Fraudulent Online Customer Reviews: Detection and Prevention

Berck Nash
Brian Hofflander
Customer Reviews

- 70% of respondents in a 2009 survey said they would refer to consumer reviews posted to Internet before making purchase
- 2.08% of customer reviews spam
- Untruthful reviews main source of spam
- Example:
 - Negative spam can reduce sales by one unit/week
 - 4 units/month
 - Average book on Amazon $19
 - Economic loss caused by each negative review: $76 per month
Review Spam

● Type 1: False opinions
 ○ Very harmful
 ○ Positive spam review
 ○ Negative spam review

● Type 2: Review on brand only
 ○ “I don’t trust Microsoft and never bought anything from them”

● Type 3: Non-reviews
 ○ Contain no opinion
 ○ Advertisements
Techniques to identify review spam

- Type 2 & 3 spam easy to detect
 - Techniques from e-mail and web spam can be applied
 - Bayesian filters

- Type 1 spam is hard
 - Humans cannot identify it
 - Only guaranteed way is with duplicate detection
 - Exact Duplicates
 - Near Duplicates
 - Semantic Analysis
Research of Duplicates has revealed indicators

- None of these indicators means the message is spam, but spam tends to have these characteristics:
 - Only Reviews (first reviews)
 - Very long reviews
 - Reviews on low-selling products
 - Highly negative outlier reviews
 - More so if they're from reviewers who have written negative things about several products in the same brand
 - Highly positive outlier reviews
Identifying spammers and spammer groups

- **Individuals**
 - Targeting products
 - Targeting product groups
 - Deviate (high or low) from norm
 - Early deviation

- **Spammer groups**
 - Time window
 - Group deviation
 - Group content similarity
 - Member content similarity
 - Early time frame
 - Ratio of group size
 - Group size
 - Support count
Our proposal based on SpamAssassin

Content analysis details: (5.1 points, 5.0 required)

<table>
<thead>
<tr>
<th>pts</th>
<th>rule name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2.3</td>
<td>RCVD_IN_DNSWL_MED</td>
<td>RBL: Sender listed at http://www.dnswl.org/, medium trust 150.214.35.31 listed in list.dnswl.org</td>
</tr>
<tr>
<td>1.2</td>
<td>FREEMAIL_REPLYTO_END_DIGIT</td>
<td>Reply-To freemail username ends in digit (wumtaccess44[at]aol.com)</td>
</tr>
<tr>
<td>1.8</td>
<td>US_DOLLARS_3</td>
<td>BODY: Mentions millions of $ ($NN,NNN,NNN.NN)</td>
</tr>
<tr>
<td>-0.0</td>
<td>BAYES_20</td>
<td>BODY: Bayes spam probability is 5 to 20% [score: 0.1430]</td>
</tr>
<tr>
<td>0.0</td>
<td>LOTS_OF_MONEY</td>
<td>Huge... sums of money</td>
</tr>
<tr>
<td>2.1</td>
<td>FREEMAIL_FORGED_REPLYTO</td>
<td>Freemail in Reply-To, but not From</td>
</tr>
<tr>
<td>2.4</td>
<td>FREEMAIL_REPLYTO</td>
<td>Reply-To/From or Reply-To/body contain different freemailskeep</td>
</tr>
</tbody>
</table>
Apply same technique to opinion spam

- Proven effective for Type 2 & 3 spam
- Likely more effective than any individual technique for Type 1 spam
- False positives not as big a deal
- High extensible as new techniques are found
- Can be used to withhold reviews at a certain threshold
- At a lower threshold can be used to provide lower weight to potentially spammy reviews for automated review aggregation