[40046507]

please input a 16 character string:

Inspect stack variables

 Targetting range bffff6d0 to bffff7b7 [230 byte range]

 Stack Overwrite from bffff7e8 to bffff8cc [232 byte range]

 bffff7b7 <= bffff6e4 < bffff6d0? 231 <= 20 < 0

Stack:bffff6d0, Frame:bffff8d8[bffff918], Next Instruction:bffff8dc[40046507]

Notice we did not overwrite the next instruction pointer since its value did not change before and after. Thus we need to increase the buffer size from 512 to something larger so as to overwrite it. Note however, we were successful in the exploit choice of a return address pointing to inside the NOP sled.

Record the buffer size and offset used to successfully exploit input.

Task 3: Use buffer overflow to exploit network vulnerabilities

Observe the source code for remote.c. In this application, the function gets causes information sent over the network to the application’s listening port to be copied to memory. We will use netcat to send our malicious $EGG input.

Open a terminal and run:

./remote 4200

(4200 is the port on which that the remote server will be running)

 In a second terminal run:

./exploit [buffersize] [offset]

(echo $EGG;cat) | nc localhost 4200

If this exploit runs properly, you should have access to the shell at the end (not necessarily with a prompt). You may have to change the buffer size and the offset values in the exploit call.

Record your successful buffer size and offset values.

Copy your output to a text file using cut and paste and turn in the output and the output of a successful run of whoami from the exploited shell prompt.

Section IV – A Contemporary Vulnerability

Buffer overflow vulnerabilities are extremely common in modern computing. In the final section, we will observe a vulnerability that exists in Windows 2000 Serivce Packs 0-4 and Windows XP Service Packs 0-1. The vulnerability was eventually patched in August, 2003.

The vulnerability makes use of the Windows DCOM RPC service, which is run automatically with Administrator privileges on both TCP and UDP port 135. The service is designed to allow computers to request services from each other, however it does no size checking on the input buffer.

Connect to Network Attached Storage, and copy the file Lab4/dcom.c to your RedHat 8.0 machine. Compile dcom with:

gcc –o dcom dcom.c

Now run

./dcom

to see your command line options.

Your target will be your Windows XP Machine. It is currently not running any service packs (SP0).

Run the exploit, and if you receive a command prompt execute several commands such as dir and cd. Copy your results to a text file

After you exit, this exploit will cause Windows XP to crash. Take a screenshot of your crashing system and include it with your report.

(Note: depending on the status of your Windows XP system, it is possible that this vulnerability will cause XP to crash immediately. If so, allow it to reboot and try again).

For a very long time, this exploit could be used to install a backdoor and/or crash any Windows 2000 or Windows XP machine remotely. What steps could a system administrator take to prevent this problem?

Section V – Libsafe – A Stack Buffer Overflow Preventive Measure

Probably at this point, you might be thinking that the only way to prevent such stack buffer overflow attacks from happening is to just pray that the original developer properly checked his buffers in his code. Considering that in reality this is usually not the case, the idea of preventing buffer overflow exploits from happening seems hopeless.

Well, actually, that is not true. There are preventive measures that are available and being developed now. Traditionally, preventive measures on Linux have come in the form of kernel patches. These patches usually monitor system calls in the operating system and try to stop unusual or suspicious system calls made by potentially malicious code. In this case, one will have to recompile the kernel properly with the patch and hope it works out. For the purposes of this lab, it would seem unreasonable to make a copy of a kernel and wait for a long time to recompile the kernel just to see a buffer overflow exploit prevented. Instead, we will use another type of preventive measure. We are going to install libsafe, a dynamically loadable library that does not require any recompilation.

Connect to the Network Attached Storage, and copy the rpm package libsafe-2.0-16.i386.rpm from the Lab4 folder to your RedHat 8.0 machine. Now install the package by opening a terminal window and typing the following command:

· rpm -ivh libsafe-2.0-16.i386.rpm

There should be no problems installing this package. Now we are going to use Mozilla to take a look at the html man page on libsafe. Click on the main menu button on the bottom panel in the bottom left corner (the red fedora hat) and then highlight “Internet” and then select “Web Browser.” This should bring up the web browser Mozilla. Now click on Mozilla’s File menu and select “Open File.” Now type in /usr/doc/libsafe-2.0/doc/ in the “File Name” text box and hit enter. You should see a file called libsafe.8.html, double-click it to open the file. The libsafe man page should look like what is in Figure 1, and now take the time to read it. (It is quite short.)

[image: image1.png]Eile Edit View Go Bookmarks Tools Window Help

4.2 A B (i] S -

Back * Fonvard | Reload Stop Print

7| G Home | W Bookmarks 2 Red Hat, Inc. 2 Red Hat Network (4 Suppart (% Shop (%Products (4 Training

Section: LIBSAFE (8)
Updated: 8-0CT-2001
Index

Name

libsafe - detection and protection against stack smashing attacks

Introduction

‘The libsate library protects a process against the exploitation of butfer overflow vulnerabilities in process stacks. L ibsafe works with any existing
pre-compiled executable (but is incompatible with libeS-linked processes) and can be sed transparently, even on asystem-wide basis. The method
intercepts all calls to library functions that are known to be vulnerable. A substitute version of the corresponding function implements the original
functionality, but in a manher that ensures that any butter over£lows are contained within the current stack frame, Libsafe has been shown to detect
several known aftacks and can potentially prevent yet unknown attacks. Experiments indicate that the performance overhead of libsate is negligible,

‘The following unsate functions are currently monitored by libsate:

strepy(char *dest, const char *src)
strepy(char *dest, const char *sr)
strpepy(char *dest, const char *src)
wescpy(wichar_t *dest, const wichar_t *src)

wepepy(wehar_t *dest, const wehar_t *src) 5

S &b 2 E3 | Document Done (1.252 secs) o

G =
‘% %Q@ o N @ 0228 P

Figure 1. The html libsafe man page.
This is the basic lesson you should get out of the man page. Libsafe is a library that protects against stack buffer overflow exploits by intercepting all function calls made to library functions that are known to be vulnerable (such as strcpy, which we have exploited in this lab). It executes a substitute version and checks to see if a buffer overflow will occur within the current stack frame. If the buffer overflow will overwrite the return address with a value that will direct execution of the program outside the current process stack frame, then most likely a stack buffer overflow attack is being executed, and libsafe will stop it. If you have been paying attention to what has been going on in the lab, this is exactly the type of exploit we have been executing.

(If you are interested in a more detailed explanation of how libsafe works, it is recommended that you go Avaya’s Lab Research website at http://www.research.avayalabs.com/project/libsafe/ and click on the PDF files under the “Presentations & Publications” section at the bottom of their webpage. These papers are much shorter than Aleph One’s paper, and they should help reinforce understanding the type of exploit we have been executing in this lab.)

So let’s see libsafe prevent such an exploit. In your terminal window, go back to the directory where your exploit and cmdline programs are that you have executed previously in this lab. Go ahead and run the exploit and the cmdline programs again like you did previously in Section III – Task 1. Libsafe should have stopped the exploit from being executed, and the output on your terminal should look similar to Figure 2. Copy this output to a text file and turn it in with your lab.

[image: image2]
Figure 2. Libsafe preventing a stack buffer overflow exploit in cmdline.
Libsafe apparently detected our attempt to write across the stack boundary which is what we needed to do to rewrite cmdline’s return address in order to start executing our malicious code. You should notice also that it determined that the overflow was caused with the library function strcpy, which is at the center of our exploit. This is pretty nifty.

However, consider some of the pros and cons of this strategy. Libsafe concentrates monitoring on a system-wide level through the library space, not the kernel or user space of the operating system. This is nice in the sense that this solution does not require recompilation of the kernel or directly interfering with programs that a user is trying to run. However, libsafe can only determine exploits that use the list of library functions that it knows have vulnerabilities to stack buffer overflows. If the attacker is able to create a stack buffer overflow exploit without using libsafe’s list of vulnerable library functions, it is possible that the libsafe will never detect the exploit and the attack has a good chance of succeeding. Therefore, while libsafe is a nice solution that can easily implemented, it still does not replace the real prevention of buffer overflow attacks, which is properly checking buffers in the code of programs.

That is all. Remember to copy the libsafe output to a text file, and turn it in with your lab. Also, go ahead and uninstall the libsafe library by executing the following command:

· rpm -e libsafe
There are other utilities available which can be used for preventing buffer overflows. One such utility is Stackguard (http://www.immunix.org/gcc-2.96-113_SGb1.src.rpm) which protects your programs from buffer overflows by compiling them with compilers which take special action to protect the stack during run time. You compile your program using these compilers and depending on the programs implementation will protect the stack from stack-smashing attacks. Stackguard inserts an extra field on the stack called a “canary” next to the return pointer on the stack. It uses the canary to determine if the return pointer has been changed; if the canary is changed then the stack has been compromised and the program will stop execution.

Names

Group

ECE 4112 Lab 4 Buffer Overflows

Section I – Experimentation

The Stack Region

1) Draw a diagram of the memory stack at the time that function is called.

Overflowing a Buffer

2) What are the results of executing example2? Why?

Understanding Return Pointer Redirection

3) How did you modify example3.c to successfully redirect the pointer?

Shellcode

4) Why is it important to eliminate null characters?

5) How were we able to modify the assembly code to remove null characters?

Writing an Exploit

6) exploit2 successful buffer size and offset or ten attempts and reasoning:

7) exploit3 successful buffer size and offset:

8) Why was it so much easier to utilize exploit3?

9) What changes did you make to vulnerable.c?

Section II

imapd

9) imapd-ex successful offset:

10) What privileges did you gain on your Virtual Machine by running the exploit in RedHat 8.0?

Section III – Common Vulnerabilities

11) What is the cause of the behavior in adjacent.c?

12) Modify adjacent.c to remove this “undesired” behavior

13) Modify cmdline.c to remove this vulnerability

14) input successful buffer size and offset:

15) remote.c successful buffer size and offset:

Section IV – A Contemporary Vulnerability

16) What steps could a system administrator take to prevent this vulnerability?

Section V – Libsafe – A preventive measure to buffer overflow

17) Include Screenshot

18) How long did it take you to complete this lab? Was it an appropriate length lab?

19) What corrections and or improvements do you suggest for this lab? Please be very specific and if you add new material give the exact wording and instructions you would give to future students in the new lab handout. You may cross out and edit the text of the lab on previous pages to make corrections/suggestions. Note that part of your lab grade is what improvements you make to this lab. You may want to search the world wide web for other Buffer Overflow examples. What tools can we add to this lab that teach something else new? You need to be very specific and provide details. You need to actually do the suggested additions in the lab and provide solutions to your suggested additions. Caution as usual: only extract and use the tools you downloaded in the safe and approved environment of the network security laboratory.

Attach to your submission:

Output of exploited cmdline
Output of exploited remote
Output of exploited WindowsXP

Screenshot of crashing WindowsXP

Libsafe screenshot

[root@group24-4893 lab]# ./exploit 612 100

Using address: 0xbffff6c4

[root@group24-4893 lab]# ./cmdline $EGG

Inspect environment variables

 Targetting range bffff970 to bffffa89 [280 byte range]

 Stack Overwrite from bffffabc to bffffbd0 [280 byte range]

 bffffa89 <= bffff6c4 < bffff970? 281 <= -684 < 0

Inspect argument variables

 Targetting range bffff674 to bffff78d [280 byte range]

 Stack Overwrite from bffff7c0 to bffff8d4 [280 byte range]

 bffff78d <= bffff6c4 < bffff674? 281 <= 80 < 0

===========================

Stack:bffff300, Frame:bffff508[bffff528], Next Instruction:bffff50c[420158d4]

Libsafe version 2.0.16

Detected an attempt to write across stack boundary.

Terminating /home/tools/lab/cmdline.

 uid=0 euid=0 pid=2362

Call stack:

 0x40015871 /lib/libsafe.so.2.0.16

 0x4001597a /lib/libsafe.so.2.0.16

 0x8048834 /home/tools/lab/cmdline

 0x420158cf /lib/i686/libc-2.2.93.so

Overflow caused by strcpy()

Killed

[root@group24-4893 lab]#

PAGE
12

