
Bypassing Firewalls Using A Negotiation Server and
Port Prediction

Simplifying Peer to Peer Networking Applications for the End User

Benjamin Stroud
CS526

Advanced Internet and Web Systems
Spring 2010

bstroud@uccs.edu

Abstract

Peer to Peer networks have been shown to be a powerful cost savings tool for any content
distributor. By minimizing centralized connections to the distributor and offloading much of the
bandwidth requirements onto the end users interested in the content distributor are able to
minimize instantaneous bandwidth spikes as new content becomes available and many users
want a copy all at once. The peer to peer solution alleviates the peak usage charge that most
content providers pay to their ISPs every month. One major hurdle to the success of this cost
savings approach is that most end users are now behind NATed firewalls and must take
deliberate action such as opening a range of ports in order to allow unsolicited connections into
their internal network. If this step is not taken the user is now simply a consumer of content who
is contributing nothing back to the network as a whole and the burden on the originator of the
content is increased. In this paper I present one solution to this problem that was developed
during my time at Network Foundation Technologies (NFT). I will first give some basic
background on the problem, and discuss some previous solutions. I will also give an overall view
of NFT and what particular problems we were trying to solve when we developed our solution.
In the subsequent sections I will discuss the details of our particular solution, its success rates,
and what issues still have yet to be overcome. I will also discuss other areas of computing where
this technology could be beneficial. Finally I will present my overall conclusions about the
solution and discuss future research that can be done.

I. INTRODUCTION

Peer to Peer network based software is often seen as a daunting concept both for the software
creator and for the average user. Our goal in computing has often been to take seemingly complex
tasks and develop tools to simplify the execution of those tasks to the point where their every day use is
taken for granted. In many ways this is the goal of the solution presented in this paper. When
successful this technology simplifies the participation in peer to peer networks for the end user and
brings the software that uses it to a point that it “just works” for the user without a lot of difficulty on
their part. In the following sections I will present some basic background on the problem and its
current state.

mailto:bstroud@uccs.edu

II. THE PROBLEM

NATted Firewalls generally don't allow unsolicited connections from the outside internet to
enter into the “protected zone” of internal machines that are connected to the firewall [2]. This is a
major roadblock to peer to peer applications because the peer to peer model is built around the idea
new nodes (or clients of the network) will be able to join to the most suitable peer who is already
established within the network. For this to happen the established node must allow the new node to
connect to it at any time, as a client would connect to a server in a traditional network model. If the
established node is protected by a NATed Firewall then the unsolicited connection being attempted by
the new node will be blocked, unless the user of the established client takes some deliberate action such
as opening ports that are known to be available to the entire network.

This deliberate action is often beyond the willingness or capabilities of the average computer
user. Many people don't even realize, for example, that the router they use to gain wireless access
around the house is actually also a NAT device as well as a firewall. If the established node is unable
or unwilling to allow connections in, then that node is simply a consumer and is contributing nothing to
the network which increases the burden on the established nodes and the server from which the content
originates. If most of the nodes participating in the peer to peer network do not contribute back to the
network then the bandwidth offloading benefits of the network are lost and the peer to peer network
functions more like a traditional client server based network.

In addition to the problem of unsolicited connections being blocked, certain NAT devices will
also offset the port that a client will request data over, and what is transmitted to the receiver. This was
done in part as a countermeasure to some of the previous solutions explored in the following section.
This further complicates the problem of establishing peer to peer connections through consumer level
routers. An approach to overcoming both of these issues is discussed in section IV.

II. PREVIOUS SOLUTIONS

A) UPNP

UPNP or Universal Plug and Play in the realm of hardware firewall devices was a collaborative
effort between software developers and hardware manufacturers to try and build a mechanism by which
firewalls could be programmatically controlled via an application running on a system within the
protected network [4]. The idea was that an application would be able to open ports without any action
taken by the end user. The key requirement and its ultimate flaw was that hardware manufacturers had
to make their products compatible with and configurable by this protocol. We found through
experimentation that the majority of device manufacturers were either unwilling to support this feature
or that it was off by default and users had to activate it manually. We assumed that this was because of
security concerns over potential misuse of the protocol by malicious persons or organizations. I discuss
our results with UPNP in a later section.

B) UDP Hole Punching

A UDP based solution for NAT traversal is often called “Hole Punching”. The basic algorithm
is similar to the solution presented in this paper but did not account for the port offsets (described

above) that were later introduced. The algorithm generally works as follows: A and B are two nodes,
both behind NAT devices. A wishes to make a connection to B but cannot because A does not know B's
internal address or port mapping. A and B instead make connections to the server known to both
clients and reports their internal addresses and port mappings. Once A and B both know each others
complete addresses and port mappings they can connect directly to each other. The classic version of
this solution is able to traverse the NAT, but does not account for the blocking of unsolicited
connections or port offsets that were introduced after this technique became popular [1].

STUNT

STUNT or Simple Traversal of UDP Through NATs and TCP too, is in theory very similar to
the solution presented in this paper, but is designed with TCP in mind. STUNT extended basic
principle of NAT traversal established by UDP hole punching is extended to TCP. It also attempted to
overcome the blocking of unsolicited connections as well as the port offset problems discussed
above[2]. However at the time that NFT was attempting to resolve these problems itself, the STUNT
implementation was still immature and mostly theoretical. We had multiple problems using the
researchers test applications and the results that we found with the test devices we used were not as
encouraging as we had hoped. We decided to build on the basic principles used in STUNT but create
our own specific implementation.

III. A SPECIFIC SCENARIO

In this section I discuss one particular software development company which experienced the
problem of dealing with the increasing number of NATed and firewalled nodes that wished to
participate in a distributed, peer to peer network but were unable or unwilling to manually configure
their environment to allow other users to make unsolicited connections to them. The company was
Network Foundation Technologies (NFT) [3].

NFT is an online television broadcaster that specializes in live video broadcasts over the
Internet. The company's primary intellectual properties are patents that deal with distributing real time
content over a peer to peer style network of nodes who are consuming the content at the same time that
they are redistributing it to other nodes in the network. This particular network model uses a balanced
binary tree as the conceptual model of the network. What this means in practical terms is that two
client nodes will connect directly to the origin server that is responsible for packetizing and
broadcasting the real time content. These two nodes theoretically represent the only bandwidth cost to
the broadcaster. These two nodes, once connected to the server and are receiving the data stream then
allow two more nodes to connect to each of them, creating the second level of the tree which contains
four nodes and so on, each level increasing by 2n nodes where n is the level of the tree. Each new node
joining is added as a leaf to the existing tree [5]. A visual representation of this networking model is
contained in Figure I.

 There are two key assumptions about nodes entering the network. The first is that the node has
enough upstream bandwidth to redistribute the stream to two other nodes, essentially the node is
responsible for uploading twice what it downloads. The second assumption is that the node will allow
unsolicited connection to it from other unknown nodes as they join the network. Any node who is not
able to meet these two requirements is remains on the edge of the network and is designated as a non-
repeater so that no incoming nodes will attempt to connect to it [5]. The challenges of the first
assumption are beyond the scope of this paper. The second assumption is where the company
encountered the problem described in Section I.

For the first year or two after the initial product release the Chief Scientist and the lead
developers operated under the assumption that either technologies such as UPNP [4] or user action
would open firewalls and forward ports appropriately. This, as many peer to peer based companies are
discovering, was not the case. In reality only about ten percent of nodes were able to allow unsolicited
connections to be made to them. Using the binary tree model meant that only 20% of the network was
supported in a distributed fashion. In general terms each new level of the tree accounts for about 50%
of the total network so an addition of 10 repeaters to the network means that 20 non repeaters can be
supported, for reasonably sized networks.

After several months of attempting to create instructional websites directing uses to open ports
manually, we decided to begin researching reliable methods for bypassing firewalls that would work
for our specific circumstances. After reviewing much of the previous work discussed in the preceding
section we were able to devise a somewhat novel solution to the problem which is presented in the
following section.

IV. A SOLUTION

Figure I: NFT Distributed Network [3]

Our solution combined the idea of UDP based hold punching which overcomes the problem of
blocked unsolicited connections with a negotiation server that facilitated port prediction which helps
overcomes the problem of offset ports. An overview of the solution is presented in Figure 2. I discuss
the details of the solution in the following sections.

A) How to Interpret the Figure

In this figure time progresses from top to bottom. Each vertical line represents a potential
receiver or transmitter of network traffic. Each horizontal line represents traffic being sent between
two endpoints, with arrows indicating who is receiving and who is receiving and who is transmitting
the data. Some simplifications in the process have been made to aid in understanding. The overall
steps are preserved.

B) The Scenario

In this scenario both Client A and Client B home users who are behind a NATed Firewall
device. The devices that A and B are behind allow any traffic that is outbound, but filter inbound
traffic. The Negotiation Server is on an open network with no filtering devices in place. Client B is
first to join the network and has already established a connection to it when A decides to join. Client A
will attempt to connect to Client B and receive a data stream over the connection. Client B has no prior
knowledge of Client A before the connection is attempted. The address and listening port of the
Negotiation Server are known to all the members of the network as soon as they are fully initialized
and running and before any connection attempts are made.

Figure 2: Overview of NFT's Solution

C) The Start-up Process

Before any connections are attempted to nodes within the network all nodes must first make
contact with the Negotiation Server. This basically happens as follows. The node makes a connection
out through its firewall device to the Negotiation Server which contains its known internal address,
which is allowed through since we assume there are no restrictions on outbound connections. The
Negotiation Server sends an acknowledgment(or ACK) back which includes the clients external
address. Now that the client knows both its internal and external addresses it can establish any port
offsets that might be used by its filtering device. Based on the difference between the port that the
client made the request on and what it received back, an offset is established and saved by the client.
This back and forth exchange can be done multiple times to establish any offsetting patterns, such as no
offset, simply a static offset, a predictably changing variable offset, or a random offset. One of the
weaknesses of this solution is in dealing with random offsets. I will discuss this more in later sections.

D) The Peer Connection Process

At this point both Client A and B have completed their exchange with the Negotiation Server
and established their respective offsets and full addresses. In addition recall that Client B has already
joined the network, is receiving the stream, and is available for connection attempts from other nodes.
Client A now attempts to join the network using Client B as a peer.

First Client A informs the Negotiation Server that it would like to make a connection to Client
B. Client A is now in wait mode for a response from the Negotiation Server. Meanwhile the
Negotiation Server instructs Client B to connect to to Client A. Client B responds with an ACK that
includes its previously discovered offset and internal address. Client B then attempts a connection to
Client A as instructed, which will be blocked by A's firewall since this connection from B is unsolicited
(A has yet to attempt a direct connection to B). What this connection attempt on B's part does is it
causes B's firewall device to expect a connection back from A that will now be a solicited connection
that should be let through. Once A receives the signal from the Negotiation Server that it can now
attempt a connection to B using the given offset, A will make the connection to B. This connection
should be allowed through B's firewall since it is a solicited connection. Once this connection is made
the two nodes can transmit data normally without the intervention of the Negotiation Server.

E) Implementation Considerations

1) Robustness of the Negotiation Server: This solution requires the Negotiation server to be
running at all times for the network to continue to grow and change as nodes enter and leave. If at any
point the Negotiation Server becomes unavailable, either due to an outright failure, or by being
overwhelmed by connections, new connections will no longer be made. Because of this fact, the
Negotiation server must be able to handle a heavy connection load and continually run for very long
periods of time. For our Negotiation Server we used overlapped I/O as the mechanism for allocating
and managing sockets [6]. While this was a Windows specific implementation and restricted us to a
Windows environment, we were able to simulate about 60,000 clients making requests every 3 seconds
to a single Negotiation Server for months at a time. The hardware that we ran our Negotiation Server
on were fairly low end blade servers(dual core 2.4 GHz) running Windows XP.

One technique that helped improve the performance of the Negotiation Server was to pre-
allocate a very large pool of unbound sockets at the beginning of its execution. The sockets would then

be returned to the pool after they were released. This insured that the Negotiation Server could react to
a large sudden surge in activity.

2) Protocol Considerations: Our original implementation before port prediction was added
used only TCP as the network's protocol. Because of this, the higher level networking configuration
algorithms relied on the guaranteed delivery of TCP data. The previous solutions discussed above used
the UDP protocol to implement the hole punching portion of the algorithm which allows nodes to make
essentially unsolicited connections to each other through Firewalls. Rather than attempt to re-design
the hole punching algorithms around TCP we decided to use a hybrid protocol called UDT. At its
lowest level it is really UDP with some of the guaranteed delivery features of TCP [7].

These considerations were specific to our needs at the time and are not necessarily required for
a successful implementation of this concept. I leave it up to the designer to draw his or her own
conclusions about which implementation choices make sense for their application.

V. SUCCESS RATES

After the initial implementation and testing phases were complete, we found that we were able
to increase our population of “connectible” nodes from about 10-15% under our original manual
solution to about 95% under this new more automated, negotiation based approach. Clearly our
solution was a success.

Within this 5% of uncorrectable nodes there were two types. One type would consistently fail
the port prediction portion of the connection algorithm because the offsets chosen by the filtering
device were random and therefore unpredictable. The second type would sometimes succeed in making
unsolicited connections, but would then break the connection or fail subsequent connection attempts.
We theorized that these users had such lossy connections that connections under any scheme would be
just as unpredictable and fragile. We were never quite able to pin point what portion of the 5% was due
to which issue. Our solution still suffers from both problems, unpredictable, random offsets as well as
difficulty functioning under extremely high latency networks. These would be interesting areas for
future research as discussed in the concluding section.

VI. APPLICABLE AREAS OF COMPUTING

The particular implementation described here was used to facilitate a Television like broadcast
over the open internet, sometimes referred to as IPTV. The primary driver of this implementation was
not the activity of distributing the content, traditional server based implementations have been
successfully doing this for many years, but rather the desire to save the bandwidth costs of the
broadcaster by offloading traffic onto a distributed network that consisted of the users currently
watching the feed. This idea of content distribution by the interested parties rather than a central server
is not new, but the manner in which it is being done and the fact that it does not require explicit user
intervention is. This new way of forming connections will be applicable to many areas of computing
that strive to, or could benefit by building a decentralized peer to peer based network.

One such area where similar solutions are being tried is VoIP. It is advantageous for the service
provider to setup direct connections between users wishing to communicate with one another rather
than funnel all the traffic through a central server. Any centralized system will be quickly

overwhelmed by a popular service such as Skype.

BitTorrent clients are another group that could benefit from this technology. Currently most
applications require users to manually open ports on their devices in order to contribute to the network.
This type of solution could greatly increase the speed and ease which with content is distributed.

Server-less Chat clients are similar to VoIP solutions, but are purely text based. Anyone
interested in private or secure communication will be interested in eliminating the need to connect to a
centralized chat server in order to have a conversation with a particular person.

Distributed Computing Systems could benefit from this technology with the idea that more
casual home users could participate in solving a problem collectively before sending results to the
central server. This could greatly reduce the cost and the load born by the central server and increase
the efficiency of the network overall.

Online Multiplayer Games where users must exchange data would not have to rely on a central
server except for an initial connection setup as described above. This could reduce the overall cost of
maintaining such a game for the developers.

These are just a small sample of the areas where this research could decrease cost and load on
centralized, or quasi distributed systems. Many networked, multi-user systems will gradually move in
this direction and the impact of this kind of technology will continue to increase over the coming years.

VII. CONCLUSIONS

In this paper I have presented a viable and proven solution to the problem of the blocking of
unsolicited connections from one peer to another if conscious user intervention is lacking for whatever
reason. I have explored some of the previously proposed solutions to this problem as well as presented
a current real world solution in detail. We have seen that this solution has a high rate of success in the
volatile and unpredictable realm of the open Internet. I have discussed some of the implementation
details to be considered when implementing this solution. We have also seen some other applications
where this technology would be very beneficial. In the following section I discuss some unanswered
questions as future research that could be done regarding this solution.

While this solution is a demonstrably viable one to the problems discussed in this paper, its
success rate will likely begin to decrease as device manufacturers learn of these types of practices and
attempt to block this behavior. It is my belief that this will come in the form of more and more devices
using random offsets which will defeat the algorithm in its current incarnation. A similar trend
emerged to combat the older form of UDP based hole punching. This trend was the inclusion of port
offsets, which this solution accounts for. Until an agreement is reached between peer to peer content
distributors and security minded firewall device manufactures each party will continue to adapt to the
others activities in order to reach their own individual goals. I think the consumer as a whole would be
better served by a cooperative solution.

VIII. FUTURE RESEARCH

As mentioned in a previous section, we were never able to satisfactorily determine what portion

of our failed connections were due to random offsets and what portion were due to high latency
connections. It would be interesting to attempt to quantify this proportion by using some sort of
independent measure of the speed of packet transmission, both from client to client, to ascertain if the
hops between were bad, or from individual clients to a local known good server to ascertain if the
individual node itself is at fault. The percentage of nodes giving random offsets could be known
simply by collecting the offset reports of the individual clients and determining which were random, or
at least random enough to defeat the algorithm. Once these two quantities are known it may expose
other categories of failure types that are yet unknown.

Another area of useful research would be not just attempting to quantify but actually deal with
high latency or random offset nodes. Solving these two problems would increase the success rate of
the algorithm and strengthen the network overall. The issue of high latency networks will likely
decrease in significance as time goes on and networks become faster and more robust. However the
ability to deal with random offsets will become more and more important as device manufacturers
become more aware of this technique and introduce random offsets to specifically combat it.

IX REFERENCES

[1]Ford B., Srisuresh P., Kegel D. (2005)“Peer-to-Peer Communication Across Network Address
Translators” brynosaurus.com Last Accessed 5 May 2010. http://www.brynosaurus.com/
pub/net/p2pnat/

[2] Guha, S., Francis P. (2005) Characterization and Measurement of TCP Traversal through NATs and
Firewalls. Proceedings of the 5th ACM SIGCOMM conference on Internet Measurement : 18-

18

[3] “NFT Company - Technology” NFT-TV.com. Last Accessed 25 April. 2010.
http://www.nft-tv.com/about.php?section=technology

[4] North, K. (2003) “Programmatically Controlling a UPnP-Capable Firewall” Last Accessed 4 May
2010. http://www.knoxscape.com/Upnp/NAT.htm

[5] O'Neal, M., Kleinpeter, J. (2005). Systems for distributing content data over a computer network
and method of arranging nodes for distribution of data over a computer network. Patent

7543074 Issued on June 2, 2009.

[6] “Synchronization and Overlapped Input and Output” MSDN. Last Accessed 2 May 2010. http://
msdn.microsoft.com/en-us/library/ms686358(VS.85).aspx

[7] “UDT: Breaking the Data Transfer Bottleneck” UDT Project Site. Last Accessed 30 April 2010.
http://udt.sourceforge.net/

http://udt.sourceforge.net/

