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Abstract

Performance improvement and energy efficiency are two important goals in provisioning In-
ternet applications in data centers. In this paper, we propose and develop a content-aware self-
tuning request batching mechanism that can simultaneously achieve the two correlated goals. The
batching mechanism increases the cache hit rate at Web server, which provides the opportunity
to improve performance of Internet applications and energy efficiency of servers at the same time.
Its core is a novel and practical two-layer control system that adaptively adjusts the batching
interval and frequency states of CPUs according to the service level agreement and the charac-
teristics of workloads. The batching control adopts a self-tuning fuzzy model predictive control
approach for application performance improvement. The power control dynamically adjusts the
frequency of CPUs with fluctuations of workloads for energy efficiency. A coordinator between
the two-layer controls achieves the desired performance and energy consumption. We implement
the mechanism in a testbed of virtualized servers hosting RUBiS benchmark applications. Exper-
imental results find that the new approach can improve the application performance by 19% and
reduce the energy consumption of the server system by 14%.

Keywords: Batching, Performance Control, Energy Efficiency, Dynamic Voltage and Fre-
quency Scaling, Multi-tier Internet Applications, Fuzzy Model Predictive Control

1 Introduction

There are two main challenges for operating a modern data center: performance guarantee with
respect to the service level agreement (SLA) with applications for increasing revenue and energy
efficiency of the server system for reducing the operating cost. A well-known approach to controlling
energy consumption is to transition a processor from high-power states to low-power states using
Dynamic Voltage and Frequency Scaling (DVFS) technique [14, 16, 22]. The transition of CPU power
states from high to low for energy saving will increase the response time of applications. Therefore,
we need to reduce both energy consumption and SLA violations.

In this paper, we propose and develop a content-aware and self-tuning request batching mech-
anism for performance improvement of Internet applications and energy efficiency in virtualized
servers. Today, popular Internet applications employ a multi-tier architecture with each tier depend-
ing on its successor and providing functionality to its preceding tier [3, 10, 11, 18]. Front-tier Web
servers process requests in the order of arrival. Indeed, most of those web requests are independent
to each other. Batching requests in a content-aware manner can improve the cache hit rate of Web
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servers, which in return provides the opportunity to improve the performance of multi-tier applica-
tions and energy efficiency of underlying server system at the same time. Together with batching,
we employ DVFS power management technique to minimize the energy consumption while meeting
the SLA on application response time.

However, there are two major challenges in developing the batching approach. Firstly, it is a
very hard problem to determine the batching interval length. Intuitively, a longer batching interval
can accumulate and reorder more requests for the same content. Thus it may increase the cache hit
rate and reduce the application response time. But batching will also delay the processing of those
requests, resulting in longer application response time. It will risk the violation of the SLA. Thus,
the batching mechanism must be self-tuning in choosing the batching interval. Unfortunately, due
to high complexities of multi-tier Internet service architecture, high dynamics in workloads and the
virtualized server infrastructure, obtaining an accurate model among virtual machine (VM) capacity,
server configuration, performance and power consumption is a very hard problem even for just one
application.

Second, modern processors have a number of CPU frequency states that are tuneable by the
DVFS technique. How to synchronize DVFS states with dynamically changing batching intervals
will have significant impact on the energy consumption control effect and system stability. On one
hand, the change in system behaviors due to DVFS control actions has significant impact on the
accuracy of batching control. On the other hand, DVFS control decisions are dependent on system
parameter that are affected by batching control.

We design a novel and practical two-layer control system that is composed of a batching con-
trol loop and a power control loop. The batching control is based on a self-tuning fuzzy model
predictive control (FMPC). FMPC effectively captures a nonlinear relationship between application
performance and batching interval length through fuzzy modeling and predictive control. The power
control is designed with expert fuzzy control (EFC) to modify the frequency of CPUs. EFC takes
advantage of model-independent fuzzy control technique to address the issue of lacking an accurate
performance-power model due to workload dynamics. It is a real-time online decision maker based
on system conditions and historical experiences. According to the fluctuations of the workload and
the usage of CPUs, EFC decides when and which frequency state should be set for CPUs. Further-
more, we design a coordinator between the two-layer controls to achieve the desired performance and
energy consumption.

We build a testbed of multi-tier server system based on Xen 3.1 virtualization software. The
servers are running CentOS 5.8 with Linux kernel 2.6.18. The processor supports three frequency
levels: 2 GHz, 2.33 GHz, 2.83 GHz. We evaluate the implemented batching mechanism with RUBiS
benchmark applications [7, 15, 18, 23]. Experimental results demonstrate that the new approach
can improve the application performance in terms of response time by 19% and reduce the energy
consumption of the server system by 14%.

The main contributions of our work are:

• We propose to use request batching with DVFS technique under heavy and dynamic workloads
for improving application performance and energy efficiency of server systems at the same time.

• We design and develop a novel and practical two-layer control system that is composed of a
batching interval control loop and a power control loop. For self-tuning, the control system is
based on fuzzy model predictive control (FMPC) and expert fuzzy control (EFC). We further
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Figure 1: The System Architecture.

design a coordinator between the two-layer controls to integrate FMPC and EFC controls for
joint performance and power control.

• We build a testbed and evaluate the new approach with the RUBiS benchmark application. Ex-
perimental results demonstrate that the developed batching mechanism can effectively improve
both application performance and energy efficiency.

In the following, Section 2 gives the batching control system architecture and the batching strat-
egy. Section 3 presents the modeling, design, and analysis of the batching interval controller. Sec-
tion 4 gives the power control design and the integration of batching and DVFS. Section 5 introduces
the testbed implementation. Section 6 presents the experimental results and analysis. Section 7 con-
cludes the paper.

2 System Architecture and Batching Strategy

2.1 The System Architecture

Figure 1 illustrates the architecture of the batching control system. It is composed of one batching
control loop and a power control loop in a virtualized multi-tier server system.

The key components in the batching control loop include a batcher, a SLA monitor, and a cache
hit rate monitor. The control loop relies on fuzzy model predictive control (FMPC) that captures
the nonlinear relationship between the application performance and the batching interval length. It
outputs the batching interval legnth based on a dynamic fuzzy model. An online self-tuning module
is applied to update the fuzzy model according to various workloads and CPU frequency changes.

The power control loop is composed of an expert fuzzy control (EFC) and a DVFS actuator.
EFC takes advantage of model-independent fuzzy control technique to address the issue of lacking
an accurate performance-power model due to workload dynamics. It adaptively manages the energy
consumption of the server system by manipulating the frequency of CPUs according to the workload
fluctuations.

Because of complex interactions between the batching control loop and the DVFS control loop, we
design a coordinator between the two-layer controls to achieve the desired application performance
while improving energy efficiency.
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Figure 2: The batching interval length.

2.2 The Batching Strategy

The request classification is done in the following two steps.

1. During each batching interval, requests incoming to the frond-tier Web server are classified into
groups according to the requested contents. The request classification is based on its header
URL information.

2. At the end of each batching interval, the request groups are reordered in a new sequence by
the length of each group. The group with the largest number of batched requests will be the
first to be sent to the successor application server. Doing so can reduce the average request
response time.

The batching interal length is changed dynamically as follows, and Figure 2 illustrates the process.

1. At the end of the (k − 1)th batching interval, the requests collected during the interval will
be sent to the multi-tier server system. Meanwhile, the kth batching interval starts collecting
requests.

2. The multi-tier system completes the processing of the requests collected during the (k − 1)th
batching interval at time tk. Let Tp(k) denote the total processing time of the requests. The
SLA monitor will measure the average response time of the requests r(k − 1). The cache
monitor will measure the cache hit rate h(k − 1) of the requests.

3. The batching control takes the average response time r(k − 1) and the cache hit rate h(k − 1)
as the inputs. It determines the current batching interval length T (k). After a period of Tw(k),
the current batching interval is over. The requests collected during the interval will be send to
the multi-tier server system. The (k + 1)th batching interval starts.

3 The Batching Control Design

Due to the workload dynamics and the SLA, the batching interval length should be changed in a
self-tuning manner. It is a challenging problem to determine the batching interval length. Intuitively,
a longer batching interval can accumulate and reorder more requests for the same content, and thus
it may increase the cache hit rate and reduce the average response time. But batching will also delay
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Figure 3: The design of fuzzy model predictive control (FMPC).

the processing of those requests, resulting in longer average response time. It will risk the violation of
the SLA. Unfortunately, there does not exist a linear relationship between the average response time
and the batching interval length, due to high complexities of multi-tier Internet service architecture
and high dynamics in workloads.

We propose to use fuzzy model predictive control (FMPC). FMPC can effectively capture non-
linear behaviors through fuzzy modeling and quickly adapt to the workload fluctuations through
predictive control for meeting the SLA. The strengths of the control includes the following aspects:

1. It simplifies nonlinear modeling of a complex behavior by using a set of linear sub-models
captured by the fuzzy rules.

2. It performs optimized control over the entire operating space of a nonlinear problem. The
optimization can be achieved for each sampling period based on a sub-model.

3. It inherits several benefits of the traditional predictive control such as control accuracy and
stability.

Figure 3 illustrates the design of the batching control loop based on FMPC. The inputs are the
average response time r(k − 1) and the cache hit rate h(k − 1) of requests in the previous batching
interval. The output is the next batching interval length T (k).

We design a fuzzy model that describes the relationship between the controlled variable and the
manipulated variable. In the model, the controlled variable u(k) is the batching interval length T (k),
and the manipulated variable y(k) is the average response time r(k). The model is updated every
control period with an online self-tuning component. The optimizer is to find the optimal value of
the batching interval length T (k).

3.1 The Fuzzy Model

We adopt a multiple-input-single-output fuzzy model to describe complex behaviors of a coupled
system. The model is of the input-output NARX type (Nonlinear Auto Regressive model with
eXogenous inputs) as follows.

y(k + 1) = R(u(k), h(k), ξ(k)). (1)

R is the relationship between the input variables and the output variable. The input variables are
the current input u(k), the variable parameter h(k) and the regression vector ξ(k). The regression
vector ξ(k) contains a number of lagged outputs and inputs of the previous control periods. It is

5



represented as

ξ(k) = [(y(k), y(k − 1), · · · , y(k − ny)),

(u(k), u(k − 1), · · · , u(k − nu))]
T

(2)

where ny and nu are the number of lagged values for outputs and inputs. Let ρ denote the number
of elements in the regression vector ξ(k), that is,

ρ = ny + nu. (3)

R is the rule-based fuzzy model that is consisted of Takagi-Sugeno rules [2]. A rule Ri is represented
as

Ri : IF ξ1(k) is Ωi,1, ξ2(k) is Ωi,2, · · · , and ξρ(k) is Ωi,ρ

u(k) is Ωi,ρ+1 and h(k) is Ωi,ρ+2

THEN yi(k + 1) = ζiξ(k) + ηiu(k) + ωih(k) + θi.

(4)

Here, h(k) is the cache hit rate. Ωi is the antecedent fuzzy set of the ith rule, which is composed
of a series of subsets: Ωi,1,Ωi,2, · · · ,Ωi,ρ+2. ζi, ηi and ωi are parameters, and θi is the offset. Their
values are obtained by offline training.

Each fuzzy rule describes an operating space of the nonlinear system model. The spaces have
some overlaps. So each output contains several fuzzy rules. For example, the inputs u(l), h(l) may
be included in Rf and Rg at the same time. So the output y(k + 1) is computed as the weighted
average value by the rules. That is,

y(k + 1) =

∑K
i=1 γi(ζiξ(k) + ηiu(k) + ωih(k) + θi)∑K

i=1 γi
. (5)

In Eq. (5), K is the number of rules for the output. γi is the degree of fulfillment for the ith rule.
The value of γi is the product of the membership degrees of the antecedent variables in that rule.
Membership degrees are determined by fuzzy membership functions associated with the antecedent
variables. The model output in Eq. (5) is expressed in the form of

y(k + 1) = ζ∗ξ(k) + η∗u(k) + ω∗h(k) + θ∗. (6)

The aggregated parameters ζ∗, η∗, ω∗ and θ∗ are the weighted sum of vectors ζi, ηi, ωi and θi
respectively.

ζ∗ =

∑K
i=1 γiζi∑K
i=1 γi

η∗ =

∑K
i=1 γiηi∑K
i=1 γi

ω∗ =

∑K
i=1 γiωi∑K
i=1 γi

θ∗ =

∑K
i=1 γiθi∑K
i=1 γi

(7)
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Figure 4: A self-tuning module of FMPC.

3.2 Online Self-Tuning of the Model

Due to high workload dynamics, we design an online self-tuning module to adapt the fuzzy model.
Fig 4 shows the schematic representation of the self-tuning module. It is to minimize the prediction
error of the fuzzy model e(k), e(k) = y(k)− ŷ(k). y(k) is the measured output value of the control
system and ŷ(k) is the model’s predicted value for y(k).

The fuzzy model consists of many rules. If e(k) ̸= 0, we apply a recursive least squares (RLS)
method to adapt the parameters of the current fuzzy rule.

We express the fuzzy model output in Eq. (5) as follow:

y(k + 1) = ϕ(k)X(k) + e(k) (8)

where e(k) is the error between the actual output and predicted output. ϕ(k) is a vector composed of
the model parameters. X(k) = [ξ(k)T , u(k)] is a vector containing the current and previous outputs
and inputs of the control system. The parameter vector ϕ(k) is estimated so that the cost function
in Eq. (9) is minimized. We apply both the current error e(k) and the previous error e(k − 1) to
estimate the parameter vector.

Cost =
k∑

k−1

(e(k)2 + 0.5e(k − 1)2). (9)

3.3 The Optimizer Design

Once the model is established, it is used as a prediction tool by the optimizer to search for the
optimal batching length u(k+ 1). The cost objective function for the optimization is formulated as:

J = a ∥ y(k + 1)− yref ∥2 +b ∥ ∆u(k) ∥2 (10)

where ∆u(k) = u(k + 1)− u(k) (11)

The first part in Eq. (10) reflects the predictive error between y(k+1) and yref . Variable y(k+1)
is the predicted average response time of the next batching interval according to the fuzzy model.
Paramerer yref is the SLA on the average response time. The second part in Eq. (10) indicates the
control effort. The amount of ∆u(k) is the batching interval adjustment in every control period.
Parameters a and b describe the weight of control accuracy and system stability, respectively.

The optimization problem is subject to the constraint that the batching interval length must be
bounded by the SLA on the average response time. That is, ∆u(k) + u(k) ≤ SLA.
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In the presence of a nonlinear model, a nonconvex optimization problem must be solved at each
sampling period. The optimization problem is a Quadratic-Programming (QP) problem, which can
be effectively solved numerically.

We linearize the fuzzy model and represent it as a state-space linear time variant model in the
following form:

xlin(k + 1) = A(k)xlin(k) +Bu(k)u(k) +Bh(k)h(k).

ylin(k) = C(k)xlin(k).
(12)

The state vector for the state-space description is defined as:

xlin(k + 1) = [ξT (k), 1]T (13)

The matrices A(k), Bu(k), Bh(k) and C(k) are constructed by freezing the parameters of the fuzzy
model at current operating point y(k) and u(k). We calculate the degree of fulfillment γi and
compute the aggregated parameters ζ∗, η∗, ω∗ and θ∗. When comparing Eq. (6) and Eq. (12), the
state matrices are computed as follows:

A =


ζ∗1 ζ∗2 · · · ζ∗j · · · ζ∗ρ θ∗

1 0 0 · · · · · · · · · 0
0 1 0 0 · · · · · · · · ·
...

...
...

...
...

...
...

 (14)

Bu =


η∗

0
0
...

 (15)

Bh =


ω∗

0
0
...

 (16)

C =
[
1 0 0 · · ·

]
(17)

where ζ∗j (1 ≤ j ≤ ρ) is the jth element of aggregate parameter vectors ζ∗.

To ensure offset-free reference tracking, the optimization problem is defined with respect to the
increment in the control signal, ∆u(k), rather than the control signal u(k). The statespace description
is extended correspondingly as follows:

x(k + 1) = Ā(k)x(k) + B̄u(k)∆u(k) + B̄h(k)h(k).

y(k) = C̄(k)x(k).
(18)

Ā(k) =

[
A(k) Bu(k)
0 I

]
B̄u(k) =

[
Bu(k)

I

]
B̄h(k) =

[
Bh(k)

I

]
C̄(k) =

[
C(k) 0

]
(19)
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Figure 5: The expert fuzzy control design.

At the kth control interval, the state vector Eq. (18) is available, the response time and the cache
hit rate of previous control intervals are also available from their performance monitors. The current
batching interval length u(k) is calcualted through successive substitutions.

4 Power Control

4.1 DVFS Control

A virtualized web server system exhibits significant variations in the utilization of underlying CPU
resources due to the dynamic behaviors of workloads. This system characteristic can be exploited
for CPU power management. Our control system dynamically scales the CPU frequency of server
in response to time-varying resource demands. Modern processors allow such frequency scaling for
energy savings via DVFS technique .

We design a DVFS control based on model-independent expert fuzzy control technique to mini-
mize the energy consumption of the server system. The expert fuzzy control (EFC) technique allows
the DVFS controller to make online control decisions based on site conditions and historical expe-
riences. EFC is applied in measurement combined fuzzy control theory with expert control theory.
Its model-independence addresses a practical issue of control design, which is the lack of an accurate
performance model for a complex web system in the face of dynamic workload variations.

αk =
V (k)− V (k − 1)

V (k − 1)
(20)

βk =
Tp(k)− Tw(k)

Tw(k)
(21)

Figure 5 shows the expert fuzzy control (EFC) architecture of the DVFS control. EFC has two
inputs, αk and βk. The αk reflects the fluctuations in the workload. It is given by Eq. (20), where
V (k) is the average throughput of web requests processed in the kth control period. The second input,
βk, reflects the CPU usage of the server system. It is given by Eq. (21), where Tp(k) and Tw(k) are
the process time and waiting time in the batching interval respectively. The output of EFC, f(.),
is the necessary change in the CPU frequency. It has three possible values, (f(+1); f(0); f(−1)),
which denote increasing, keeping and decreasing the CPU frequency respectively. The transition of
the CPU frequency is designed to occur in discrete steps.

The design objective of EFC is to translate a human expert’s knowledge into a set of control rules
that manage the CPU frequency of the server system. Figure 6 shows the rule base of EFC. The
control rules are defined using linguistic variables corresponding to the two inputs, αk and βk. The
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Figure 6: The rule table.

Figure 7: Coordinator.

Fuzzification process converts the numeric inputs into linguistic values such as NL(negative large),
NM(negative medium), NS(negative small), ZE(zero), PS(positive small), PM(positive medium) and
PL(positive large) [24]. The rules are in the form of If-Then statements. For example, If αk is PL
and βk is PL, then the adjustment in CPU frequency is f(+1). The rationale behind this rule is that
CPU frequency should increase since the workload and usage of CPUs are grown. Similarly various
rules are designed to determine the CPU frequency states based on the fluctuations in workload and
CPU usage. Note that the rule base table is divided into three zones corresponding to the control
actions f(+1), f(0) and f(−1). Because the discrete CPU frequency states available in our testbed
are 2 GHz, 2.33 GHz and 2.83 GHz. However, it can be further split into more number of smaller
zones for precise control if more frequency states are available in the CPUs.

4.2 Integration of Batching and DVFS

An important aspect of the proposed control framework is to integrate two different control loops for
improving performance and energy efficiency. The system uses both batching and DVFS controls,
dynamically and simultaneously. The batching control determines each batching interval length in
order to achieve the average response time target. Meanwhile, the DVFS control determines the
CPU frequency of the server in order to reduce energy consumption.

There are some complex interactions between these two control loops. On one hand, the changes
in system behavior due DVFS control action have an impact on the accuracy of batching control.
On the other hand, DVFS control decisions are dependent on some parameters, which are affected
by the batching control. Therefore, a coordinator as shown in Figure 7 is designed to integrate
the two controllers and provide system stability. It involves the following interactions between the
controllers.
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5 System Implementation

5.1 Testbed

We build a testbed consisting of one server and one client. The server is equipped with one Intel
Q9550 quad-core processor and 8 GB memory. The processor supports three frequency levels: 2
GHz, 2.33 GHz, 2.83 GHz. The servers are running CentOS 5.8 with Linux kernel 2.6.18.

We use RUBiS [1] as the benchmark application for experiment. RUBiS is an open source multi-
tier Internet benchmark application. RUBiS provides a web auction application that modeled in a
similar way of ebay.com. It characterizes the workload into three categories, browsing, bidding, and
selling. RUBiS client emulates user requests at different concurrent levels.

We create three VMs for the RUBiS benchmark application, Apache web server in the first, PHP
application server in the second, and MYSQL database server in the third. Each VM is allocated
1 VCPU and 512 MB memory. All VMs use Ubuntu server 10.04 with Linux kernel 2.6.35. The
mem.cache module and cache module are enabled for the experiment.

Each VM is allocated 512 MB of RAM and each of them is also configured with four virtual
CPUs, as the physical computer has four CPU cores. An Apache server is installed on the first VM
and runs as a virtualized web server. The module mem.cache and cache is enabled and use as cache
to increase access speed. The Apache servers respond to the HTTP requests from Client with a
dynamic webpage written in PHP. The PHP and Mysql Database server are installed on the second
and third VM respectively.

Xen 3.1 is used as the virtual machine monitor. In Xen, the Xen hypervisor is the lowest layer
with the most privileges. When the physical computer and the hypervisor boot, domain 0, i.e., dom0,
is the first guest operating system that is booted automatically. Dom0 has some special management
privileges such as it can direct resource access requests to the hardware. In our testbed, dom0 is
used to start the three VMs. The request batching controller and the DVFS power controller are
configured to run as daemons in dom0 along with a response time monitor.

5.2 System Components

Batcher The content-aware batcher is a daemon program running with the web tier server. The
batcher is consists of serval modules including requests batching, classification, reordering and a
monitor component to collect parameters for controllers.

Performance Monitor We modify the RUBiS client to support online measurement of user-
perceived response time and system throughput over a period of time. The performance monitor
collecting the performance data from the RUBiS client.

FMPC and EFC Controller These two controllers receives the response time, the system
throughput and the cache hit rate and other parameters from the monitors. Accordingly, they
run the control algorithms presented in Sections 3 and 4 respectively.

DVFS actuator We install the cpufreq package in dom0 to provide the functionality of controlling
the CPU frequency of physical server. It tunes the CPU frequency by writing the DVFS state into
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Figure 8: Average response time, throughput and cache hit rate of underloaded system.
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Figure 9: Average response time, throughput and cache hit rate of slightly overloaded system.

the system file /sys/devices/system/cpu/cpu0/cpufreq/scaling.setspeed.

6 Evaluation

We evaluate the average response time and throughput due to content-aware batching in two sce-
narios. The first scenario is a underloaded system. The second scenario is slightly overloaded. We
demonstrate the effectiveness of content-aware batching by comparing the performance metrics due
to batching with those without batching.

For the scenario of underloaded system, we set the RUBiS client with browsing workload mix
and 800 concurrent users. It is a moderate workload for our testbed.

Figure 8(a) plots the average response time. The content-aware batching approach improves the
average response time by 15%. It significantly reduces the average response time form 687ms to
584ms. Figure 8(b) shows that throughput comparison between Regular and Batching approach.
Batching improves the throughput by 14%. These results demonstrate that using content-aware
batching can significantly improve the application performance. Figure 8(c) shows cache hit rate
comparison. The cache hit rate due to the batching approach is 3.5 times higher than no batching
scenario.

The SLA of the system is set to 1000 millisecond. For the scenario of slightly overloaded system,
we use the 1200 concurrent users.

Figure 9(a) plots the average response time. The average response time of no batching scenario
is 1128ms. It indicates the system is overloaded. By using content-aware batching, the average
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response time is significantly reduced form 1128ms to 917ms. The content-aware batching approach
improves the average response time by 19%.

Figure 9(b) shows that throughput comparison between batching and no batching scenarios. The
content-aware batching approach improves the throughput by 17%. Figure 8(c) shows cache hit rate
comparison. The cache hit rate due to the batching approach is 3 times higher than no batching
scenario.

These two experiments demonstrate the effectiveness of the content-aware batching approach.
The content-aware batching is able to improve both average response time and throughput for both
underloaded and slightly overloaded systems.

7 Conclusion

Most existing works neglect the content characteristics of workload, which actually play an important
role in application performance. In this paper, we have proposed and developed a novel approach:
content-aware and self-tuning batching integrated with DVFS to improve the performance of applica-
tions and energy efficiency of servers simultaneously. As demonstrated by experimental results based
on the testbed implementation, its main contributions are the precise control of batching interval
length to improve performance and avoid SLA violations. Furthermore, we have proved that the
batching system controlled by FMPC and EFC works well when there are stationary and dynamic
workloads. Our future work will integrate some heterogeneous workloads within content-aware and
self-tuning batching technique in a virtualized server cluster.
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