
CS526 Project Report mnamburu@uccs.edu

1

ANALYSIS OF CLOUD COMPUTING SERVICES USING AMAZON EC2

Mounika Namburu

Univ of Colorado, Colorado Springs

mnamburu@uccs.edu

ABSTRACT

The main scope of this project is to understand how to best

utilize different cloud computing services to get good

performance for less cost. Amazon EC2 gained popularity in

providing good cloud computing services hence is used here.

This paper also deals with performance analysis to uccs.edu

from different regions and performance between the regions.

Cloud computing is best suited for small organizations which

are worried about cost incurred in maintaining the

infrastructure. Security is main concern of the cloud based

computing and can be the future work of this project.

1. INTRODUCTION

―So what is Cloud Computing? Is it utility computing? Is it an

application service provider‘s offering? Is it virtual machines

in the sky?‖ are some of the general questions that arise when

we use the term ―cloud computing‖. All of these are correct

depending on who you ask. Generally, Cloud Computing can

be defined as ―Anything that involves delivering hosted

services over the Internet.‖ These services are broadly divided

into three categories: Infrastructure-as-a-Service (IaaS),

Platform-as-a-Service (PaaS) and Software-as-a-Service

(SaaS). The name cloud computing was inspired by the cloud

symbol that's often used to represent the Internet in flowcharts

and diagrams.

Berkley simply defines Cloud Computing as ―Pay as you go

SaaS‖ because Cloud Computing refers to both the

applications delivered as services over the Internet and the

hardware and systems software in the datacenters that provide

those services. The services themselves have long been

referred to as Software as a Service (SaaS), so it is used. The

datacenter hardware and software is what a Cloud is called.

When a Cloud is made available in a pay-as-you-go manner to

the public, it is called Public Cloud; the service being sold is

Utility Computing. Private Cloud refers to internal datacenters

of a business or other organization that are not made available

to the public. Thus, Cloud Computing is the sum of SaaS and

Utility Computing, but does not normally include Private

Clouds.

A cloud service has three distinct characteristics that

differentiate it from traditional hosting. It is sold on demand,

typically by the minute or the hour; it is elastic -- a user can

have as much or as little of a service as they want at any given

time; and the service is fully managed by the provider (the

consumer needs nothing but a personal computer and Internet

access). Significant innovations in virtualization and

distributed computing, as well as improved access to high-

speed Internet and a weak economy, have accelerated interest

in cloud computing.

So Core features of cloud computing are scalable, centrally

managed and accessible via the internet. Cloud computing

boils down to running software on someone else‘s robust

hardware in a data center somewhere else (someone else‘s

software on someone else‘s hardware in someone else‘s data

center). Another key component has become a very low barrier

to entry in both technical and financial terms. The service

should be very easy to begin using and it should be very cheap

and/or free (at least at a basic level). The general approach to

pricing for most cloud platforms, so far, has been a per usage

or subscription basis. Per usage charges you only for what you

actually use. If you use a virtual machine, you will pay a

certain amount for every CPU hour consumed; for storage you

will pay by the gigabyte or terabyte. You will usually have to

pay some kind of bandwidth/networking costs.

The final major pieces to the cloud computing puzzle are

nearly instant scalability and nearly infinite scalability. If your

web site grows from a few thousand hits per day to millions of

hits per day, you don‘t want your customers to get error

messages until you can buy and provision new servers. Most

platforms will allow you to automatically scale, or scale with

just a couple of button presses.

A cloud can be private or public. A public cloud sells services

to anyone on the Internet. (Currently, Amazon Web Services is

the largest public cloud provider.) A private cloud is a

proprietary network or a data center that supplies hosted

services to a limited number of people. When a service

provider uses public cloud resources to create their private

cloud, the result is called a virtual private cloud. Private or

public, the goal of cloud computing is to provide easy, scalable

access to computing resources and IT services.

2. CLOUD PROVIDERS

SaaS: SaaS is currently the most popular type of cloud

computing. Yahoo email, Google apps, zoho, and various

other packages like CRM are all instances of SaaS.

Application Service Providers (ASP) were the first SaaS

providers. ASP was its own buzzword back in the late 1990s

and early 2000s.

One of the aspects of SaaS is multi-tenancy or the ability for

many customers to share the same service but maintain their

own data securely. CRM is the predominant paid SaaS offering

but email is, by far, the predominant free SaaS offering.

Any software that is offered over the internet, that runs

remotely (where the location is unimportant and unrelated to

the user), is a SaaS offering. With SaaS, a user has no need to

worry about installation or upgrades. Of course, that also

means the user has no control over versioning (or bug fixes).

The majority of SaaS offering are either free (think web mail)

or per seat subscriptions (like online collaboration and CRM).

SaaS may also be offered as a subscription for access and then

charge fees for extras like additional storage.

CS526 Project Report mnamburu@uccs.edu

2

PaaS: The next step up into the cloud from SaaS is the

Platform as a Service. While SaaS offers applications for end

users, PaaS offers a development platform for developers.

Developers do not need to worry about the operating system,

storage or hosting. Developers write the code and the PaaS

provider provides a very simple method to upload that code

and present it on the internet.

The PaaS provider gives provides the hardware, operating

system, software upgrades, security and everything else related

to the day to day hosting of an application. Most PaaS

providers are limited to specific languages and IDEs. In some

cases, the IDE is web based and in others, the IDE provides

features for uploading code.

In most cases, developers do not have any access to the

underlying operating system. Applications that run on PaaS

platforms have to conform to some limitations that protect the

provider from abuse (such as malicious software or run away

resource usage).

Google App Engine (GAE) was one of the first PaaS offerings.

GAE only supports python (Google promises additional

languages in the future) and comes with an IDE. A developer

writes an application and tests it locally. When ready to deploy

the application to the world, the developer presses a button and

it is automatically hosted on the Google infrastructure.

Other PaaS providers are Force.com (which builds on top of

the SalesForce.com engine – which in itself is SaaS), Engine

Yard (Ruby on Rails), Coghead (GUI drag and drop), and

Aptana Cloud (PHP, Ruby and JavaScript). The Aptana Could

is a bit different in that it is built on top of the Joyent IaaS but

provides PaaS features through its Aptana Studio IDE.

Desktop as a Service: Falling some somewhere between

software and a platform are Cloud Desktops (also called a

Cloud OS). These desktops run inside a browser and are

accessible from any desktop with an internet connection.

A cloud desktop offers word processing, spreadsheets,

development tools, networking tools and more. While

relatively immature at this time, we can expect this market to

grow significantly in the coming years, especially as more and

more smart phones and ultra portables hit the real world.

Microsoft LiveMesh offers free storage, machine

synchronization and a cloud based desktop. iCloud and g.ho.st

both offer complete, robust desktops (including browsers,

applications and storage) completely in the cloud. The greatest

benefit to a cloud desktop is that all of your applications and

data is accessible from any computer. The downside is that

with no internet access, you have access to none of your data

or applications.

EyeOS is a completely open source cloud OS that you can

download and install in your own data center. It offers all of

the expected functionality and installs as a simple PHP

application on your Apache web server.

The nice part about these platforms at the moment is that most

are completely free. Sign up, login and you have a virtual

desktop off in the clouds. The business model of most of these

(such as iCloud or g.ho.st) are subscriptions for enhanced

services and extra capabilities (such as bandwidth or disk

space).

The other significant aspect of these cloud desktops is the

ability to run desktop quality applications, such as word

processors and spreadsheets, from a phone. Business at

internet speeds and internet availability.

IaaS: Amazon AWS is the largest of all the IaaS providers.

Where SaaS offers a complete application as service and PaaS

offers the ability to develop an application, IaaS doesn‘t care

about the application at all. IaaS provides the underlying

hardware and operating system resources to do anything you

want. IaaS has also been referred to as Everything as a Service.

IaaS offers CPU, memory, storage, networking and security as

a package. IaaS is the virtual machine in the sky. In general,

with IaaS, you choose from a range of operating systems

(usually some flavor of open source), a size for your hardware

(number of CPUs and CPU power) and an amount of storage.

There are a number of successful IaaS providers: Amazon,

Joyent, GoGrid and FlexiScale. While Amazon is the best

known of the providers, Joyent is also huge. Joyent hosts many

Facebook applications and they host the social network

LinkedIn, among others. In addition to proving that Amazon is

not the only game in town, this also proves that real businesses

(although without much of a business plan) are running in the

cloud. It also shows that businesses with a need to scale are

doing so.

The benefits of IaaS, in addition to the ability to scale, are the

costs to get started and the ability to pay only for what you use.

For a startup or small business, one of the most difficult things

to do is keep capital expenditures under control. By moving

your

infrastructure to the cloud, you have the ability to scale as if

you owned your own hardware and data center (which is not

realistic with a traditional hosting provider) but you keep the

upfront costs to a minimum. So, you are only limited by how

much you're willing to spend. But, around $0.10/hr per server,

with no long-term contracts or upfront hardware investments,

Amazon EC2 provides a cost-efficient solution; especially for

those that believe that time is money!

The rest of the paper is divided as follows: Next section talks

about basics of the services that Amazon provides and how to

get an AWS account. Section 3/4 describes some terms of

Amazon ec2 and their importance. Section 4/5 introduces

booting of EBS instance and resizing the EBS volume. Next

section shows how to create users for that ec2 instance and

also some simple steps on how to bring the instance up and

down at anytime of the day by the admin. Last but one section

CS526 Project Report mnamburu@uccs.edu

3

shows performance benchmarks I ran on the machine and their

results. I conclude the paper in the last section with some

future works and References are provided at the end of the

paper.

3. AMAZON WEB SERVICES

Amazon provides a fantastic suite of web services that enables

developers to create dynamic and robust applications.

Deploying on AWS can save you time, money and manpower

compared to building and maintaining more traditional

systems.

Amazon Web Services delivers a number of benefits for IT

organizations and developers alike, including:

 Cost-effective: Pay only for what you use, as you use

it, with no up-front commitments. As the Amazon

Web Services cloud grows, our operations,

management and hardware costs shrink, and we pass

the savings onto you.

 Dependable: Utilize a battle-tested, web-scale

infrastructure that handles whatever you throw at it.

The Amazon Web Services cloud is distributed,

secure and resilient, giving you reliability and

massive scale.

 Flexible: Build any application you want using any

platform or any programming model. You control the

resources you consume and fit them into your

application as you see fit.

 Comprehensive: Don‘t start from scratch. Amazon

Web Services gives you a number of services you can

incorporate into your applications. From databases to

payments, these services help you build great

applications cost effectively and with less up-front

investment.

Amazon Simple Storage Service (S3): Amazon S3 is storage

for the Internet. It is designed to make web-scale computing

easier for developers. Amazon S3 provides a simple web

services interface that can be used to store and retrieve any

amount of data, at any time, from anywhere on the web. It

gives any developer access to the same highly scalable,

reliable, fast, inexpensive data storage infrastructure that

Amazon uses to run its own global network of web sites. The

service aims to maximize benefits of scale and to pass those

benefits on to developers.

Amazon S3 is intentionally built with a minimal feature set.

 Write, read, and delete objects containing from 1 byte

to 5 gigabytes of data each. The number of objects

you can store is unlimited.

 Each object is stored in a bucket and retrieved via a

unique, developer-assigned key.

 A bucket can be stored in one of several Regions.

You can choose a Region to optimize for latency,

minimize costs, or address regulatory requirements.

Amazon S3 is currently available in the US Standard,

EU (Ireland), US West (Northern California) and

Asia Pacific (Singapore) Regions. The US Standard

Region automatically routes requests to facilities in

Northern Virginia or the Pacific Northwest using

network maps.

 Objects stored in a Region never leave the Region

unless you transfer them out. For example, objects

stored in the EU (Ireland) Region never leave the EU.

Authentication mechanisms are provided to ensure that data is

kept secure from unauthorized access. Objects can be made

private or public, and rights can be granted to specific users.

Amazon CloudWatch: Amazon CloudWatch is a web service

that provides monitoring for AWS cloud resources, starting

with Amazon EC2. It provides customers with visibility into

resource utilization, operational performance, and overall

demand patterns—including metrics such as CPU utilization,

disk reads and writes, and network traffic. To use Amazon

CloudWatch, simply select the Amazon EC2 instances that

you‘d like to monitor; within minutes, Amazon CloudWatch

will begin aggregating and storing monitoring data that can be

accessed using the AWS Management Console, web service

APIs or Command Line Tools.

Amazon CloudFront: Amazon CloudFront is a web service

for content delivery. It integrates with other Amazon Web

Services to give developers and businesses an easy way to

distribute content to end users with low latency, high data

transfer speeds, and no commitments.

Amazon CloudFront delivers your static and streaming content

using a global network of edge locations. Requests for your

objects are automatically routed to the nearest edge location,

so content is delivered with the best possible performance.

Amazon CloudFront works seamlessly with Amazon Simple

Storage Service (Amazon S3) which durably stores the

original, definitive versions of your files. Like other Amazon

Web Services, there are no contracts or monthly commitments

for using Amazon CloudFront – you pay only for as much or

as little content as you actually deliver through the service.

Creating AWS Account: To access any web service AWS

offers, you must first create an AWS account at

http://aws.amazon.com. An AWS account is simply an

Amazon.com account that is enabled to use AWS products;

you can use an existing Amazon.com account login and

password when creating the AWS account. Note that creating

an AWS account is free of charge. They ask for your payment

details only when you try to use any service. AWS provides

some access credentials for easy usage of all their services. Go

to account and then security credentials located on the top

right of the AWS homepage. Save your access key and create

and download a X.509 certificate for future use.

http://aws.amazon.com/

CS526 Project Report mnamburu@uccs.edu

4

4. AMAZON ELASTIC COMPUTE CLOUD (EC2)

EC2 introduces a new paradigm for web hosting. By allowing

developers to scale their number of machines up or down

within minutes, it offers the capability to create distributed and

scalable applications that run in the cloud. EC2 is flexible,

reliable, secure, and most importantly cheap! By only paying

for the resources that you actually use, you can bring your

multi-server application to market much cheaper than ever

before, and maintain an extremely high level of quality and

availability.

EC2 is the computing part of the Amazon services. EC2

provides the CPU, memory, operating system and transient

storage. EC2 is the equivalent of a barebones PC. You get to

pick the amount of RAM you need (from a predefined list of

configurations), the amount of transient storage you need (also

from a list) and the number of CPUs you need (from a series of

compute options). For the operating system, you can choose

from various flavors of Linux, Solaris or Microsoft Windows

Server. The basis if EC2 is the Amazon Machine Image

(AMI). An AMI is a virtual machine with your chosen

operating system and applications bundled together. You can

create your own AMIs from scratch if you want to. To get

started though, Amazon offers hundreds of public AMIs with

many operating systems and pre-installed applications.

Signing Up: After you create an AWS account, login with that

username and password, and choose Elastic Compute Cloud

from the list of services available. Then select sign up for EC2

from the EC2 homepage. Amazon providers ask for your

credit card details (but is not charged till you use their

resources) and then you can continue with the process. After

you successfully gained access to EC2 service, go to AWS

Management Console, which is a web-based, point-and-click,

graphical user interface that makes it even easier to access and

manage AWS Infrastructure Web Services.

Information about cost per hour for an instance, bandwidth,

data transfer rate and others can be known from

https://aws.amazon.com//ec2/ i.e., ec2 homepage.

Figure 1. On-Demand Instances Prices Table

AMI: An Amazon Machine Image (AMI) is an encrypted

machine image that contains all information necessary to boot

instances of your software. For example, an AMI might

contain all the software to act as a web server (e.g., Linux,

Apache, and your web site) or it might contain all the software

to act as a Hadoop node (e.g., Linux, Hadoop, and a custom

application).

You launch one or more instances of an AMI. An instance

might be one web server within a web server cluster or one

Hadoop node.

Regions and Availability Zones: Amazon EC2 provides the

ability to place instances in multiple locations. Amazon EC2

locations are composed of Availability Zones and Regions.

Regions are dispersed and located in separate geographic areas

(e.g., US and EU). Availability Zones are distinct locations

within a Region that are engineered to be isolated from failures

in other Availability Zones and provide inexpensive, low

latency network connectivity to other Availability Zones in the

same Region.

By launching instance in separate Regions, you can design

your application to be closer to specific customers or to meet

legal or other requirements. By launching instances in separate

Availability Zones, you can protect your applications from the

failure of a single location.

The following figure shows Amazon EC2. Each Region is

completely independent. Each Availability Zone is isolated,

but connected through low-latency links.

Figure 2. Regions and Availability Zones

A. Regions

Amazon EC2 provides multiple Regions so you can launch

Amazon EC2 instances in locations that meet your

requirements. For example, you might want to launch instances

in Europe to be closer to your European customers or to meet

legal requirements.

Each Amazon EC2 Region is designed to be completely

isolated from the other Amazon EC2 Regions. This achieves

the greatest possible failure independence and stability, and it

makes the locality of each EC2 resource unambiguous.

https://aws.amazon.com/ec2/

CS526 Project Report mnamburu@uccs.edu

5

B. Availability Zones

Amazon operates state-of-the-art, highly available data center

facilities. However, failures can occur that affect the

availability of instances that are in the same location. Although

this is rare, if you host all your Amazon EC2 instances in a

single location that is affected by such a failure, your instances

will be unavailable.

For example, if you have instances distributed across three

Availability Zones and one of them fails, you can design your

application so the instances in the remaining Availability

Zones handle any requests.

Elastic IP Addresses: By default, all Amazon EC2 instances

are assigned two IP addresses at launch: a private (RFC 1918)

address and a public address that is mapped to the private IP

address through Network Address Translation (NAT).

If you use dynamic DNS to map an existing DNS name to a

new instance's public IP address, it might take up to 24 hours

for the IP address to propagate through the Internet. As a

result, new instances might not receive traffic while terminated

instances continue to receive requests.

To solve this problem, Amazon EC2 provides elastic IP

addresses. Elastic IP addresses are static IP addresses designed

for dynamic cloud computing. Elastic IP addresses are

associated with your account, not specific instances. Any

elastic IP addresses that you associate with your account

remain associated with your account until you explicitly

release them. Unlike traditional static IP addresses, however,

elastic IP addresses allow you to mask instance or Availability

Zone failures by rapidly remapping your public IP addresses to

any instance in your account.

You can only associate one elastic IP address with one

instance at a time. When you associate an elastic IP address

with an instance, its current public IP address is released to the

Amazon EC2 public IP address pool. If you disassociate an

elastic IP address from the instance, the instance is

automatically assigned a new public IP address within a few

minutes.

5. ELASTIC BLOCK STORE

Amazon Elastic Block Store (Amazon EBS) is a type of

storage designed specifically for Amazon EC2 instances.

Amazon EBS allows you to create volumes that can be

mounted as devices by Amazon EC2 instances. Amazon EBS

volumes behave like raw unformatted external block devices.

They have user supplied device names and provide a block

device interface. You can load a file system on top of Amazon

EBS volumes, or use them just as you would use a block

device.

You can create up to twenty Amazon EBS volumes of any size

(from one GiB up to one TiB). Each Amazon EBS volume can

be attached to any Amazon EC2 instance in the same

Availability Zone or can be left unattached.

Amazon EBS provides the ability to create snapshots

(backups) of your Amazon EBS volumes to Amazon S3. You

can use these snapshots as the starting point for new Amazon

EBS volumes and can protect your data for long term

durability. Additionally, you can share snapshots with specific

users or make a snapshot public.

Amazon EBS volumes provide the following:

 Off-instance storage

 Persistence beyond the lifetime of instances

 High availability and reliability

 Ability to attach to and detach from a running

instance

 Exposure as a device within an instance

Amazon EBS snapshots provide the following:

 Ability to capture the current state of a volume

 Data backup

 A method for instantiating new volumes that contain

the exact contents of a snapshot

The following figure shows the cost per volumes charges by

Amazon:

Figure 3. EBS Prices Table

Booting Instance from EBS (Management Console): After

you login to the AWS Management Console, go to the EC2

Dashboard and click AMIs in the navigation on the left. A list

of AMIs is displayed. In the Viewing menu, select EBS

Images to filter the list.

CS526 Project Report mnamburu@uccs.edu

6

Figure 4. Selecting EBS Images

A list of Amazon EBS-backed AMIs is displayed. Click the

label on the Owner column to sort the AMIs by owner. The

AMIs created by Amazon (Owner=amazon) appear at the top

of the list. Locate and click the AMI you want to launch and

look at its details. For example, the following figure shows the

details of amazon/getting-started-with-ebs-boot AMI.

Figure 5. Details of a selected AMI

Notice that the Root Device Type is ebs and the Root Device

is /dev/sda1. Notice also that the Block Devices field shows

information about the root device's mapping: /dev/sda1=snap-

a08912c9:15:true. This means the root device /dev/sda1 is

mapped to a 15 GiB volume created from the snap-a08912c9

snapshot, and the volume's DeleteOnTermination flag is true.

Security Groups: A security group is a named collection of

access rules. These access rules specify which ingress (i.e.,

incoming) network traffic should be delivered to your instance.

All other ingress traffic will be discarded.

You can modify rules for a group at any time. The new rules

are automatically enforced for all running instances and

instances launched in the future.

We will also need a key pair to root login via SSH or PuttY.

So create a security group and a key pair from the navigation

menu. Select the AMI and click Launch Instance. The launch

wizard starts. Walk through the wizard and launch an instance.

If you'd like, connect to the instance once it's running. Go to

the Instances page and look at the instance's information.

Right-click on the running instance and click Connect. This

will show you some steps on how to connect to your instance

using SSH or PuttY. You need PuttYgen to convert your

private file to .ppk format if you are using PuttY to connect to

your instance.

Command line tools: The command line tools are available as

a ZIP file in the Amazon EC2 Resource Center. These tools

are written in Java and include shell scripts for Windows

2000/XP and Linux/UNIX/Mac OSX. The ZIP file is self-

contained; no installation is required. You just download it and

unzip it. Some additional setup is required in order for the

tools to use your AWS account credentials.

The command line tools depend on an environment variable

(EC2_HOME) to locate supporting libraries. You'll need to set

this environment variable before you can use the tools. This

should be set to the path of the directory into which the

command line tools were unzipped. This directory is named

ec2-api-tools-A.B-nnnn (A, B and n are version/release

numbers), and contains sub-directories named bin and lib.

On Linux and UNIX, you can set this environment variable as

follows.

$ export EC2_HOME=<path-to-tools>

On Windows the syntax is slightly different.

C:\> set EC2_HOME=<path-to-tools>

On Linux and UNIX, you can set private key and certificate

environment variables as follows.

$ export EC2_PRIVATE_KEY=~/.ec2/pk-privatekey.pem

$ export EC2_CERT=~/.ec2/x509-cert.pem

On Windows the syntax is slightly different.

C:\> set EC2_PRIVATE_KEY=c:\ec2\ pk-privatekey.pem

C:\> set EC2_CERT=c:\ec2\x509-cert.pem

To find a suitable AMI, use the ec2-describe-images

command. To run the instance, use ec2-run-instances

command. To start and stop the instances, use ec2-start-

instances and ec2-stop-instances commands.

Linux Instance: After you connect to the instance with public

DNS of the instance, login as root using your private key via

SSH or PuttY, you can install httpd using ‗yum install httpd’

command on a linux machine. You can test Apache in the web

browser after starting httpd with ‗etc/init/d/httpd start‘

command.

http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351&categoryID=88

CS526 Project Report mnamburu@uccs.edu

7

Figure 6. Apache Test Page

Windows Instance: To Remote Desktop to a Windows

instance, you need the administrator password, by right

clicking on the instance and giving your private key to decrypt

it.

Now, you can use Remote Desktop Connection with public

DNS of your instance, login as administrator and decrypted

password, to connect to the instance.

Figure 7. Retrieving Windows Administrator Password

6. AUTO START and STOP

You may need to automatically bring up and bring down the

instances at anytime of the day for easy access to your users.

Such automatic operations also let you secure your instance‘s

private key without any need to share it with all your users.

Two commands which allow us to do this on Linux machine

are:

 at- Execute a task at a specific time. For example,

shutdown computer, send birthday remainder etc.

Useful to schedule one job at a time or a single future

event.

 cron – If you want to shutdown Linux box

automatically everyday 8 pm then you need to use

cron instead of at command. Useful to schedule

recurring events or daily events such as backup data,

or check system security etc.

If you wish to shutdown a Linux machine automatically at 8

pm, type the command ‗at 8pm‘ and press [enter] key, then

type halt followed by enter key. To save your job, press

CTRL+D.

at 8pm

at> halt

(Press CTRL+D)

Some more examples are: If you wish to run a job at 6am on

Monday, use ‗at 6am Monday‘ command.

Run job in 2 minutes time: ‗at now + 2 minutes‘ shown in

figure 8.

Run job at 4pm but 3 days later: ‗at 4pm + 3 days‘

Run job at 10am on 31st July: ‗at 10am Jul 31‘

Before using ‗at‘ make sure you have ‗atd‘ service running, if

not start it using ‗/etc/init.d/atd start‘ command.

Figure 8. Shutting down the instance

To schedule/add a new cronjob, use ‗crontab –e‘ command.

Append the following entry to it to shutdown box at 20:00 hrs:

0 20 * * * /sbin/shutdown -h now

Save and close the file.

CS526 Project Report mnamburu@uccs.edu

8

On Windows machine, ‗at‘ command can be used by the

command:

c:> at 2:00am c:\admutils\psshutdown.exe -r -f -c -t 10

Where,

 -s: Shutdown windows server

 -r: Reboot windows server

 -f: Forces all running application to exit

 -c: Allow the shutdown to by cancel by user

 -t: Specifies the countdown in seconds until the

shutdown

7. CREATING USERS

We may need to create additional users for these instances and

secure these accounts with passwords. Very often, these

passwords are not very secure and are trivially cracked by

intruders. They can also be taken with the employee when he

or she leaves your organization.

A far better and certainly more secure mechanism is to use ssh

keys for all users, in a similar way to the secure root login

method described in the guide. Because the bundled

commands only work for the root user, we need to perform

some additional steps for adding ssh keys for all additional

user accounts.

For generating ssh keys for regular user accounts, we can

allow each user in the organization generate their own key.

Have them provide their public key to your system

administrator who may then add the key of any authorized use

to the account(s) for which they need access on your ec2

instances. Alternatively, your administrator can generate a key

pair (public and private) for each user and send the private

keys to them respectively.

Linux/Unix users can give the command ―ssh-keygen -b 1024 -

f user -t dsa‖ by replacing user with the login name of each

user in their local machine, to generate a key pair. So this will

create 2 files:

 user (private key)

 user.pub (public key)

Copy all the public key files that you generated to a temporary

place on your instance:

scp -i root *.pub ec2-your-instance-

name.compute.amazonaws.com:/tmp

Windows users can use PuttYgen to generate a public/private

key pair for each user and with parameters SSH-2 RSA. You

can copy all the public files to your instance using the

command:

C:\> pscp -i id_rsa-gsg-keypair.ppk pk-privatekey.pem x509-

cert.pem ec2-your-instance-

name.compute.amazonaws.com:/tmp

User Account Creation

Log in to the instance as root. For each user you are creating,

add the user to your instance with the

useradd -c "firstname lastname" user

For simplicity's sake, use the same "user" name as you did for

key generation. Now we need to place the key into their ssh

authorized keys file (again, replacing "user" with the username

you chose earlier)

cd ~user

mkdir .ssh

chmod 700 .ssh

chown user:user .ssh

cat /tmp/user.pub >> .ssh/authorized_keys

chmod 600 .ssh/authorized_keys

chown user:user .ssh/authorized_keys

Ensure that your users all have their appropriate private keys

and that they are in the users' ".ssh" directory of the local

machine. Each user can now log in to any instance that has

them added as a user and a copy of their public key in the

.ssh/authorized_keys file in their home directory on the EC2

instance.

8. PERFORMANCE

i. Web Performance

For measuring web performance among the instances of

different regions (US East, US West, and Europe) and from

different instances to www.uccs.edu, I used Apache HTTP

server benchmarking tool ab. It is designed to give you an

impression of how your current Apache installation performs.

This especially shows you how many requests per second your

Apache installation is capable of serving.

The following command is run on all 3 machines in 3 different

regions to uccs.edu and to eachother:

ab –c 10 –n 2000 http://www.uccs.edu/ > result.txt

Result.txt file is as follows:

http://www.uccs.edu/
http://www.uccs.edu/

CS526 Project Report mnamburu@uccs.edu

9

Figure 9. ab command results

I ran the same command 10 times on each machine and took

the best results.

The following figure shows the resulted Requests per second

from all 3 regions to UCCS.

Figure 10. Web Performance (Requests per second)

Requests per second from the result between US East and US

West is around 47.20, while it‘s around 5.99 from Ireland

(EU) to West (US) and 10.70 from Ireland (EU) to East (US).

ii. Bandwidth Performance

When I tried to run popular bandwidth tools like Dhrystone

and bprobe on the Virtual machines, it was unsuccessful as we

may need some special permissions for such commands to

execute on Virtual machines. Hence I continued using the

round trip time from the ping command run from instances or

virtual machines to uccs.edu. Packet sizes I considered were

32bytes and 64bytes.

By default, in linux machines, packet size is 64bytes. So, -s

option can be used to change it:

ping –s 32 uccs.edu

Figure 11. ping command in linux

By default, in windows server 2003, packet size is 32bytes. So,

-l option can be used to change it:

ping –l 64 uccs.edu

Figure 12. ping command in windows

CS526 Project Report mnamburu@uccs.edu

10

Best results among 10 runs resulted in a bandwidth range of:

West to UCCS: 640MBits/s to 17648MBits/s

East to UCCS: 256MBits/s to 13120MBits/s

EU to UCCS: 40MBits/s to 85MBits/s

 The above resulted bandwidth numbers are just satisfactory.

These numbers can be improved efficiently using different

services provided by Amazon, but prices can rack up along

with the bandwidth.

9. CONCLUSION AND FUTURE WORK

This paper evaluates different services provided by the leading

cloud provider, AMAZON. It shows how to create/own/access

elastic compute cloud instance in all the possible ways. It deals

with issues like bringing the machine up and down at anytime

and creating users in a secure way with authenticated keys,

which are very useful for an organization like universities,

non-IT based companies that are willing to join Amazon

Cloud. Finally, it provides some performance benchmark

results to better understand the use of having instances on a

cloud. One of the future works of this paper is to provide more

information on better usage of the available resources on the

cloud. Other works can be to incorporate all the services in

different combinations (like EC2 with CloudFront, S3, etc.)

and then benchmark the best performance, Create machine

images from scratch, Security of data on the cloud, etc.

ACKNOWLEDGEMENT

I want to sincerely thank Prof. Edward Chow and Prof.

Richard Wiener, for funding me to access all Amazon

Resources and complete this project successfully.

REFERENCES

[1] Amazon Web Services (AWS). http://aws.amazon.com/

[2] Amazon Elastic Compute Cloud (Amazon EC2).

http://aws.amazon.com/ec2/

[3] http://clouddb.info/

[4] http://docs.amazonwebservices.com/AWSEC2/2009-10-

31/GettingStartedGuide/

[5] http://docs.amazonwebservices.com/AWSEC2/2009-10-

31/UserGuide/

[6]

http://developer.amazonwebservices.com/connect/entry.jspa?e

xternalID=351&categoryID=88

[7]

http://developer.amazonwebservices.com/connect/entry.jspa?e

xternalID=1233&categoryID=174

[8] Amazon Elastic Block Store. http://aws.amazon.com/ebs/

[9] http://docs.amazonwebservices.com/AWSEC2/2007-08-

29/GettingStartedGuide/putty.html

http://aws.amazon.com/
http://aws.amazon.com/ec2/
http://clouddb.info/
http://docs.amazonwebservices.com/AWSEC2/2009-10-31/GettingStartedGuide/
http://docs.amazonwebservices.com/AWSEC2/2009-10-31/GettingStartedGuide/
http://docs.amazonwebservices.com/AWSEC2/2009-10-31/UserGuide/
http://docs.amazonwebservices.com/AWSEC2/2009-10-31/UserGuide/
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351&categoryID=88
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=351&categoryID=88
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1233&categoryID=174
http://developer.amazonwebservices.com/connect/entry.jspa?externalID=1233&categoryID=174
http://aws.amazon.com/ebs/
http://docs.amazonwebservices.com/AWSEC2/2007-08-29/GettingStartedGuide/putty.html
http://docs.amazonwebservices.com/AWSEC2/2007-08-29/GettingStartedGuide/putty.html

