
CS 5260 - Semester Project

Tyler Sparks

Protocol Dispute:

Choosing the right tools for an API

-Background Info-

Web applications need the ability to connect to
other data sources

Web applications may be written in a diverse set
of languages (Ruby, PHP, ASP.NET, Python, Perl,

etc)

2 types of base level request format: XML and
JSON

These define the structure of information
transmitted, not the rules of the request

architecture

Examples of request architecture are RESTful,
SOAP, CORBA, and JSON-RPC

-Key Ideas-

API's facilitate the flow of information from one
discrete application or location to another
(ocassionally entire systems are built using an OO
Private API model, but this is more of an exception)
The choice of data fomat and request structure
affects the applications that developers choose to
connect to
The web is all about organization and access of
information, typically applications which support this
paradigm are more succesful than those which do
not

-Data Comparisons-

 JSON XML
Performance

++ -

Human
Readability - +

Reserve
Words -- ++

Extensibility
- ++

Exchange
Format Data Document

Support Language
Dependant

Language
Dependant

Simplicity
++ +

Data Types
-- ++

Security
-- ++

JSON Format

[{
"Record": "Contact",
"data": [
{
"value": "First",
"content":"James"
},
{
"value": "Last",
"content": "Smith"
},
{
"value": "Email",
"content": "me@ymail.com"
}]
}]

XML Format

<?xml version="1.0" ?>

<record>

<contact id="0540587">

<first>James</first>
<last>Smith</last>
<email>me@ymail.com</email>

</contact>

</record>

-Request Comparisons-

 RESTful SOAP
Supported

Data Types Any XML

Return Type Any + HTTP
Response

XML

Protocol
HTTP(s) *All

Information
Retrieval GET

Custom
Request,

Usually an
RPC with

POST

Information
Submission *PUT, POST

Information
Deletion *DELETE

Operation
State

*Too simple
to maintain

state

Maintains
state as part

of
architecture

Asynchronous
Calls

Can be done
through

additional
tools (AJAX)

Easy to
dictate as a
part of the

request
Caching

Yes No

-Example Factors in
Decision Process-

What platform will I be runnning on?

What language is the application built in?

How is the data best represented?

What integration partners am I interested in?

What are the device limitations?

What are the developers familiar with?

Do I need to scale?

-Conclusion-

REST is most conducive to the original design of
the web, it uses the base components of the HTTP
specification. If in doubt, use REST!

XML has the advantage of being human readable
and works very nicely in the browser and with well
formed REST implementations

Certain machines and situations may impose
limitations best circumvented by changing the
data type or request architecture

Small projects may not need to use a full request
implementation (although they could arguably
benefit from doing so)

Presentation by Tyler Sparks

copyright 2011

