
Network Reprogramming

Jaein Jeong, Sukun Kim and Alan Broad
Aug 12, 2003

Overview...1

Concept...1
Components..2

Steps of network reprogramming..2
Download Phase ...2
Query Phase ...3
Reprogram Phase ...3

After reboot, mote ID and group ID needs to be set correctly.3
How to wire apps for network programming..4

XnpCount.nc..5
XnpCountM.nc...5
Makefile...6
Location of Network reprogramming module...6

Installing network programmable code ...6
Compile ...6
Loading application code...7
Loading boot loader...7
Example ..7
Connecting to UART ...8
Example ..8
GUI Description ...9

Test Results ..9

Overview

Concept
This document describes network reprogramming and complements the
reference from Crossbow technology (tinyos-1.x/doc/Xnp.pdf). Network
reprogramming is to load transfer the program code using wireless
communication rather than direct connection to PC host (e.g. loading program
through parallel port).

Network reprogramming works mainly in two stages.
First, the program code is stored outside the program memory through radio
packets.

Second, the downloaded code is transferred to the program memory and the
mote reboots with the new code.

Components
Network reprogramming consists of mote modules and a java program on PC
host. On a mote side, XnpM module handles most of the functions like program
download and query. And the main application needs to be wired to XnpC
module.
On PC side, Xnp java program sends program code and commands through
radio. Between a mote and PC, messages of reversed message ID (47) are
transferred. The format of message is as follows:

– AMID: set to #47.
– CMD: type of command (e.g., download, query and etc).
– PID: Checksum for program code. Used for validation
– CID: Sequence number for capsule

Steps of network reprogramming
Network reprogramming is done in three steps: download phase, query phase
and reprogram phase.

Download Phase
Network reprogramming starts with the Xnp java program telling the start of
download:

• Start of download
Network reprogramming starts with download start message:

– Xnp java program sends a request and XnpM relays this request to
the main module.

PC

Program
Memory

Mote

Program
Code

Parallel programming.

Base Station

EEPROM

Mote

Program
Code

PC

Program
Memory

Network programming

PC

Program
Memory

Mote

Program
Code

PC

Program
Memory

Mote

Program
Code

Parallel programming.

Base Station

EEPROM

Mote

Program
Code

PC

Program
Memory

Base Station

EEPROM

Mote

Program
Code

PC

Program
Memory

Network programming

PC
Xnp javaApp XnpC

Mote Radio
packets

PC
Xnp javaApp XnpC

Mote
App XnpC

Mote Radio
packets

5 6 7:8
CMD SUBCMD PID CID Data

9:10 11:end0:1
Dest AMID

2
GID

3
Len

4 5 6 7:8
CMD SUBCMD PID CID Data

9:10 11:end0:1
Dest AMID

2
GID

3
Len

4

– Main module can reserve resources and acknowledges to XnpM.
– ‘Download start’ message is sent multiple times.

• Download
After sending start of download message a couple of times, Xnp java
program sends each line of program as a capsule. XnpM on the mote side,
receives this capsule and stores in EEPROM.

Query Phase
Once Xnp java program finishes sending program capsules, it sends download
terminate message to notify the end of download. Then, the mote searches any
missing capsule in its EEPROM and asks the retransmission of it to PC side.
This is done in following steps:

1. java program asks motes for missing capsules.
2. Each mote scans EEPROM and requests the retransmission of the next

missing capsule.
3. In response, java program sends the missing capsule.
4. Other motes can also fill the hole as well as the requestor.

This Query loop ends when the java program doesn’t get request for several
times.

Reprogram Phase
In reprogram phase, the downloaded code is transferred to the program memory
and the mote starts the new program. Reprogram phase works in the following
steps:

• First, java program sends a reprogram request.
• After checking the EEPROM for correctness, XnpM transfers control to the

boot loader.
• The boot loader copies the code in EEPROM to program memory and

reboots the system.

After reboot, mote ID and group ID needs to be set correctly.

Xnp java
program

XnpM
module

Main
module

(1) Download start(2) Download request event

(3) accept/deny by replying

Xnp java
program

XnpM
module

Main
module

(1) Download start(2) Download request event

(3) accept/deny by replying

Xnp java
program

Mote 1 (1) Query for missing capsule

Mote 3

Mote 2 (2) Request for retransmission

(3) Retransmission of capsule

(2) Scan
(4) Fill the hole

Xnp java
program

Mote 1 (1) Query for missing capsule

Mote 3

Mote 2 (2) Request for retransmission

(3) Retransmission of capsule

(2) Scan
(4) Fill the hole

How to wire apps for network programming
To make an existing application network reprogrammable, the following
modifications are needed:

First, wire network reprogramming module in configuration file. The figure in the
below shows a configuration file AppC which connects the configuration file of
network reprogramming module (XnpC) to the application implementation
(AppM).

Second, implementation file (AppM) needs to be modified to handle events and
set mote IDs.

Handling events:
Start download event (Xnp.NPX_DOWNLOAD_REQ()) is called when XnpM
module receives start download command from the PC side. The event handler
can accept or reject network reprogramming by sending corresponding
acknowledgement.

Terminate download event (Xnp.NPX_DOWNLOAD_DONE()) is called when
XnpM module receives terminate download command. The application can
resume its task after receiving this event.

Setting mote IDs: The program code transferred in reprogram phase doesn’t
have mode ID and group ID. The mote ID and group ID are saved in a special
location in EEPROM. After reboot, Xnp.NPX_SET_IDS() should be called to set
the mote ID and group ID.

Finally, Makefile should be modified to enable network reprogramming.
If the identifier XNP is defined in Makefile, related files defined in XNP_DIR (this
is defined in apps/Makerules) are added to the search path. If identifier AVRISP
is defined, AVRISP serial programmer is assumed rather than parallel port.

Here is an example, XnpCount. This application is extended from
CntToLedsAndRfm.

XnpCAppM.Xnp

AppC
XnpCAppM.Xnp

AppC

XnpM
module

AppM
module

Xnp.NPX_DOWNLOAD_REQ

Xnp.NPX_DOWNLOAD_ACK

XnpM
module

AppM
module

Xnp.NPX_DOWNLOAD_DONE

Start download event

Terminate download event

XnpM
module

AppM
module

Xnp.NPX_DOWNLOAD_REQ

Xnp.NPX_DOWNLOAD_ACK
XnpM

module
AppM

module
Xnp.NPX_DOWNLOAD_REQ

Xnp.NPX_DOWNLOAD_ACK

XnpM
module

AppM
module

Xnp.NPX_DOWNLOAD_DONE
XnpM

module
AppM

module

Xnp.NPX_DOWNLOAD_DONE

Start download event

Terminate download event

XnpCount.nc
configuration XnpCount {
}
implementation {
 components Main, Counter, IntToLeds, IntToRfm, TimerC,
XnpCountM, XnpC;

 Main.StdControl -> Counter.StdControl;
 Main.StdControl -> IntToLeds.StdControl;
 Main.StdControl -> IntToRfm.StdControl;
 Main.StdControl -> TimerC.StdControl;
 Counter.Timer -> TimerC.Timer[unique("Timer")];
 IntToLeds <- Counter.IntOutput;
 Counter.IntOutput -> IntToRfm;

 Main.StdControl -> XnpCountM.StdControl;
 XnpCountM.Xnp -> XnpC;
 XnpCountM.CntControl -> Counter.StdControl;
}

XnpCountM.nc
includes AM;

module XnpCountM {
 provides {
 interface StdControl;
 }
 uses {
 interface Xnp;
 interface StdControl as CntControl;
 interface TS;
 }
}
implementation {
#include "Xnp.h"
 uint16_t dest;
 uint8_t cAck;

 command result_t StdControl.init() {
 call Xnp.NPX_SET_IDS(); //set mote_id and group_id
 return SUCCESS;
 }
 command result_t StdControl.start() {
 return SUCCESS;
 }
 command result_t StdControl.stop() {
 return SUCCESS;
}

 event result_t Xnp.NPX_DOWNLOAD_REQ(uint16_t wProgramID,
uint16_t wEEStartP, uint16_t wEENofP){
 call Xnp.NPX_DOWNLOAD_ACK(SUCCESS);
 call CntControl.stop();
 return SUCCESS;
 }

 event result_t Xnp.NPX_DOWNLOAD_DONE(uint16_t wProgramID,
uint8_t bRet,uint16_t wEENofP){
 if (bRet == TRUE)
 call CntControl.start();
 return SUCCESS;
 }
 }

Makefile

COMPONENT=XnpCount
SENSORBOARD=basicsb
XNP=yes
#AVRISP=yes

include ../Makerules

Location of Network reprogramming module
These are the directories related to network reprogramming:

• Tinyos-1.x/tos/lib/Xnp: main module for network programming.
• Tinyos-1.x/apps: sample applications

– XnpCount, XnpRfmToLeds, XnpOscope
• Tinyos-1.x/tools/java/net/tinyos/xnp: java program

Installing network programmable code

Compile
Before an application is loaded to a mote, the application code should be
compiled. Currently, network reprogramming only works for the platforms with
ATmega128 microcontroller (mica2 and mica2dot). TinyOS release 1.1 contains
all the latest tools to compile the application in ATmega128 native mode (avr-gcc,
nesC and uisp). The following commands compile the application code.

 make mica2 (for mica2 platform)
 make mica2dot (for mica2dot platform)

Loading application code
Until a mote has a network reprogrammable code running in its memory, it can
load program code only through direct connection. Following commands load the
application code into the flash memory:

 make mica2 reinstall.<moteid> (for mica2 platform)
 make mica2dot reinstall.<moteid> (for mica2dot platform)

These commands are expanded into the following commands in case parallel
port is selected:

 uisp -dprog=dapa –dpart=ATmega128 --wr_fuse_e=ff -–erase
 uisp -dprog=dapa –dpart=ATmega128 -–wr_fuse_e=ff -–upload if=main.srec
 uisp -dprog=dapa –dpart=ATmega128 -–wr_fuse_e=ff -–verify if=main.srec

Loading boot loader
Next, a boot load should be loaded with the following command:

 make mica2 inp (for mica2 platform)
 make mica2dot inp (for mica2dot platform)

These commands are expanded into the following command:

 uisp –dprog=dapa --upload if=<bootloader.srec>

<bootloader.srec> is the name of boot loader file for corresponding platform
(inpispm2.srec for mica2 and inpispm2d.srec for mica2dot).

Example
This is an example to install XnpCount application to a mica2dot mote using
AVRISP serial programmer.

Administrator@WILDCAT /cygdrive/c/tinyos-cvs/tos-1-1-0-candicate/tinyos-
1.x/apps/XnpCount
$ make mica2dot
 compiling XnpCount to a mica2dot binary
ncc -o build/mica2dot/main.exe -Os -board=basicsb -target=mica2dot -
I../../tos/lib/Xnp -Wall -Wshadow -DDEF_TOS_AM_GROUP=0x7d -Wnesc-all -finline-
limit=100000 -fnesc-cfile=build/mica2dot/app.c -DIDENT_PROGRAM_NAME="XnpCount"
-DIDENT_INSTALL_ID=19657u -DIDENT_UNIX_TIME=1060836026L XnpCount.nc -lm
c:/tinyos-cvs/tos-1-1-0-candicate/tinyos-1.x/tos/lib/Xnp/XnpM.nc:806: warning:
call via function pointer
 compiled XnpCount to build/mica2dot/main.exe
 15248 bytes in ROM
 569 bytes in RAM
avr-objcopy --output-target=srec build/mica2dot/main.exe
build/mica2dot/main.srec

Administrator@WILDCAT /cygdrive/c/tinyos-cvs/tos-1-1-0-candicate/tinyos-
1.x/apps/XnpCount
$ make mica2dot reinstall.43
 installing mica2dot binary
set-mote-id build/mica2dot/main.srec build/mica2dot/main.srec.out `echo
reinstall.43 |perl -pe 's/^reinstall.//; $_=hex if /^0x/i;'`
uisp -dprog=stk500 -dserial=/dev/ttyS1 -dpart=ATmega128 --wr_fuse_e=ff --erase
--upload if=build/mica2dot/main.srec.out
Firmware Version: 1.14
Atmel AVR ATmega128 is found.
Uploading: flash

Fuse Extended Byte set to 0xff

Administrator@WILDCAT /cygdrive/c/tinyos-cvs/tos-1-1-0-candicate/tinyos-
1.x/apps/XnpCount
$ make mica2dot inp
uisp -dprog=stk500 -dserial=/dev/ttyS1 -dpart=ATmega128 --upload
if=../../tos/lib/Xnp/inpispm2d.srec
Firmware Version: 1.14
Atmel AVR ATmega128 is found.
Uploading: flash

Using Java Application
Java application files for network reprogramming are stored in the following
location: $TOSROOT/tools/java/net/tinyos/xnp.

Connecting to UART

Xnp java application can be connected to UART using the standard UART
interface introduced at TinyOS 1.1 release.

By default, Xnp java application is connected to UART through SerialForwarder
with hostname localhost and port 9001. When the java application needs to be
connected to a different source, the environment variable MOTECOM can be set
with the name of source.

Recommendation is to use TOSBase (a base program) and SerialForwarder.
This allows us to use other UART monitoring program like Matlab while keeping
the synchronization of UART packets.

Example
This is an example to run xnp java application.

This command runs xnp program for SerialForwarder with hostname localhost
and port 9001 (sf@localhost:9001).
$ java net/tinyos/xnp/xnp &
[1] 3628

This command runs still xnp program for sf@localhost:9001, but SerialForwarder
is not running. The error message shows that the source is not available.
Administrator@WILDCAT /cygdrive/c/tinyos-1.x/tools/java

$ java net/tinyos/xnp/xnp &
[2] 1816
[1] Done java net/tinyos/xnp/xnp

Administrator@WILDCAT /cygdrive/c/tinyos-1.x/tools/java
$ java.net.ConnectException: Connection refused: connect sf@localhost:9001
Check the source sf@localhost:9001 or try a different source by setting MOTECOM
environment variable.

[2]+ Exit 1 java net/tinyos/xnp/xnp

This command set the environment variable MOTECOM as serial@COM1:mica2
(direct connection to UART port 1 with mica2 baud rate).
Administrator@WILDCAT /cygdrive/c/tinyos-1.x/tools/java
$ export MOTECOM=serial@COM1:mica2

Administrator@WILDCAT /cygdrive/c/tinyos-1.x/tools/java
$ java net/tinyos/xnp/xnp &
[1] 1480

Administrator@WILDCAT /cygdrive/c/tinyos-1.x/tools/java
$ serial@COM1:57600: resynchronising

GUI Description
Although xnp java application send program code in unicast mode, broadcast
mode is always recommended. In unicast mode, xnp java application checks
delivery for each capsule and this makes the whole process very slow. Whereas
in broadcast mode, xnp java application checks any missing packets after
sending complete program capsules.

By default, Xnp java application displays the mote id in decimal. If ‘-hexid’ option
is specified, mote id is displayed in hexadecimal in the status message.

Due to the limitation of packet format, xnp java application displays only 8-bit as
a mote id in the status message.

Test Results
We did experiments to measure the running time and the success rate of network
reprogramming. As an application XnpCount was used. XnpCount is small in its
size (37000 bytes, 841 capsules) and has minimum functionality. We could get
reasonable success rate when motes are normal. For UART interface we used
GenericBase (sync mode) and SerialForward.

Num
Motes

Num
Tries

Download
Time (s)

Query
Time (s)

Num
Successes

4 4 106 24.25 4
8 4 106 72.25 7.75
16 4 106 63 16

0

50

100

150

200

250

300

4 4 4 4 8 8 8 8 16 16 16 16

Num Motes

Query Time (sec)
Download Time (sec)

At the time when we did the experiments, new UART interface was not released.
We tested the network reprogramming informally with new UART interface
(TOSBase and SerialForwarder) and we could see that the download time has
increased a little, but the time for query time was got much smaller due to the
reliable UART communication.

We found some cases when when network programming failed:

• Parameters in xnp java is not correct.
– Interval between each write should be large enough for the base

(TOSBase or GenericBase) to handle. 120 ms was found by
experiment.

– When xnp java application sends packets faster than the base can
handle the base can get stuck and doesn’t transfer any more
packets (especially GenericBase, which is the old version of base).

• If the program code is not loaded correctly, the mote cannot download
code.

• When a mote has low battery level, it cannot write into its EEPROM and
doesn’t proceed. In this case, the battery needs to be replaced.

– If hardware modification (e.g. soldering loose battery connection) is
made, the mote may not work properly. In this case we needed to
load the code with parallel programming.

