
Mica High Speed Radio Stack

Nelson Lee, Philip Levis, Jason Hill

September 11, 2002

Introduction

This document describes the TinyOS networking stack released in TinyOS 1.0. This stack
provides variable length packets and data-link level synchronous acknowledgements at a
40Kb data rate; it only works on mica motes. This document assumes the reader is familiar
with nesC.

The Old Network Stack

The pre-mica TinyOS networking components used a vertical protocol stack. It roughly had
this structure:

Application
|
V

GENERIC_COMM
|
V

AM_STANDARD
|
V

CRCPACKETOBJ_SIGNAL
|
V

SEC_DED_RADIO_BYTE_SIGNAL
|
V

RFM

This vertical layering made each component dependent on the components directly above and
below it, and allowed different components (e.g. a non CRC packet) to be easily interchanged.
However, experience has shown that most of the interesting and important functionality had to
be encapsulated in SEC DED RADIO BYTE SIGNAL, as only it could use the bit-level interface to the
radio (RFM).

For example, SEC DED RADIO BYTE SIGNAL was responsible for the MAC layer, packet start
symbol detection, and data encoding/decoding: three very separate pieces of functionality.

1

Introducing the New Radio Stack in nesC

In nesC, configuration files link components together according to the interfaces they use and
provide. The hierarchy that links applications to the radio stack is as follows:

Application
|
V

GenericComm (configuration ‘‘/tos/system/’’)
|
V

AMStandard (module ‘‘/tos/system’’)
|
V

RadioCRCPacket (configuration ‘‘/tos/platform/mica’’)
|
V

MicaHighSpeedRadioM (module ‘‘/tos/platform/mica’’)
|

_______|___
| | | | | |
| | | | | |
V | V | V |

ChannelMonC.td | RadioTimingC.td | SlavePinC.td |
V V V

SpiByteFifoC.td SecDedEncoding.td RandomLFSR.td

All componenents below RadioCRCPacket, except for RandomLFSR, are implemented in
/tos/platform/mica.

A Brief Overview

Several components combine to form the network stack.

• MicaHighSpeedM contains the logic and state at the packet-level, and acts as a central con-
troller for all of the components below it. It does not communicate directly to hardware,
instead, it calls on other components to do so.

• ChannelMonC observes the radio at bit-level at 20kbps. When the stack is idle, it samples
waiting for the preamble and start symbol. When the stack is sending a packet and is in
backoff, ChannelMon monitors the radio and signals idleDetect to MicaHighSpeeedM.

• SpiByteFifo provides a byte-level abstraction to the radio. In essence, it uses the Serial
Peripheral Interface (SPI) of the ATmega103 processor to shift out bits to the radio when
sending, and shift in bits from the radio when receiving at 40kbps.

• SlavePinC calls HPL functions to flip the SlavePin high and low.

• RadioTiming uses counters on the ATmega103 and input capture to sync a receiver of a
packet to the sender.

2

• SecDedEncoding provides a byte-level implementation of encoding/decoding single error cor-
rection and double error detection.

• RandomLFSR returns a 16 bit random number. This is used by ChannelMon to determine the
length of the backoff state in radio clock ticks.

Init/Idle

The network stack is initialized by calling init() in MicaHighSpeedRadioM. In turn, RandomLFSR
is initialized and ChannelMonC is initialized. RandomLFSR initializes the seed from the ID of the
mote for the random number generator. ChannelMonC sets its CM waiting field to -1, sets the radio
hardware to receiving, scales timer2 and compare register2, clears the current counter value and
enables timer2’s interrupt to go off every 200 clock ticks (200 clock ticks/bit = 4MHz/20kbps).

Every time timer2’s interrupt fires, TOSH SIGNAL(SIG OUTPUT COMPARE2) is called in ChannelMonC.
While the entire network stack is idle (MicaHighSpeedRadioM has not accepted any packets and its
state and send state are both IDLE STATE), it shifts in the bit received into a buffer and checks
for the preamble. Preamble/start symbol detection will be discussed in further detail below.

The new TOSMsg format

The new structure of the TOS Msg (the struct declaration can be found in ‘‘/tos/system/AM.h’’:

typedef struct TOS_Msg
{
uint16_t addr;
uint8_t type;
uint8_t group;
uint8_t length;
int8_t data[TOSH_DATA_LENGTH];
uint16_t crc;
uint16_t strength;
uint8_t ack;
uint16_t time;

} TOS_Msg;

It consists of an unsigned two byte field addr, followed by three unsigned single byte fields
type, group, and length addr specifies a moteID or the broadcast address (0xffff). When the
MicaHighSpeedRadioStackM receives a packet, the packet is passed to the AM level. If addr is
not the broadcast address nor the address of the mote receiving the packet, the packet is dropped.
The group field specifies a channel for motes on a network. If a mote receives a packet sent by
a mote with a different group field, the packet is dropped at the AM level. The default group is
0x7d. The type field specifies which handler to be called at the AM level when a packet is received.
The length field specifies the length of the data portion of the TOS Msg. Packets have a maximum
payload of 29 bytes.

The next field in the TOS Msg struct is the data portion. It consists of an array of 29 bytes
(as specified by TOSH DATA LENGTH). The unsigned two byte field crc follows. When sending, the
CRC is incrementally calculated as each byte of the packet is transmitted. The maximum length
of a transmitted TOS Msg is 36 bytes (addr(2 bytes) + type(1 bytes) + group(1 bytes) + length(1

3

bytes) + data(29 bytes) + crc(2 bytes = 36 bytes)). The strength, ack, and time fields are not
transmitted; they are meta-data about the packet.

The last three fields of TOS Msg are the single unsigned byte ack field, the unsigned two byte
strength and unsigned two byte time fields. The ack is sent by the receiver, and set by the sender.
This is the mechanism that can provide reliability in the stack. When the network stack finishes
sending a packet, it will return the TOS MsgPtr to the application that issued the send request, with
the ack field set to either 1 or 0. If the field is 1, the data link layer received an acknowledgement for
the packet. When a packet is received, the data link layer transmits an ack if the receiving mote is
a valid destination for the packet: (rec ptr− >addr == TOS LOCAL ADDRESS ‖ rec ptr− >addr
== TOS BCAST ADDR). The strength field of TOS Msg is currently unused, and the time field stores
an atomic capture of a 16-bit 4MHz counter.

Sending a Packet

MicaHighSpeedRadioM contains two state variables, send state and state. When AMStandard
hands down a TOS MsgPtr to send, MicaHighSpeedRadio’s state must be IDLE STATE. If it is
IDLE STATE, then the radio stack accepts the packet. Its state changes and does not return until a
packet is completely sent, which includes the reception of an ack.

MicaHighSpeedRadioM then calls macDelay() in ChannelMonC. macDelay sets its CM waiting
field to a random number. CM waiting specifies the number of ChannelMonC clock ticks (one
ChannelMonC clock tick is equal to 200 ATmega clock ticks at 4MHz) to wait for idle over the
network. This Backoff state, as described previously, ensures that a sender of a packet in the
network will not interfere with the transmission of another sender’s packet in the network. The
random factor prevents starvation.

Now, since ChannelMonC is waiting for idleness in the network, each call to
TOSH SIGNAL(SIG OUTPUT COMPARE2) in ChannelMonC decrements CM waiting. When CM waiting
is equal to 1, it checks to see if during the past 12 ChannelMonC clock ticks a single 1 bit was
not received (checking if CM search[0] & 0xfff == 0). If so, it sets CM waiting to -1, disables
timer2’s interrupt (thereby disabling ChannelMonC) and signals MicaHigSpeedRadioM that idleness
was detected on the network and that it may begin sending over the radio. If activity was detected
over the network, it sets CM waiting to another random number and continues waiting for idleness.

It is important to note that while ChannelMonC searches for idleness over the network, it is
simultaneously searching for a preamble. If a preamble is detected, ChannelMonC begins search for
a start symbol. This in effect switches the network into receive mode. However, when the network
finishes receiving the packet or realizes that it falsely detected a preamble, ChannelMonC will return
to IDLE STATE and resume its detection for an idle network to send the packet it accepted to send.

ChannelMonC signals MicaHighSpeedRadioM via the idleDetect signal handler that the net-
work is idle and ready for transmission. MicaHighSpeedRadioM then calls on SecDedEncoding
to encode the first byte of the TOS Msg. Each byte to be encoded results in three bytes to be
sent over the network. Hence, SecDedEncoding signals MicaHighSpeedRadioM three times for each
byte called to be encoded. MicaHighSpeedRadioM then activates SpiByteFifoC to send the first
byte of the preamble/start symbol (char start[12]), sets the time field of the TOS Msg to be
sent (send ptr− >time), and begins crc calculation with the first byte of the TOS Msg to be sent
(send ptr[0]). MicaHighSpeedRadioM’s msg length field is also calculated here. This value cor-
responds to the number of bytes to be encoded and sent over the network excluding the crc. This
calculation proceeds as follows: taking the maximum number of unencoded bytes of a TOS Msg that
can be sent over the network (36), subtracting the maximum length of the data field (29) and the

4

crc (2), adding the length field of the TOS Msg, which specifies the number of bytes of the data
array to be sent, results in the number of bytes to be encoded and sent over the network.

SpiByteFifoC holds at most two bytes at any time; the one that is currently being sent, and
the one that is waiting to be sent (uint8 t nextByte). Being in IDLE state corresponds to inactivity
in SpiByteFifoC. When its buffer is free, its state is open, and when its buffer is in use, its state
is full.

SpiByteFifoC receives a byte to send, and if it is currently in its IDLE state, which in this
particular case it will be since it was inactive before receiving the first byte of the start symbol, it
will accept the byte and signal to MicaHighSpeedRadioM that data is ready. SpiByteFifoC also
initializes the SPI hardware, initializes and sets timer2 (modifying registers TIMSK, TCNT2, OCR2,
TCCR2), and sets the radio to transmit.

The hardware shift register used by the SPI is now configured to shift in a bit from the radio
every 100 clock ticks (100 ticks/bit = 4MHz/40kbps). After eight bits are shifted out of the SPDR
register (data register of the SPI hardware) and sent over the network, TOSH SIGNAL(SIG SPI)
in SpiByteFifoC is called. The nextByte field of SpiByteFifoC is then output to SPDR and the
hardware continues shifting a bit out and sending it over the network at 40kbps (1 bit every 100
clock ticks) for another group of eight bits. This is the primary interface to the radio hardware for
sending out bits. Contrary to the old stack, there is no software layer that communicates directly
to radio hardware when sending.

To understand the following explanations on the intricacies of MicaHighSpeedRadioM, the dis-
tinction between “calling send on a byte”, “sending a byte”, and “signalling that a byte has been
sent” must be fully understood. SpiByteFifo keeps a single byte buffer. Calling send() will place
the byte in the buffer; the byte is not immediately sent. SpiByteFifoC can be in one of three states:
IDLE, when it not sending a byte, OPEN, when it is sending a byte but its buffer is open and can be
used, and FULL, when it is sending a byte and has a byte in its buffer. When a byte has been sent,
SpiByteFifoC signals a dataReady() event. As there is a one byte queue, the dataReady() event for
a given byte may not be the one immediately following the send() request. The calling component
must keep track of the send() and dataReady() counts to know which event is associated with a
specific byte.

When MicaHighSpeedRadioM calls send on the first byte of the start symbol, its state changes
to TRANSMITTING START. At each signal of dataReady, it calls send on the next byte of the start
symbol. After the tenth byte of the preamble/start symbol has been sent, meaning dataReady is
signaled with the tenth byte, MicaHighSpeedRadioM calls send on the twelfth and final byte of the
preamble/start symbol and changes its state to TRANSMITTING.

When dataReady is signaled for the eleventh byte of the preamble/start symbol,
MicaHighSpeedRadioM calls send on the first encoded byte. MicaHighSpeedRadioM stores encoded
bytes in its 4 byte array encoded buffer. After send is called on two of the three encoded bytes for a
single byte of the TOS Msg, MicaHighSpeedRadioM will call encode on the next byte of the TOS Msg
to be encoded and buffered for sending. Using the field tx count as an index into send ptr cast
into a char*, the byte pointed to will be the next byte encoded.

The field tx count corresponds to the index of the next byte to be encoded and buffered
for sending. Let’s use the application CntToRfm to illustrate how exactly MicaHighSpeedRadioM
behaves. The first packet sent by CntToRfm appears as follows:

5

TOS_Msg: encoded bytes
addr = 0xff 0x9b, 0x55, 0x55

0xff 0x9b, 0x55, 0x55
type = 0x4 0x52, 0xaa, 0x9a
group = 0x7d 0x48, 0x95, 0x59
length = 0x4 0x9b, 0x55, 0x55
data = 0x1 0x5b, 0xaa, 0x9a

0x0 0xa4, 0xaa, 0xaa
0x0 0xa4, 0xaa, 0xaa
0x0 0xa4, 0xaa, 0xaa

crc = 0xd9 0x58, 0x59, 0x69
0x2d 0x95, 0xa6, 0x59

At each call to SpiByteFifo.dataReady, send is called on the next encoded byte and enc count
is decremented. Therefore, taking the first byte of the TOS Msg (0xff), the order of operations is as
follows:

• tx count is set to 1, and enc count equals 3

• SpiByteFifo.dataReady() is signaled. Call SpiByteFifo.send(0x9b) on the first encoded
byte, decrement enc count to 2

• SpiByteFifo.dataReady() is signaled. Call SpiByteFifo.send(0x55) on the second encoded
byte, decrement enc count to 1. To fill up the encoded buffer, call Code.encode(next data)
where next data is send ptr[tx count]. Increment tx count to 2 and incrementally com-
pute the crc (calc crc = add crc byte(next data, calc crc)).

• Code.encodeDone() is signaled. Add the number of encoded bytes (3) to enc count, to make
it 4.

• SpiByteFifo.dataReady() is signaled. Call SpiByteFifo.send(0x55) on the third encoded
byte (the final encoded byte of the first data byte of the packet). Decrement enc count to 3.

• SpiByteFifo.dataReady() is signaled. Call SpiByteFifo.send(0x9b) on the fourth en-
coded byte (the first encoded byte of the second data byte of the packet). Decrement
enc count to 2.

This cycle repeats itself for each byte of the TOS Msg that is sent over the radio. In the instance
of the dataReady handler that calls send on the second to last byte of the encoded three bytes of
the second to last byte of the TOS Msg to be sent (in this case it would be the fifth to last encoded
byte before the crc, 0xaa, refer to CntToRfm example above), tx count is automatically changed
to 34. Therefore, independent of what msg length or the number of data bytes encoded and sent
over the network is, the crc bytes will always be the last two byte encoded and called send on.

After the six bytes of the encoded crc are called send on, MicaHighSpeedRadioM changes its
state to SENDING STRENGTH PULSE. The time from when MicaHighSpeedRadioM transitions from
TRANSMITTING to SENDING STRENGTH PULSE, to the time when it transitions from
SENDING STRENGTH PULSE to WAITING FOR ACK, two bytes of 0xff are sent. As the name of the state
suggests, a strength pulse is sent. However, currently in the radio stack, the strength pulse is used
merely as a timing mechanism.

6

After the strength pulse is sent, during the transition from SENDING STRENGTH PULSE to
WAITING FOR ACK, SpiByteFifo.phaseShift() is called. phaseShift delays SpiByteFifoC, mean-
ing SpiByteFifoC pauses before resuming shifting in bits from the radio.

Once MicaHighSpeedRadioM enters the WAITING FOR ACK state, it transitions the radio to re-
ceive mode. SpiByteFifoC continues to signal dataReady to MicaHighSpeedRadioM in 800 clock
tick intervals (after 8 bits are shifted in), and the byte signalled (uint8 t data) corresponds to
the byte heard over the radio. MicaHighSpeedRadioM listens for four bytes, and on the last one,
if the byte is equal to 0x55, then it sets the TOS Msg ack field to 1, indicating the message sent
was properly received. A packetReceived task is then posted, which sets MicaHighSpeedRadioM
to IDLE STATE, sets ChannelMonC to IDLE STATE and activates it to search for a preamble/start
symbol, and passes the sent packet to the AM layer with the ack field and time fields set.

To summarize, the sender’s interaction with the radio in the CntToRfm example is as follows:

bytes sent

addr = 0xff 0x9b, 0x55, 0x55
0xff 0x9b, 0x55, 0x55

type = 0x4 0x52, 0xaa, 0x9a
group = 0x7d 0x48, 0x95, 0x59
length = 0x4 0x9b, 0x55, 0x55
data = 0x1 0x5b, 0xaa, 0x9a

0x0 0xa4, 0xaa, 0xaa
0x0 0xa4, 0xaa, 0xaa
0x0 0xa4, 0xaa, 0xaa

crc = 0xd9 0x58, 0x59, 0x69
0x2d 0x95, 0xa6, 0x59

strength 0xff
pulse 0xff

---phase shift occurs---
---radio now set to receiving---

byte received 0x55
byte received 0x55
byte received 0x55
data = byte received (send_ptr->ack = (data == 0x55))

DONE

Receiving a Packet

ChannelMonC initiates the reception of a packet. When the radio stack is initialized,
ChannelMon.startSymbolSearch is called. This method initializes ChannelMonC to IDLE STATE as
described earlier in section init/idle. Once ChannelMonC detects a preamble, its state changes into
START SYMBOL SEARCH, where it will shift in bits in search of a start symbol. If a start symbol was
not detected after 30 bits received, it changes its state back to IDLE STATE. If a start symbol was
detected, it signals MicaHigSpeedRadioM startSymDetect.

In the startSymDetect handler, MicaHighSpeedRadioM changes its state to RX STATE, sets
the time field of the packet received to the current time, trivially sets the strength field of the
packet to 0, synchronizes the receiver (RadioTiming.getTiming() and startReadBytes(tmp)) to

7

the sender and activates SpiByteFifoC to begin shifting in bits. Synchronization details can be
found in section Timing.

SpiByteFifoC is now configured to shift in bits sampled from the radio once every 100 clock
ticks, and signals dataReady to MicaHighSpeedRadio after 8 bits have been sampled.

Now, each time dataReady is called in MicaHighSpeedRadioM, SpiByteFifoC will call de-
code on the byte received and returned by SpiByteFifoC. SecDedEncoding signals decodeDone
to MicaHighSpeedRadioM after three bytes have been called to be decoded. Therefore, most of the
logic for the receiver resides in the decodeDone handler.

Many constants are used in the decodeDone handler and they are MSG DATA SIZE, LENGTH BYTE NUMBER
and DATA LENGTH. MSG DATA SIZE is equal to 36, the number of bytes of a TOS Msg up to and in-
cluding the crc field. LENGTH BYTE NUMBER corresponds to the index of the length field of TOS Msg
when it is cast into a (char*). DATA LENGTH corresponds to the size of the data field of a TOS Msg,
which is currently set to 29.

The logic decodeDone follows is nearly identical to the logic described in the previous section
for the sender of the packet. Each time a byte is decoded, it is written into the buffer TOS Msg
(rec ptr) using the index rec count. The field msg length, corresponds to the number of decoded
bytes that should be received excluding the crc. The calculation for msg length is the same as
described in the previous section, except that it cannot be calculated until it has received the
length field of the packet being sent (if(rec count == LENGTH BYTE NUMBER){...}). For
the sender, msg length can be calculated right away because the length of the packet is passed as
a paramter to the AM layer.

Once msg length bytes have been received and decoded, rec count is automatically set to 34
(if(rec count == msg length){...}). This occurs because the next two bytes decoded will be the
crc, and the index of the first byte of the crc of rec ptr, when cast as a (char*), is 34.

As a note regarding CRC reception and calculation, each byte received excluding the two crc
bytes is used to calculate the CRC. After the crc has been received, it is compared with the
calculated CRC. If they are the same, the crc field of the TOS Msg is set to 1 (if(calc crc ==
rec ptr->crc){ rec ptr->crc = 1; ...}). If not, rec ptr->crc is set to 0.

If the received crc and calculated CRC match, MicaHighSpeedRadioM checks if the address of
the packet was either its own moteID or the broadcast address. If so, it tells SpiByteFifoC to send
the ack (0x55) and changes its state to ACK SEND STATE. If not, a call to SpiByteFifoC send is not
made.

After receiving the last decoded byte of the packet being sent, the receiver will receive the
first 0xff byte sent by the receiver during the sender’s SENDING STRENGTH PULSE state. During
this instance of dataReady, MicaHighSpeedRadio will call SpiByteFifo.txMode(), which keeps
SpiByteFifoC active but changes the state of the hardware to transmit.

For the next five instances of dataReady, either 0x00 or 0x55 is sent over the wire: 0x00 if
packet was corrupted or intended for a different mote, 0x55 if the packet was received properly and
addressed to itself.

During the fifth instance of dataReady, MicaHighSpeedRadioM deactivates SpiByteFifo (call
SpiByteFifo.idle()), and posts a packetReceived task. The packetReceived task sets the
radio stack to IDLE STATE, signals to the AM layer that the packet was received, and activates
ChannelMonC to search for a preamble/start symbol (call ChannelMon.startSymbolSearch). The
purpose for this check, “if(tmp != 0) rec ptr = tmp;” in the packetReceived task is because
the AM layer will return a TOS Msg (tmp), but that TOS Msg may be an application’s buffer and
different than the buffer used to receive the packet. Therefore, it is an established convention that
the receive signal handler return a free TOS Msg for the radio stack to use for reception of another
packet when a packet was signalled upon reception.

8

To summarize, the receiver’s interaction with the radio in the CntToRfm example is as follows:

bytes received

addr = 0xff 0x9b, 0x55, 0x55
0xff 0x9b, 0x55, 0x55

type = 0x4 0x52, 0xaa, 0x9a
group = 0x7d 0x48, 0x95, 0x59
length = 0x4 0x9b, 0x55, 0x55
data = 0x1 0x5b, 0xaa, 0x9a

0x0 0xa4, 0xaa, 0xaa
0x0 0xa4, 0xaa, 0xaa
0x0 0xa4, 0xaa, 0xaa

crc = 0xd9 0x58, 0x59, 0x69
0x2d 0x95, 0xa6, 0x59

strength pulse 0xff

---radio now set to sending---
byte sent 0x55
byte sent 0x55
byte sent 0x55
byte sent 0x55
byte sent 0x55

DONE

Timing

As discussed previously, there are two components that communicate directly with radio hardware:
SpiByteFifoC and ChannelMonC. SpiByteFifoC reads from the radio and is the only component
to send to the radio. It samples/outputs to the radio every 100 clock ticks (40kbps). ChannelMonC
only reads from the radio, and this occurs every 200 clock ticks (20kbps).

When the sender sends the preamble/start symbol, the following bytes are sent over the wire
at 40kbps (using SpiByteFifoC).

start[12] = {0xf0, 0xf0, 0xf0, 0xff, 0x00, 0xff, 0x0f, 0x00, 0xff, 0x0f, 0x0f, 0x0f};
ChannelMonC monitors for packet reception by searching for the preamble and start symbol. The

following timing diagram illustrates the transmission and reception of the preamble/start symbol.

9

Sender 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

Receiver ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

| | | | | | | | | | | | | | | | | | | |
0 500 1000 1500

(time in clock ticks)
__

Sender 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Receiver ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

| | | | | | | | | | | | | | | | | | | |
2000 2500 3000 3500

__

Sender 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0

Receiver ^ ^ ^* ^ ‘ ^ ‘ ^ ‘ ^

| | | | | | | | | | | | | | | | | | | |
4000 4500 5000 5500

__

Sender 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1

Receiver ‘ ^ ‘ ^ ‘ ^ ‘ ^ ‘ ^

| | | | | | | | | | | | | | | | | | | |
6000 6500 7000 7500

__

Sender 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 \ \ \ \

Receiver ‘ ^ ‘**

| | | | | | | | | | | | | | | | | | | |
8000 8500 9000 9500

^ indicates when the Receiver received a bit using CM_search[0]
‘ indicates when the Receiver received a bit using CM_search[1]

The sender sends a bit once very 100 clock ticks.

ChannelMonC has an unsigned short CM search[2] that it uses to shift in bits once every 200 clock
ticks. When ChannelMonC is in its IDLE STATE, it shifts in bits into CM search[0] only. Everytime
a bit is received (TOSH SIGNAL(SIG OUTPUT COMPARE2)), it masks CM search[0] with 0x777 and
checks to see if it is equal to 0x707. If so, it changes its state to START SYMBOL SEARCH, sets both
CM search[0] and CM search[1] to 0 and sets CM startSymBits to 30.

10

preamble check: 0111 0000 0111
preamble mask in bits: 0111 0111 0111

bits received up to : 110 0110 0110 0111 1000 0111
preamble detection
As shown from the timing diagram above, the last bit received before start symbol detection is the
1 bit ChannelMonC samples right after 4400 clock ticks as indicated by a “*”.

During start symbol detection, both CM search[0] and CM search[1] are used. Since
TOSH SIGNAL(SIG OUTPUT COMPARE2) runs once every 200 clock ticks and the start symbol sent by
the sender is actually a 10kbps signal, the bits received in two consecutive instances of
TOSH SIGNAL(SIG OUTPUT COMPARE2) go to separate buffers. As shown in the timing diagram
above, where there is a “̂’’ the bit was shifted into CM search[0], and where there is a “‘” the bit
was shifted into CM search[1].

The contents of CM search[0] and CM search[1] after preamble detection are shown below:

start symbol mask: 0001 1111 1111
start symbol check: 0001 0011 0101

CM search[1]: 01 0011 0101
CM search[0]: 10 1001 1010
In the timing diagram above, CM search[1] will detect the start symbol before CM search[0]. The
bit received, as marked by the “**” is the last bit received by ChannelMonC. Upon receiving this
bit, ChannelMonC disables itself and signals startSymDetect to MicaHighSpeedRadioM.

The next timing issue that needs to be discuessed is the synchronization/input capture the
receiver of a packet performs after detecting the preamble/start symbol. In essence, since the
sender is sending the packet at 40kbps and the receiver is receiving bits at 40kbps, it is crucial that
they are in sync. Since start symbol detection was performed at 10kbps, having the receiver know
when to start clocking in bits at 40kbps is critical. This is accomplished through input capture.
The receiver loops until a 1 bit is received, and begins clocking in bits for the packet some offset
from when the 1 bit was received.

In the timing diagram above, the first bit of the packet is sent at 9500 clock ticks, 100 after
the last 1 bit sent at 9400 clock ticks. Seeing that the last bit received for the start symbol occurs
sometime between 8400 and 8500 as marked by ‘**, the receiver synchronizes itself with the sender
between 8500 and 9500. The bits over the wire during this time are:

1 1 1 0 0 0 0 1 1 1 1 \ \ \ \
| | | | | | | | | | |
8500 9000 9500

each bit separated by 100 clock ticks.

As soon as the ‘** bit is received, RadioTiming’s getTiming method is called from
MicaHighSpeedRadioM’s startSymDetect. The code line “while(TOSH READ RFM RXD PIN()) { }”
will hold the receiver in a spin loop until the 0 at 6800 clock ticks is received. RadioTimingC then
enables input capture from the radio and the code line “while((inp(TIFR) & (0x1 ¡¡ ICF1)) == 0)
{ }” pauses the receiver until the 1 at 9200 is received. RadioTimingC returns the time the input
capture occurred to MicaHighSpeedRadioM, and MicaHighSpeedRadioM then calls SpiByteFifo’s
startReadBytes with the time stamp of when the input capture occurred.

11

startReadyBytes sets SpiByteFifoC’s state to reading, and delays itself based on the times-
tamp of when the input capture occurred to begin clocking in bits between 9600 and 9700, when
the first TOS Msg packet bit is sent over the network.

The last timing issue that needs to be addressed is the phase shift that occurs when the sender
switches its state from SENDING STRENGTH PULSE to WAITING FOR ACK. Up to this point, the sender
and receiver are in perfect sync. The sender sends at 40kbps and the receiver receives at 40kbps.
When the sender and receiver switch roles for the transmission and reception of the ack, it is
necessary for the sender of the packet, to delay SpiByteFifo so that it remains in sync with the
receiver of the packet (the one sending the ack). The timing diagram below illustrates the phase
shift.

<- tx rx ->
sender: 1 1 1 ### 0 1 0 1

tx ->
receiver: 1 0 1 0 1 0 1 0

| | | | | | | | |
0 100 200 300 400 500 600 700 800 (clock ticks)

As shown above, the sender is sending the last 3 bits of the strength pulse, 0xff. The ###
indicates that the sender shifts its timing, changes its radio hardware to receive so that the next bit
SpiByteFifoC shifts in occurs after the 0 bit is transmitted by the receiver of the packet shortly
after 300 clock ticks.

12

Time

Receiver

Sender

0 21 3 4 5 7 86 9 10 11 1312

Mac Delay Packet Transmission

Packet Reception

Preamble TX
Start Symbol TX

Strength Pulse TX

Ack RX

Timing Bits TX

Preamble RX

Start Symbol RX

Strength Pulse RX Ack TXGetTiming

x 104 clock ticks (on a 4MHz clock)

Phase Shift

Figure 1: Timing Diagram of Network Send/Receive

13

