// $Id: bootloader.c,v 1.24 2004/09/17 17:06:08 jwhui Exp $ /* tab:4 * * * "Copyright (c) 2000-2004 The Regents of the University of California. * All rights reserved. * * Permission to use, copy, modify, and distribute this software and its * documentation for any purpose, without fee, and without written agreement is * hereby granted, provided that the above copyright notice, the following * two paragraphs and the author appear in all copies of this software. * * IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR * DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT * OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF * CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY * AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS * ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO * PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS." * */ /** * bootloader.c - Bootloader is now a self-contained executable. A * mica2 and mica2dot can be set to always boot into the bootloader * first, before invoking the application. This allows the user to * input a special gesture (i.e. reset the node 3 times quickly) to * load a golden image stored in flash onto the node. * * @author Jonathan Hui * @since 0.1 */ #include #include #define SUCCESS 1 #define FAIL 0 void int2leds(uint8_t value) { if (value & 0x1) TOSH_CLR_RED_LED_PIN(); else TOSH_SET_RED_LED_PIN(); if (value & 0x2) TOSH_CLR_GREEN_LED_PIN(); else TOSH_SET_GREEN_LED_PIN(); if (value & 0x4) TOSH_CLR_YELLOW_LED_PIN(); else TOSH_SET_YELLOW_LED_PIN(); } void onDelaySequence() { uint8_t output = 0x7; uint8_t i; for ( i = 0; i < 3; i++ ) { int2leds(output); delayFull(); output >>= 0x1; } int2leds(output); } void gestureNotify() { uint8_t output = 0x7; uint8_t i; for ( i = 0; i < 3; i++ ) { int2leds(output); delayHalf(); int2leds(0x0); delayHalf(); } } uint8_t SPIOutput(uint8_t spiOut) { if (spiOut & 0x80) TOSH_SET_FLASH_OUT_PIN(); else TOSH_CLR_FLASH_OUT_PIN(); spiOut <<=1; return spiOut; } uint8_t SPIInput(uint8_t spiIn) { spiIn <<= 1; if (TOSH_READ_FLASH_IN_PIN()) spiIn |= 1; return spiIn; } uint8_t SPIByte(uint8_t spiOut) { uint8_t spiIn = 0; uint8_t i; for (i = 0; i < 8; i++) { spiOut = SPIOutput(spiOut); TOSH_SET_FLASH_CLK_PIN(); spiIn = SPIInput(spiIn); TOSH_CLR_FLASH_CLK_PIN(); } return spiIn; } void eepromStartRead(uint16_t pageAddr) { uint16_t byteAddr = 0; uint8_t cmdBuf[4]; uint8_t i; cmdBuf[0] = 0x68; // EE Flash opcode cmdBuf[1] = (pageAddr >> 7) & 0x0F; // pageAddr[10:7] in lower nibble cmdBuf[2] = (pageAddr << 1) + (byteAddr >> 8); // pageAddr[6:0]+ byteAddr[8] cmdBuf[3] = (uint8_t)byteAddr; // byteAddr[7:0] // select the flash TOSH_CLR_FLASH_CLK_PIN(); TOSH_CLR_FLASH_SELECT_PIN(); for(i = 0; i < 4; i++) SPIByte(cmdBuf[i]); // writeout the command for(i = 0; i < 4; i++) SPIByte(0x0); // write out 4 fill bytes // Flash requires 1 additional (65th) clock to setup data on SOut pin TOSH_SET_FLASH_CLK_PIN(); TOSH_CLR_FLASH_CLK_PIN(); } void eepromStopRead() { TOSH_SET_FLASH_SELECT_PIN(); } uint8_t eepromReadByte(uint32_t* externalAddr) { uint32_t tmpExternalAddr = *externalAddr; if (tmpExternalAddr % BL_EXTERNAL_PAGE_SIZE == 0) { eepromStopRead(); eepromStartRead(tmpExternalAddr / BL_EXTERNAL_PAGE_SIZE); } *externalAddr = tmpExternalAddr + 1; return SPIByte(0); } void reboot() { ENABLE_WDT(); while(1); } uint8_t programBuf(void *buf, uint32_t pageBaseByteAddr, uint16_t length) { uint16_t newImgAddr, oldImgAddr; if (((uint32_t)BOOTLOADER_START <= pageBaseByteAddr && pageBaseByteAddr <= (uint32_t)BOOTLOADER_END) || (pageBaseByteAddr < BL_ADDRESS_LOW) || (pageBaseByteAddr >= BL_ADDRESS_HIGH)){ // trying to write into bootloader section, load golden image return FAIL; } newImgAddr = eeprom_read_word((uint16_t*)BL_NEW_IMG_START_PAGE_ADDR); oldImgAddr = eeprom_read_word((uint16_t*)BL_CUR_IMG_START_PAGE_ADDR); if (newImgAddr != oldImgAddr && oldImgAddr != 0xffff) { // invalidate current image address eeprom_write_byte((uint8_t*)(BL_CUR_IMG_START_PAGE_ADDR+0), 0xff); eeprom_write_byte((uint8_t*)(BL_CUR_IMG_START_PAGE_ADDR+1), 0xff); while(!eeprom_is_ready()); } eeprom_write_page(buf, pageBaseByteAddr, length); return SUCCESS; } uint8_t programImg(uint32_t startPage) { uint8_t buf[BL_INTERNAL_PAGE_SIZE]; uint32_t pageAddr; uint32_t sectionLength; uint32_t internalAddr; uint32_t externalAddr; uint32_t i; externalAddr = startPage * BL_EXTERNAL_PAGE_SIZE; internalAddr = 0; for ( i = 0; i < 4; i++ ) internalAddr |= ((uint32_t)eepromReadByte(&externalAddr) & 0xff) << (i*8); sectionLength = 0; for ( i = 0; i < 4; i++ ) sectionLength |= ((uint32_t)eepromReadByte(&externalAddr) & 0xff) << (i*8); while (sectionLength > 0) { for (i = 0; i < sectionLength; i++, internalAddr++) { if (i != 0 && internalAddr % BL_INTERNAL_PAGE_SIZE == 0) { pageAddr = (internalAddr / BL_INTERNAL_PAGE_SIZE) - ((uint32_t) 1); int2leds(pageAddr); if (programBuf(buf, pageAddr * BL_INTERNAL_PAGE_SIZE, BL_INTERNAL_PAGE_SIZE) == FAIL) return FAIL; } buf[internalAddr % BL_INTERNAL_PAGE_SIZE] = eepromReadByte(&externalAddr); } pageAddr = internalAddr / BL_INTERNAL_PAGE_SIZE; if (internalAddr % BL_INTERNAL_PAGE_SIZE == 0) pageAddr--; if (programBuf(buf, pageAddr * BL_INTERNAL_PAGE_SIZE, BL_INTERNAL_PAGE_SIZE) == FAIL) return FAIL; internalAddr = 0; for ( i = 0; i < 4; i++ ) internalAddr |= ((uint32_t)eepromReadByte(&externalAddr) & 0xff) << (i*8); sectionLength = 0; for ( i = 0; i < 4; i++ ) sectionLength |= ((uint32_t)eepromReadByte(&externalAddr) & 0xff) << (i*8); } eepromStopRead(); return SUCCESS; } void incrementFlashWord(uint16_t* flashPtr) { uint16_t tmpCounter = eeprom_read_word(flashPtr); if (tmpCounter++ < 0xfffe) { eeprom_write_byte((uint8_t*)((uint16_t)flashPtr+0), (tmpCounter>>0)&0xff); eeprom_write_byte((uint8_t*)((uint16_t)flashPtr+1), (tmpCounter>>8)&0xff); while(!eeprom_is_ready()); } } void logResetEvent(uint8_t eventType) { uint16_t log = eeprom_read_word((uint16_t*)BL_RESET_HISTORY); log <<= BL_RESET_LOG_ENTRY_SIZE; log |= eventType & BL_RESET_LOG_ENTRY_MASK; eeprom_write_byte((uint8_t*)(BL_RESET_HISTORY+0), (log>>0)&0xff); eeprom_write_byte((uint8_t*)(BL_RESET_HISTORY+1), (log>>8)&0xff); while(!eeprom_is_ready()); } void setProgFailFlag() { uint8_t tmp8 = eeprom_read_byte((uint8_t*)BL_FLAGS_ADDR); tmp8 |= BL_PROGRAM_FAIL_FLAG; eeprom_write_byte((uint8_t*)BL_FLAGS_ADDR, tmp8); while(!eeprom_is_ready()); } void startupSequence() { uint32_t newImgAddr, curImgAddr; uint8_t loadImg; uint8_t gestureCount; // get current value of counter gestureCount = eeprom_read_byte((uint8_t*)BL_GESTURE_COUNT_ADDR); gestureCount = (gestureCount==0xff) ? 0x1 : gestureCount+1; loadImg = eeprom_read_byte((uint8_t*)BL_LOAD_IMG_ADDR); if (gestureCount >= BL_GESTURE_MAX_COUNT) { if (loadImg != 0xff) { // reprogram attempt has failed, give up eeprom_write_byte((uint8_t*)BL_LOAD_IMG_ADDR, 0xff); while(!eeprom_is_ready()); curImgAddr = eeprom_read_word((uint16_t*)BL_CUR_IMG_START_PAGE_ADDR); if (curImgAddr == 0xffff) { if (!(eeprom_read_byte((uint8_t*)BL_FLAGS_ADDR) & BL_GOLDEN_IMG_LOADED)) { // don't know what to do, flash LEDs continuously for(;;) gestureNotify(); } // current image has been compromised, load golden image eeprom_write_byte((uint8_t*)BL_GESTURE_COUNT_ADDR, BL_GESTURE_MAX_COUNT); while(!eeprom_is_ready()); reboot(); } eeprom_write_byte((uint8_t*)BL_GESTURE_COUNT_ADDR, 0xff); while(!eeprom_is_ready()); } else if (!(eeprom_read_byte((uint8_t*)BL_FLAGS_ADDR) & BL_GOLDEN_IMG_LOADED)) { // gesture has been detected, display receipt of gesture on LEDs gestureNotify(); // update new image start address eeprom_write_byte((uint8_t*)(BL_NEW_IMG_START_PAGE_ADDR+0), BL_GOLDEN_IMG_ADDR); eeprom_write_byte((uint8_t*)(BL_NEW_IMG_START_PAGE_ADDR+1), BL_GOLDEN_IMG_ADDR >> 8); while(!eeprom_is_ready()); // load golden image from flash if (programImg(BL_GOLDEN_IMG_ADDR) == FAIL) { setProgFailFlag(); reboot(); } // update current image start address eeprom_write_byte((uint8_t*)(BL_CUR_IMG_START_PAGE_ADDR+0), BL_GOLDEN_IMG_ADDR); eeprom_write_byte((uint8_t*)(BL_CUR_IMG_START_PAGE_ADDR+1), BL_GOLDEN_IMG_ADDR >> 8); // clear gesture counter gestureCount = 0xff; } } // increment counter eeprom_write_byte((uint8_t*)BL_GESTURE_COUNT_ADDR, gestureCount); while(!eeprom_is_ready()); if (loadImg != 0xff) { // get address of new program newImgAddr = eeprom_read_word((uint16_t*)BL_NEW_IMG_START_PAGE_ADDR); if (programImg(newImgAddr) == FAIL) { setProgFailFlag(); reboot(); } // update current image start address eeprom_write_byte((uint8_t*)(BL_CUR_IMG_START_PAGE_ADDR+0), newImgAddr); eeprom_write_byte((uint8_t*)(BL_CUR_IMG_START_PAGE_ADDR+1), newImgAddr >> 8); eeprom_write_byte((uint8_t*)BL_LOAD_IMG_ADDR, 0xff); // clear gesture counter eeprom_write_byte((uint8_t*)BL_GESTURE_COUNT_ADDR, 0xff); while(!eeprom_is_ready()); } // give user some time and count down LEDs onDelaySequence(); // no gesture detected, reset counter eeprom_write_byte((uint8_t*)BL_GESTURE_COUNT_ADDR, 0xff); while(!eeprom_is_ready()); runApp(); } inline void readResets() { uint16_t tmpCounter = 0x0; if (eeprom_read_word((uint16_t*)BL_RESET_HISTORY) == 0xffff) { eeprom_write_byte((uint8_t*)(BL_WDT_RESET_COUNTER+0), tmpCounter); eeprom_write_byte((uint8_t*)(BL_WDT_RESET_COUNTER+1), tmpCounter); eeprom_write_byte((uint8_t*)(BL_POWER_ON_RESET_COUNTER+0), tmpCounter); eeprom_write_byte((uint8_t*)(BL_POWER_ON_RESET_COUNTER+1), tmpCounter); eeprom_write_byte((uint8_t*)(BL_BROWN_OUT_RESET_COUNTER+0), tmpCounter); eeprom_write_byte((uint8_t*)(BL_BROWN_OUT_RESET_COUNTER+1), tmpCounter); eeprom_write_byte((uint8_t*)(BL_EXTERNAL_RESET_COUNTER+0), tmpCounter); eeprom_write_byte((uint8_t*)(BL_EXTERNAL_RESET_COUNTER+1), tmpCounter); eeprom_write_byte((uint8_t*)(BL_PROGRAM_FAIL_COUNTER+0), tmpCounter); eeprom_write_byte((uint8_t*)(BL_PROGRAM_FAIL_COUNTER+1), tmpCounter); eeprom_write_byte((uint8_t*)(BL_NETPROG_RESET_COUNTER+0), tmpCounter); eeprom_write_byte((uint8_t*)(BL_NETPROG_RESET_COUNTER+1), tmpCounter); eeprom_write_byte((uint8_t*)(BL_RESET_HISTORY+0), tmpCounter); eeprom_write_byte((uint8_t*)(BL_RESET_HISTORY+1), tmpCounter); while(!eeprom_is_ready()); } // watchdog timer reset if (IS_WDT_RESET()) { incrementFlashWord((uint16_t*)BL_WDT_RESET_COUNTER); logResetEvent(BL_WDT_RESET); } // power on reset if (IS_POWER_ON_RESET()) { incrementFlashWord((uint16_t*)BL_POWER_ON_RESET_COUNTER); logResetEvent(BL_POWER_ON_RESET); } // brown out reset if (IS_BROWN_OUT_RESET()) { incrementFlashWord((uint16_t*)BL_BROWN_OUT_RESET_COUNTER); logResetEvent(BL_BROWN_OUT_RESET); } // external reset if (IS_EXTERNAL_RESET()) { incrementFlashWord((uint16_t*)BL_EXTERNAL_RESET_COUNTER); logResetEvent(BL_EXTERNAL_RESET); } // netprog reset if (IS_NETPROG_RESET()) { incrementFlashWord((uint16_t*)BL_NETPROG_RESET_COUNTER); logResetEvent(BL_NETPROG_RESET); } // program fail reset if (IS_PROG_FAIL_RESET()) { incrementFlashWord((uint16_t*)BL_PROGRAM_FAIL_COUNTER); logResetEvent(BL_PROGRAM_FAIL); } // program failure reset is handled at the site of the failure CLEAR_WDT_RESET_FLAG(); CLEAR_POWER_ON_RESET_FLAG(); CLEAR_BROWN_OUT_RESET_FLAG(); CLEAR_EXTERNAL_RESET_FLAG(); CLEAR_NETPROG_RESET_FLAG(); CLEAR_PROG_FAIL_RESET_FLAG(); } int main() { programBufPtr_t programBufPtr; uint32_t programBufAddr; uint16_t i; DISABLE_INTERRUPTS(); DISABLE_WDT(); TOSH_SET_PIN_DIRECTIONS(); EXTRA_INIT(); readResets(); programBufPtr = programBuf; programBufAddr = (uint32_t)((uint16_t)programBufPtr); for ( i = 0; i < 4; i++ ) { uint8_t tmp; tmp = (programBufAddr >> (i*8)) & 0xff; if (tmp != eeprom_read_byte((uint8_t*)(BL_PROGRAM_BUF_ADDR+i))) eeprom_write_byte((uint8_t*)(BL_PROGRAM_BUF_ADDR+i), tmp); } startupSequence(); return 0; }