Tiny Application Sensor Kit (TASK)

Wei Hong Intel Research, Berkeley whong@intel-research.net

Sensor network application development and deployment present daunting challenges to even sophisticated software developers. Sensor network applications combine the complexities of both distributed and embedded systems design, and these are often amplified by unreliable network connections and extremely limited physical resources. Moreover, many sensor network applications are expected to run unattended for months at a time.

Real users of sensor networks ranging from plant biologists monitoring micro-climates in a giant redwood tree to facility managers monitoring vibration signatures of their equipments are most likely not sophisticated software developers. We must reduce the complexity of sensor network application development and deployment to ensure the success of sensor network technology in the real world.

We believe that many of the complexities in sensor network application development and deployment are caused by the current low-level programming interfaces and the lack of tools. At Intel Research in Berkeley, we have been building a suite of tools called the Tiny Application Sensor Kit (TASK) aiming to break down the barrier to entry for non-sophisticated users to develop and deploy their own sensor network applications.

TASK consists of the following components:

- **TinyDB** based sensor network that allows traditional programs to interact the sensor network through a declarative SQL-like interface. See tinydb.pdf for details.
- TASK Server, a server process running on a sensor network gateway that acts as a proxy for the sensor network
 on the internet.
- TASK DBMS, a relational database that stores sensor readings, sensor network health statistics, sensor locations and calibration coefficients, etc. Curently TASK only works with PostgreSQL (see http://www.postgresql.org) and has been tested on both 7.2 and 7.3 releases.
- TASK client tools including TASK Deployment Tool that helps users record sensor node metadata, TASK Configuration Tool that helps users choose data collection intervals and data filtering and aggregation criteria, and TASK Visualization Tool that helps users monitor the network health and sensor readings. See TASKVisualizer.pdf for details.
- TASK Field Tool running on a PDA that help users diagnose and resolve problems in certain areas of the network in the field. See TASKFieldTool.pdf for details.

TASK also integrates easily with most popular data analysis tools, e.g., MS Excel, Matlab, ArcGIS, etc through standard ODBC or JDBC interfaces.

The following is a quick-start guide for using TASK.

- 1. After the installation of TASK, the PostgreSQL database needs to be initialized before TASK can be used. First, cd tinyos-1.x/tools/java/net/tinyos/task/tasksvr. On Cygwin, simply and run setuptask-db.sh. On Linux, do the following
 - (a) as root: mkdir /pgdata; chown postgres.postgres /pgdata/
 - (b) change user to postgres
 - (c) run initdb
 - (d) edit /pgdata/pg_hba.conf to uncomment "local all all trust" and "host all all 127.0.0.1 255.255.255.255 trust" and comment out "local all all ident sameuser" at the end of the file

- (e) run setup-task-db.sh
- 2. program TASK motes from tinyos-1.x/apps/TASKApp. You must program a node 0 for the basestation.
- 3. start the TASK server by cd tinyos-1.x/tools/java; java net.tinyos.task.tasksvr.TASKServer &
- 4. start TASK GUI by cd tinyos-1.x/tools/java; java net.tinyos.task.taskviz.TASKVisualizer localhost
- 5. start TASK Field Tool by cd tinyos-1.x/tools/java/ne/tinyos/task/field; python configgui.py; python tool.py

TASK bugs can be submitted at

https://sourceforge.net/tracker/?atid=551233&group_id=28656&func=browse