Key Management Interoperability Protocol
By: Derrick Erickson

University of Colorado, Colorado Springs

Dr. Edward Chow

CS 526 Advanced Internet and Web Systems.

3Introduction

3KMIP

3Overview

3Current Problems

5Advantages of KMIP

6KMIP Implementation

7Usage

7Usage Guidelines

7Use Cases

7Conclusion

7References

Introduction

Key Management Interoperability Protocol (KMIP) is a protocol designed for use in encrypted key systems. KMIP is a relatively new protocol created by the OASIS group, and proposed in February of 2009. It is OASIS’ goal to replace current enterprise management systems with KMIP.
KMIP

Overview

The goals set forth for the KMIP standard under OASIS are on its website, and these goals are:

“The OASIS KMIP TC works to define a single, comprehensive protocol for communication between encryption systems and a broad range of new and legacy enterprise applications, including email, databases, and storage devices. By removing redundant, incompatible key management processes, KMIP will provide better data security while at the same time reducing expenditures on multiple products. [1]”
KMIP is an open source protocol, which has support from many big technology companies such as: Hewlett-Packard, Brocade Communications Systems, Inc., Cisco Systems, Inc.*, IBM, and Oracle Corporation [1]. Since KMIP is a management system it controls the handling of encrypted data, and access to the encrypted data. This is the purpose of management systems because they control the access to the data so that it creates another layer of security. One danger of using encrypted keys is:

“Most important is the risk that the data, once encrypted, cannot be decrypted because the key for that encrypted data has been lost. For this reason, applications, devices and other systems using symmetric key encryption need to be supported by robust key management systems that ensure that keys cannot be lost or misused. [2]”
Because of the need for robust systems it makes sense to create a system that easy to use, has a solid infrastructure, and has a wide degree of support. This robust system is KMIP.
Current Problems

The current problems with existing management infrastructures are that they are overly complicated, and very redundant. Figures 1 and 2 show what is currently in use.
[image: image1.emf]
Figure 1: Current management system design [2]

[image: image2.emf]
Figure 2: Management system showing protocol layers [2]

From Figures 1 and 2 we see that each service needs a management system to handle the proprietary protocols used in communication between systems. This is very redundant, and overly complex. The proprietary protocols make it an issue because each protocol is specific to each service(s), which means that the company has to invest in infrastructure to support these distributed systems.
Another problem with the current design is that if a key management system goes down then access to the services and their data is lost, which creates a single point of failure for the system. Having a problem such as a single point of failure (SPOF) causes big problems, but the current system design has no means of preventing this issue.
The last big issue with the current management system design is that each management system is set to handle only one type of protocol, which means it cannot communicate with any other systems or control access to any other encrypted data. This design flaw limits the ability for the system to be extended or re-factored for optimization. This design may help if only a few specific types of encrypted data are supported, but at the enterprise level its pitfalls become very apparent.
“…It results in increased operational costs, due to the need to maintain expertise in these different key management systems and to perform common operations, such as the definition of keyrelated security policies, multiple times in multiple key management systems. It also results in increased infrastructure costs, since each vendor supplying a cryptographic client incurs the cost of developing and testing the corresponding key management system; costs that get passed along to the enterprise in higher product and support costs. In addition, the proliferation of key management systems results in higher risk for the enterprise by increasing the likelihood of discrepancies in key-related security policies, the difficulty of oversight for key management processes and the potential failure of key protection processes that could result in loss or misuse of keys. [2]”
Advantages of KMIP

KMIP has many advantages over the current designs, and that is why it aims to replace current systems. The first advantage it has is that it will simplify the current design and get rid of the complexity and redundancy. Figure 3 shows the same system as in figures 1 and 2, but it shows what KMIP has achieved.
[image: image3.emf]
Figure 3: KMIP centered system design [2]

From looking at figure 3 we can see that there are not any of the design issues from the current systems in the KMIP design. “KMIP, therefore, addresses the critical requirement for the simplification of the enterprise key management infrastructure. In doing so, it can help reduce operational costs, reduce key management system costs and reduce the risk in deploying cryptographic capabilities. [2]”
The KMIP design fixes the problem of proprietary communication protocols, which will help the companies not have to invest so much money into their infrastructures. This also gives a way for all protocols to communicate with one another, so that intercommunication between systems can happen.

This design also fixes the single point of failure issue because of the ability of intercommunication. By being able to communicate between systems using the KMIP protocol we do not have to worry about if one system goes down, and we can still access the encrypted data.

Lastly, the KMIP protocol removes the redundancy of the current design and simplifies it. This will reduce the cost of investment into key management systems because there will be no need to tailor protocols to each desired service. When a system’s complexity is less we can assume that it is easier to maintain, and it will require less investment to keep it running. Since KMIP solves the issues of current systems it is safe to say that it is a suitable replacement.

KMIP Implementation

KMIP consists of 3 sections:
· Objects. These are the symmetric keys, asymmetric keys, digital certificates and so on upon which operations are performed [2].

· Operations. These are the actions taken with respect to the objects, such as getting an object from a key management system, modifying attributes of an object and so on [2].
· Attributes. These are the properties of the object, such as the kind of object it is, the unique identifier for the object, and so on [2].
The implementation of the KMIP protocol has many mandatory and optional sections for ensuring that it works within specification, but only a few are in this paper. If you desire to know all other constraints then check out [2].

This paper will only cover some of the mandatory implementation issues. The first mandatory issue is that the servers must use either SSL or TLS protocols for their communication purposes, but HTTPS is also recommended. SSL 2.0 has known security issues and all current implementations of HTTP/S support more recent protocols. Therefore this profile prohibits the use of SSL 2.0 and recommends SSL 3.1 or TLS 1.0 [3]. The message model for KMIP was assumed to be client-server based, so this means that there will be authentication of the communication. The type of authentication is a mutual handshake based communication, and the algorithms used in authentication are cipher suites. This authentication is outside of KMIP communication, so these requirements are for ensuring conformity with KMIP.

KMIP recommends and discourages certain cipher suites [3]. Below are the mandatory ciphers:

· A TLS-capable instance must support TLS_RSA_WITH_AES_128_CBC_SHA

· An SSL-capable instance must support SSL_RSA_WITH_AES_128_CBC_SHA
Below are the discouraged ciphers:

· SSL_RSA_WITH_NULL_SHA

· TLS_RSA_WITH_NULL_SHA

· SSL_RSA_WITH_NULL_MD5

· TLS_RSA_WITH_NULL_MD5
· It is also recommended that cipher suites that use 40 or 56 bit keys be avoided, due to their relative ease of compromise through brute-force attack.
Usage

This section will go over some of the usage of KMIP and provide some examples to explain how it works.

Use Cases

The first case that we show is how to create and destroy a pair of symmetric keys [4]. More advanced use cases are in [4], but this paper is only an introduction and overview of KMIP.
Create (symmetric key)

In: objectType=’00000002’ (Symmetric Key), CryptographicAlgorithm=’00000003’ (AES),

CryptographicLength=’128’, CryptographicUsageMask=‘00000012’

Tag: Request Message (0x42000073), Type: Structure (0x80), Data:

Tag: Request Header (0x42000072), Type: Structure (0x80), Data:

Tag: Protocol Version (0x42000065), Type: Structure (0x80), Data:

Tag: Protocol Version Major (0x42000066), Type: Integer (0x01), Data: 0x00000000 (0)

Tag: Protocol Version Minor (0x42000067), Type: Integer (0x01), Data: 0x00000062 (98)

Tag: Batch Count (0x4200000D), Type: Integer (0x01), Data: 0x00000001 (1)

Tag: Batch Item (0x4200000F), Type: Structure (0x80), Data:

Tag: Operation (0x42000057), Type: Enumeration (0x04), Data: 0x00000001 (Create)

Tag: Request Payload (0x42000074), Type: Structure (0x80), Data:

Tag: Object Type (0x42000052), Type: Enumeration (0x04), Data: 0x00000002 (Symmetric Key)

Tag: Template-Attribute (0x4200008D), Type: Structure (0x80), Data:

Tag: Attribute (0x42000008), Type: Structure (0x80), Data:

Tag: Attribute Name (0x4200000A), Type: Text String (0x06), Data: Cryptographic

Algorithm

Tag: Attribute Value (0x4200000B), Type: Enumeration (0x04), Data: 0x00000003 (AES)

Tag: Attribute (0x42000008), Type: Structure (0x80), Data:

Tag: Attribute Name (0x4200000A), Type: Text String (0x06), Data: Cryptographic Length

Tag: Attribute Value (0x4200000B), Type: Integer (0x01), Data: 0x00000080 (128)

Tag: Attribute (0x42000008), Type: Structure (0x80), Data:

Tag: Attribute Name (0x4200000A), Type: Text String (0x06), Data: Cryptographic Usage

Mask

Tag: Attribute Value (0x4200000B), Type: Integer (0x01), Data: 0x0000000C (Encrypt,

Decrypt)

42000073800000010E42000072800000003042000065800000001A420000660100000004000000004200006701000000

04000000624200000D0100000004000000014200000F80000000CC420000570400000004000000014200007480000000

B6420000520400000004000000024200008D80000000A042000008800000002D4200000A060000001743727970746F67

72617068696320416C676F726974686D4200000B04000000040000000342000008800000002A4200000A060000001443

727970746F67726170686963204C656E6774684200000B01000000040000008042000008800000002E4200000A060000

001843727970746F67726170686963205573616765204D61736B4200000B01000000040000000C

Out: objectType=’00000002’, uuidKey

Tag: Response Message (0x42000076), Type: Structure (0x80), Data:

Tag: Response Header (0x42000075), Type: Structure (0x80), Data:

Tag: Protocol Version (0x42000065), Type: Structure (0x80), Data:

Tag: Protocol Version Major (0x42000066), Type: Integer (0x01), Data: 0x00000000 (0)

Tag: Protocol Version Minor (0x42000067), Type: Integer (0x01), Data: 0x00000062 (98)

Tag: Time Stamp (0x4200008E), Type: Date-Time (0x08), Data: 0x00000000496DFEDC (Wed Jan 14

16:03:56 CET 2009)

Tag: Batch Count (0x4200000D), Type: Integer (0x01), Data: 0x00000001 (1)

Tag: Batch Item (0x4200000F), Type: Structure (0x80), Data:

Tag: Operation (0x42000057), Type: Enumeration (0x04), Data: 0x00000001 (Create)

Tag: Result Status (0x4200007A), Type: Enumeration (0x04), Data: 0x00000000 (Success)

Tag: Response Payload (0x42000077), Type: Structure (0x80), Data:

Tag: Object Type (0x42000052), Type: Enumeration (0x04), Data: 0x00000002 (Symmetric Key)

Tag: Unique Identifier (0x4200008F), Type: Text String (0x06), Data:

96789141-62bf-4352-b1c4-9d48dac4b77d

4200007680000000B042000075800000004142000065800000001A420000660100000004000000004200006701000000

04000000624200008E080000000800000000496DFEDC4200000D0100000004000000014200000F800000005D42000057

0400000004000000014200007A04000000040000000042000077800000003A420000520400000004000000024200008F

060000002439363738393134312D363262662D343335322D623163342D396434386461633462373764
The input portion is made up of input parameters objectType, CryptographicAlgorithm, CryptographicLength, CryptographicUsageMask. ObjectType specifies either a key certificate, or other form of encryption. CryptographicAlgorithm is what type of algorithm is used i.e. AES, MD5, etc. Cryptographic Length is the length in bytes used in the cryptographic algorithm. CryptographicUsageMask specifies what additional information is needed when using AES encryption. The additional information for the mask is as follows [3]:

· Wrapping Method: Encrypt

· Encryption Key Information

· Unique Key ID: Key ID of AES key

· Cryptographic Parameters: Block Cipher Mode is AES key wrap (not required if default block cipher mode for wrapping key is AES key wrap)

· Attribute Name: Cryptographic Usage Mask
From the output portion we can see that a symmetric key named uuidKey is the result.

Destroy (symmetric key)

In: uuidKey

Tag: Request Message (0x42000073), Type: Structure (0x80), Data:

Tag: Request Header (0x42000072), Type: Structure (0x80), Data:

Tag: Protocol Version (0x42000065), Type: Structure (0x80), Data:

Tag: Protocol Version Major (0x42000066), Type: Integer (0x01), Data: 0x00000000 (0)

Tag: Protocol Version Minor (0x42000067), Type: Integer (0x01), Data: 0x00000062 (98)

Tag: Batch Count (0x4200000D), Type: Integer (0x01), Data: 0x00000001 (1)

Tag: Batch Item (0x4200000F), Type: Structure (0x80), Data:

Tag: Operation (0x42000057), Type: Enumeration (0x04), Data: 0x00000014 (Destroy)

Tag: Request Payload (0x42000074), Type: Structure (0x80), Data:

Tag: Unique Identifier (0x4200008F), Type: Text String (0x06), Data:

96789141-62bf-4352-b1c4-9d48dac4b77d

42000073800000008542000072800000003042000065800000001A420000660100000004000000004200006701000000

04000000624200000D0100000004000000014200000F8000000043420000570400000004000000144200007480000000

2D4200008F060000002439363738393134312D363262662D343335322D623163342D396434386461633462373764

Out: uuidKey

Tag: Response Message (0x42000076), Type: Structure (0x80), Data:

Tag: Response Header (0x42000075), Type: Structure (0x80), Data:

Tag: Protocol Version (0x42000065), Type: Structure (0x80), Data:

Tag: Protocol Version Major (0x42000066), Type: Integer (0x01), Data: 0x00000000 (0)

Tag: Protocol Version Minor (0x42000067), Type: Integer (0x01), Data: 0x00000062 (98)

Tag: Time Stamp (0x4200008E), Type: Date-Time (0x08), Data: 0x00000000496DFEDD (Wed Jan 14

16:03:57 CET 2009)

Tag: Batch Count (0x4200000D), Type: Integer (0x01), Data: 0x00000001 (1)

Tag: Batch Item (0x4200000F), Type: Structure (0x80), Data:

Tag: Operation (0x42000057), Type: Enumeration (0x04), Data: 0x00000014 (Destroy)

Tag: Result Status (0x4200007A), Type: Enumeration (0x04), Data: 0x00000000 (Success)

Tag: Response Payload (0x42000077), Type: Structure (0x80), Data:

Tag: Unique Identifier (0x4200008F), Type: Text String (0x06), Data:

96789141-62bf-4352-b1c4-9d48dac4b77d

4200007680000000A342000075800000004142000065800000001A420000660100000004000000004200006701000000

04000000624200008E080000000800000000496DFEDD4200000D0100000004000000014200000F800000005042000057

0400000004000000144200007A04000000040000000042000077800000002D4200008F06000000243936373839313431

2D363262662D343335322D623163342D396434386461633462373764
To destroy a symmetric key all that a user needs to do is specify the output that was generated during the key creation step.

The next use case is after creating a key is to locate the object and get it [4]. For this step we will use Key1 as the name of the key for one of the inputs to locate to skip showing the creation step again. Also for the sake of saving space only the commands will be shown and the ‘Tag’ data will be removed.
Locate (symmetric key)

In: objectType = ‘00000002’, attributes={ Name={ Name=‘Key1’, NameType=’00000002’} }
Out: uuidKey

The input to the locate command is the objectType, and a hash of attributes from the key. The Name attribute was the name specified during the creation operation, which was Key1. The NameType attribute is the same value as objectType, which helps differentiate if two objectshave the same name and are not of the same type. The output is just uuidKey.
Get (symmetric key)

In: uuidKey

Out: objectType = ‘00000002’, uuidKey, symmetricKey

The input to the get command is the output of the locate command, which is uuidKey. The output of the get command is the objectType, uuidKey where the object type in this case is a symmetric key.
Conclusion

Current key management systems have many flaws, and are still a necessity because of the purpose they serve. After comparing the current systems and KMIP, KMIP will be a suitable replacement because it fixes the issues of current systems. Due to various factors such as: reduction of complexity, smaller investment, no SPOFs, and easier communication it is easy to see why KMIP should be in use. In the end technology advances, and this leads to replacing older systems. From the software lifecycle this would be a necessary step, and one that will bring about good changes.

References

[1] OASIS, “OASIS Key Management Interoperability Protocol (KMIP) TC” OASIS. [Online]. Available http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=kmip.

[2] “Key Management Interoperability Protocol (KMIP)
Addressing the Need for Standardization in Enterprise Key Management” May 20, 2009. [Online]. Available: http://xml.coverpages.org/KMIP/KMIP-WhitePaper.pdf.
[3] “Key Management Interoperability Protocol Usage Guide” Feb. 10, 2009. [Online]. Available: http://xml.coverpages.org/KMIP/KMIP-UsageGuide-v0.98-final.pdf.

[4] “Key Management Interoperability Protocol Use Cases – Draft version 0.98” Feb. 10, 2009. [Online]. Available: http://xml.coverpages.org/KMIP/KMIP-UseCases-v0.98-final.pdf.

