Developing Interoperable Web Services Using JAX-WS
William P. Champlin

UCCS CS526

Developing Interoperable Web Services using JAX-WS
William P. Champlin

University of Colorado at Colorado Springs

Department of Computer Science

Colorado Springs, CO 80933-7150
wchampli@uccs.edu
Abstract
Web services allow client applications to be built using one or possibly many distributed web service applications to help implement pieces of their functionality – and this capability is what forms the basis of service oriented architectures. To provide true interoperability between clients and services, which may be running on heterogeneous architectures and written in possibly different programming languages, web services have adopted as part of their middleware implementation, the use of communicating using SOAP messages over HTTP with service interface contracts defined using Web Service Definition Language (WSDL) documents. Due to both its ever evolving toolsets and its core functionality that implements its middleware, Java Web Services is now becoming the leader in web service development frameworks. Java Web Services provides a layered set of tools that gives the developer a choice of creating webified applications either by wiring together higher level components, such as Enterprise Java Beans (EJBs), or by programming closer to the SOAP XML based messaging protocol via its middleware – which is implemented by a powerful API called JAX-WS. JAX-WS implements the core functionality of Java Web Services by encapsulating the lowest level set of utility APIs, which saves the programmer from having to manually marshal and de-marshal Java web objects to and from SOAP XML messages. This API provides the key to true interoperability - and therefore is worth learning and adding to our web application development arsenal.
1. Introduction.
A web service (WS) is a distributed application hosted on a remote computer and accessible via a protocol such as HTTP [6]. A web-enabled client can build its functionality by invoking one or several web services where each service may reside at a different remote location. This tying together of web services is the basis of what is called the Service-oriented architecture (SOA) [3]. Web services provide all sorts of functionality, such as retrieving data from a remote database or providing access to a remote piece of equipment – such as a web cam. Web services are developed in a programming language in a way that allows them to interoperate with clients written in the same or possibly different languages running on any number of different hardware platforms. This is necessary since clients and services operating on different machine types may have different bus and CPU architectures which lead to incompatible internal data representations. For example, PowerPC and 68000 based architectures have their most significant data bytes on the left side of a data word (known as “big-endian”) versus Intel based machines which have the least significant on the left (“little-endian”). (Actually PowerPC’s can be switched to little-endian, but are big-endian by default). This means that web services and clients cannot just connect using secure sockets and transmit raw data bytes and expect the data values to be mapped into the correct format at the receiver. While there exist some low level programming APIs that performs this translation, such as eXternal Data Representation (XDR) libraries, they require extensive low level coding to convert message record fields to and from XDR data representations. Within a language, this may not be a problem. Java for instance, will treat both sender and receiver as big-endian by default. Unfortunately, not all clients and services are written in Java and instead may be written in any number of different languages including Python, Perl, C++, Ruby, etc. Therefore, web services must support transmitting data to and from clients that can reside on platforms with different internal data representations and also written in different programming languages. Consequently, web services have adopted using XML based SOAP messages over HTTP (primarily) to transmit data in an architecture and language neutral way. However, randomly building and sending SOAP messages from a client to a service or vice versa still doesn’t allow any meaningful communication to occur – the client won’t get a useful response back from the service and vice versa. What’s needed is a way for a client to understand the interface the service answers to – in other words, it needs to know the service’s interface “contract” that defines how clients can use the service. The contract must identify the location or endpoint address the service can be found at, such as its URL address and service name. It must also identify the services operations by name and the number and types of parameters which may be complex class structures. As a result of this need for a service contract, the development of web services in several languages has adopted the use of the WSDL document. WSDLs (spoken “whiz-dulls”) use a standards based XML meta-language to describe in an also platform and language neutral way, the interface contract for the service. Once a WSDL is created to describe the interface, the service and clients can be written against it and consequently are able to build the correct SOAP messages to effectively communicate with each other. This process of creating a WSDL first and then coding the service and clients to it is known as a “contract aware” [1] approach to developing web services. This approach does have the disadvantage however, of making it hard to keep the code and the WSDL in sync. Tools are available to automatically generate the service interface and client proxy stubs, but setting up the WSDL is fairly complicated and error prone – especially since it can involve creating XML schema type definitions for service parameter and return values. The best way is to code the service and its associated types and then generate the WSDL directly from it using an automated utility program. This second approach is called a “code first” [1] approach which makes it much easier to keep the service code and contract in sync. It doesn’t, however, help the client maintainer since the client must be modified whenever the WSDL changes, but this still is required under the “contract aware” approach.
This mechanism of using WSDL’s and SOAP messages for client/server communication is the middleware for web services, and of all of the languages that are used to develop web services, Java is becoming increasingly dominant. [2] This is because Java Web Services as a whole provide for an extensive multi-tier architecture development environment which relies on the Java API for XML Web Services (JAX-WS) middleware for its middle-tier facilities. The purpose of this paper then, is to understand how to develop web services that use these SOAP / WSDL based communication protocols for its middleware, and since use of Java is becoming the most ubiquitous, it will focus primarily on Java Web Services with special emphasis on JAX-WS.
This paper is organized as follows. Section 1 is the introduction. In section 2 we provide an overview of the Java Web Services (JWS) framework and we discuss some of the major components within it. As part of this discussion, we focus heavily on the role of JAX-WS and the features it provides when developing web services and clients. It also describes some key mechanisms over and above the basics, including such topics as message handlers, fault support and binary payloads. Section 3 covers the steps necessary to program web services and clients using JAX-WS. Section 4 is the summary and section 5 lists references.
Finally, 2 example applications were coded for this project – the first one is an example JAX-WS web service and a client built using a WSDL, and the second is an example of how to use one of JAX-WSs key components: the Java API for XML Bindings (JAX-B), to convert between Java and XML types. These applications are referenced by this report and are located at:

http://windom.uccs.edu/~cs526/studentproj/projS2009/wchampli/src/Attachment_1_JAXWS_Program.doc and

http://windom.uccs.edu/~cs526/studentproj/projS2009/wchampli/src/Attachment_2_JAXB_Program.doc.
2.0 An Overview of Java Web Services and JAX-WS
[image: image2.wmf]J

2

SE

text

Metro WS

Stack

JAX

-

WS

2

.

1

Glass

Fish

JWS

JAX

-

RPC

1

.

X

J

2

EE

Figure

1

–

Java Web Services Toolsets

2.1 Java Web Services. Web services and clients created in the Java programming language are built using tools and API’s from the layered toolset shown in Figure 1 and collectively referred to as Java Web Services (JWS). As indicated in the figure, JWS tools are layered around the JAX-WS API, which provides the core functionality for creating interoperable services and clients. The toolsets layered on top of JAX-WS, including the Metro WS Stack and GlassFish, add higher level capabilities, but still rely on JAX-WS to implement their client-server communication protocol. Each of the upper level toolsets shown in Figure 1 is described in the following subparagraphs followed by a detailed description of JAX-WS services.
2.1.1 Metro Web Services Stack (based on [5]). The Metro WS Stack (also just called “Metro”) provides secure, reliable and transaction based web services that allow applications to be integrated with the .NET web architecture. It can be used stand alone or as part of GlassFish. Figure 2 depicts the stack of services provided by Metro. The top four high level services are layered on top of JAX-WS, which in turn is built on several other APIs underneath it (described in the JAX-WS Services section below).
	Transport Services
	Reliable Messaging
	Transaction Services
	Security

	JAX-WS

	JAXB
	JDOM
	StAX
	SAAJ
	+other APIs….

Figure 2 - Metro Stack Services
A description of the four high level Metro services is as follows:

· Transport Services. These services provide for an HTTP transport mechanism which allows Metro applications to act as a client and / or server for HTTP endpoints. It also supports the Message Transmission and Optimization (MTOM) specification and others which are used to encode binary data into SOAP message bodies. Lastly, it allows SOAP messages to be sent over TCP.
· Reliable Messaging. This service is based on the WS-Reliable Messaging protocol which allows SOAP messages to be reliably delivered in case of a software component failure, a computer system failure or a network failure. [6] This service is provided through a simple configuration option and doesn’t require the application to provide any specific logic to use it.
· Transaction Services. Modeled after atomic database transactions, this service prevents individual operations from a group to take effect unless all of the operations in the group succeed.

· Security Services. This provides security measures over and above the Secure Sockets Layer (SSL) by implementing several security based specifications, including the WS-Security specification which guarantees against message corruption as well as the WS-Trust specification which allows security tokens to be created, exchanged and validated between services and clients.
2.1.2 GlassFish. GlassFish is Sun Microsystems (now Oracle Corp’s) Java System Application Server which provides all of those capabilities and services described above for the Metro Stack (since GlassFish is layered on top of Metro), but also includes the rest of the services necessary to build a 3-tier application. A 3-tier application consists of a GUI or web page server as the first tier, the application’s code logic (including middleware) as the second tier, and a database as the third tier. [7] GlassFish provides for the easy integration or “wiring together” of high level components that support these tiers, such as EJBs. (An example EJB is the Entity Bean that supports object persistence with a database).
2.1.3 Java 2 Standard Edition (J2SE). This is the standard core Java developer toolkit release. It has bundled with it the Metro Stack and consequently by default JAX-WS. J2SE however doesn’t usually contain the latest version of the Metro or JAX-WS APIs, since those are generated by a separate Metro project and periodically rolled back into J2SE [1].
2.1.4. Java Enterprise Edition (Java EE). Formerly called J2EE, Java EE is the very highest level web services tool kit (and also is the most complete Java development environment) which attempts to combine all of the other capabilities underneath it and allow developers to leverage those capabilities through much simpler API’s and utilities – while still providing a developer with the ability to program directly using the lower level components. This approach allows 3 tier architectures to be developed with fewer classes, less code, and fewer lines of XML. [8]

2.2 JAX-WS Services (based on [1]). JAX-WS itself is a framework consisting of a grouping of Java packages, their contained classes and a set of utility programs used to create an interoperability layer for both Java services and clients. It can be used stand-alone or indirectly by using any one of the higher level tool sets. As listed in Figure 2 above, JAX-WS is the core web services for Metro (and all other higher level tools) and it in turn is built on these and other important JAX APIs (based on [2]):
2.2.1 Streaming API for XML (StAX). The StAX API is used for parsing XML messages as streams and is also a part of the JAXP (Java API for XML Parsing) API. This can also be used by developers parsing RESTful XML (see below).
2.2.2 Java Document Object Model (JDOM). This API is used to process XML that is in the form of Document Object Model (DOM) trees where all of the XML is read into an in-memory tree structure at once. This allows the XML document to be processed as a whole, versus stream based processing which can only access a portion at a time.

2.2.3 SOAP with Attachments API for Java (SAAJ). The SAAJ API provides an interface to read and write SOAP messages and to create SOAP attachments.

2.2.4 JAX-B – the Java / XML translator. This is perhaps the most important subcomponent used by JAX-WS. As previously mentioned, one of the key aspects of JAX-WS is its ability to abstract the messaging layer from the developer, which allows for creation of web applications without the requirement of manually parsing the XML based SOAP messages. JAX-WS does this using JAX-B. JAX-B marshals and de-marshals Java objects to / from SOAP messages. In other words, it converts Java classes to / from XML schemas. JAX-B is a standalone API that can be used independent of JAX-WS to translate Java types to / from XML – which is what’s done under the hood for the developer using JAX-WS, but it can also be used independently, such as when writing a message handler (see below) or when a developer wants to use their own message transport mechanism. For example, if instead of sending Java types between web applications, you want to send them across socket channels on a local LAN, you can do that using JAX-B by convert them to XML and write it to the channel, which avoids using the higher level and less efficient SOAP and HTTP protocols.
To understand what JAX-WS abstracts for the developer by using JAX-B, it is worth examining two programs from the example JAX-B application in:

 http://windom.uccs.edu/~cs526/studentproj/projS2009/wchampli/src/Attachment_2_JAXB_Program.doc. The following text references the line numbers as from the JAX-B example. The first program (line 37) marshals a CourseInfo class (line 4) object which contains a StudentInfo class (line 24) object to an XML file. The second program (line 70) un-marshals the XML file back into a CourseInfo object and prints the results to sdtout (line 89) – verifying the use of JAX-B in performing Java / XML conversions. As with JAX-WS, JAX-B uses Java annotations which are tags placed in Java code preceded by the ‘@’ symbol. Normally when an application is developed in JAX-WS, annotations (different from those used by JAX-B) are placed into the service interface which defines the Java class or interface as a service and also defines which methods will become the service’s operations. A JAX-WS utility program is executed against the service’s main class or interface which creates and compiles additional Java classes which in turn have JAX-B supported annotations in them. Line 3 in the CourseInfo class uses the “@XMLRootElement” annotationpplication e code, Info class e to XML hereo XML both to a file used to translate between Java and XML types - which additional to indicate this class will generate the top level (root) XML type and “contained” class fields will be nested within this one. Note that the default name given to the root element can be changed in the XML by passing a string “name” parameter to the annotation, for example the annotation @XMLRootElement(name = “newRootName”) would change “<courseInfo>” to “<newRootName>” instead of using the Java lower case class name on line 54. It is typical that annotations take parameters allowing the object being annotated to be renamed in the XML; therefore it will not be discussed again when describing other annotations. The @XMLType annotation (line 23) indicates this class is to be converted to an XML type and is a subtype to be nested within a root element.

Note that the Java classes must be simple Java Beans providing setters and getters and a constructor with no arguments. The getters are used to extract values for object marshaling, the getters for un-marshaling, and the constructor to create a new object to un-marshal the XML field values into. Lines 53-63 show the results of successfully marshaling Java into an XML file, and lines 89-94 show the successful un-marshaling.

The major benefits and services that JAX-WS provides for client / server development are as follows (based on [1]):

· It hides the details of generating and parsing SOAP messages and WSDLs. JAX-WS provides the “wsgen” utility program that automatically creates additional Java classes that are used to convert to and from SOAP message XML statements. JAX-WS leverages JAX-B as previously described to perform this conversion for both Java services and clients, which saves the programmer from having to manually create and / or parse SOAP messages. This automatic conversion is easily setup by simply placing a few basic JAX-WS specific annotations in the main service interface or class. In support of the “code first” approach described in the introduction, JAX-WS automatically generates the WSDL by either using the “-wsdl” option to the wsgen utility or by making it available via a URL when the service is deployed – again saving the developer from this chore. Once the WSDL is available, JAX-WS provides the “wsimport” utility which reads the WSDL and automatically creates proxy classes for the clients to code to and run against to communicate with the service. This abstracts away the need to parse the WSDL or to generate outbound SOAP messages or parse inbound SOAP messages by the client. [2]
· It provides flexibility with respect to the SOAP messaging styles. Two styles are supported and include either the remote procedure call (RPC) style or the “document” style. The RPC style is specified on the service side by placing the “@SOAPBinding (style = Style.RPC)” annotation above the service’s Java interface name or class name, or by leaving the annotation out altogether for the document style. (Consequently, document style is considered the default). The primary use for specifying a messaging style is to either allow only simple primitive parameter or return types to be used, or to allow for more complex user defined types. If RPC style is chosen, only the primitive types supported by the built-in XML schema definition (XSD) types are allowed. Else, the document style allows custom XSD’s and the associated Java class types to be created. Another important factor affected by the style is the structure of the WSDL and SOAP XML statements, which also affect which kind of messaging patterns are supported. In the RPC style, the operation names are listed as “message name” XML elements with the types of any parameters or return values nested inside the operation message name – thus mXML elements with the types of any parameters or return values nested inside the operation message name - thus ema definition taking the XML similar to the Java method call with nested parameters. A final, but very important item affected by the style is the messaging exchange pattern (MEP) that can be used. The RPC style adheres to the request/response MEP where a client synchronously invokes a service and blocks until the service returns a response. This MEP is the basis of the Remote Procedure Call (RPC) paradigm and is currently the most commonly used. In fact, before the release of version 2.0, JAX-WS was called the Java API for XML Remote Procedure Call (JAX-RPC). The document style, on the other hand, allows request/response to be supported, but it also allows others, such as:

· One-way - where a client or service can send message without expecting a response i.e. if the service method returns “void”

· Solicit/response – where a service solicits a response from a client
· Multi-cast – a service can broadcast a message to several clients

· Custom – since the document style allows messages to be sent asynchronously between clients and servers, pretty much any pattern can be supported. For example, if a service and client both sent each other periodic heart-beat messages - that would be supported.
Document style will likely replace RPC as the most prevalent since the Web Services Interoperability (WS-I) initiative project, which is involved with developing interoperability guidelines, doesn’t even approve the RPC style as a standard. Consequently, document style will likely replace it since it is approved and WS-I even specifies document style as the default.
Since the selection of the style greatly affects the WSDL, which in turn is used to create the SOAP message structure, the example JAX-WS program at:

http://windom.uccs.edu/~cs526/studentproj/projS2009/wchampli/src/Attachment_1_JAXWS_Program.doc is listed with its WSDL annotated with call-outs for some of the document specific features starting on line 84. A comparison of the RPC vs. document styles is summarized in Table 1.

	RPC
	Document

	Advantages
	Disadvantages
	Advantages
	Disadvantages

	WSDL is simpler – no types defined in its type section since only primitive XSD types allowed. More programmer friendly
	Service is less flexible since it is limited to primitive XSD types i.e. xsd:string, xsd:byte, etc
	More type flexibility since new XSD’s generated for Java classes used for parameters and return values
	By default, messages are not named after the method / service so it makes SOAP msg to Java mapping harder to understand

	WSDL msg names match Java methods
	SOAP msg body cannot be validated against an XSD since none is generated
	SOAP msgs can be validated by client against the XSD
	Wrapped style makes programming the client more complicated; validation must be manually programmed

	Faster message transfers due to simpler types to marshaling/de-marshaling
	Client and service become tightly coupled since service is executed as a single function via request / response pattern (vs. possibly having another method return the result with document style)
	Can use wrapped style to match RPC method (although not approved by WS-I). Also supports other message exchange patterns besides request/response i.e. one-way, multi-cast, publish/subscribe
	Slower message transfers due to complex type marshaling / de-marshaling

	Wrapped SOAP msg style has parameters “wrapped” by method names which maps nicely to service methods
	Likely not supported by WS-I in future, leading to less interoperability with other frameworks in the future
	Can use various annotations to name method names and parameter names in SOAP messages – great flexibility
	No overloaded service method / operation names with wrapped style

Table 1 - RPC vs. Document Messaging Styles (based on [1])
· It allows for the creation of asynchronous services. Unless specifically programmed to be asynchronous, a service will be synchronous and can only process a request from one client at a time. This means the firs request must complete prior to subsequent clients being allowed to unblock and run. JAX-WS allows an application to create Java thread pools and pass them into the JAX-WS service publisher which will then marshal one of the threads from the pool to service a given client. If asynchronous requests occur, then separate threads will be executed to service each requestor simultaneously (especially if executing under a symmetric multiprocessor (SMP) architecture). This capability is automatically included when a high level JWS application server, such as GlassFish or even Apache Tomcat is used. Likely, GlassFish uses this JAX-WS thread pool capability “under the hood” to implement its asynchronous service scheduling.
· It supports binary payloads in SOAP messages. JAX-WS supports transmitting binary data in SOAP messages in 2 different ways. The first approach is to place binary data into the SOAP message payload by using base 64 encoding. This has the disadvantage in that base 64 encoding increases the size by about one-third. The second method is to attach the data to the end of the SOAP message. This avoids the extra size increase but it forces the requirement that all attachments must be a supported MIME type, such as the “image/jpeg” type. A very nice feature to this approach is that JAX-B will automatically translate between Java image types and MIME image types. Non-image types however, must be manually converted by the programmer using a message handler (described below).
· It also supports the Representation State Transfer (RESTful) messaging protocol. Unlike SOAP however, JAX-WS doesn’t automatically parse the bodies of the RESTful messages since there is no standard XML format defined by RESTful. Instead JAX-WS provides the XML payload to the developer which must then use other API’s, such as the Java API for XML Parsing (JAXP), to manually parse the message bodies based upon some agreed format between the service and the client. RESTful messaging has few supported libraries, no real standards, and is not used as frequently as SOAP messaging, therefore this paper has primarily focused on using JWS with SOAP.
· It supports error handling via faults. A Java web service can throw an exception, such as due to a bad parameter value passed to it from the client, and have the exception re-raised in the client where it should be handled. The Java exception is turned into a SOAP fault message that contains the text describing the problem. The text set in the exception by the service is extracted and placed into the fault message automatically. When this happens, the normal operation return message won’t be sent – instead the fault message is returned. The WSDL will list the fault message(s) by name if the operation is declared to throw one. See the sample program WSDL line 105. One restriction is that only methods defined as service operations (with the @WebMethod annotation) can throw a fault, which implies that only the web service can generate a fault – and the client cannot.
· It supports the creation of message handlers. While JAX-WS relies on JAX-B to translate between Java objects and SOAP messages, it also recognizes the need to provide direct message access if desired, such as for writing optional message “handlers” or “interceptors”. Figure 3 shows the SOAP message data flow between client and service going through zero or more Logical Handlers and SOAP Handlers on either the client or service side. Handlers are application code routines that can perform processing directly to the SOAP messages - violating somewhat the abstraction layer provided by JAX-WS. Handlers are considered to operate at the “handler level” versus services and clients that operate at the “application level”. The difference between these levels is that SOAP (or RESTful) messages can be handled at the handler level, whereas they are typically abstracted at the application level (although JAX-WS does provide a way for applications to get to the messages also). Handlers are also called “interceptors” because they can intercept the message on the path out of the client or into the service, and vice versa. There are 2 kinds of handlers:

· Logical Handlers can modify message payloads only – not SOAP headers. Use this type if no SOAP headers or SOAP attachments need modifying. They are also non-SOAP specific and can be used to intercept RESTful messages.

· SOAP Handlers can modify the entire SOAP message envelope, - including SOAP headers. They can also insert attachments to the end of the SOAP message body, such as for passing binary image data.

There are several advantages for using handlers:

· They provide a mechanism to modularize the processing of either the service or client, thus creating a separation or layering of concerns - which enhances maintainability.

· They can provide a filter mechanism for messages, for example, they can be used to throw out erroneous requests from an intruder by validating a client’s universally unique identifier (UUID) or verifying that a digitally encrypted signature in the SOAP header is valid, rejecting the message if it’s not. Also, a SOAP header might have a timestamp indicating the send time of a client request, so a handler could be used to reject a message if it’s too old – thus helping to keep out man in the middle attacks.

· Handlers can also provide additional application layer logic, such as by range checking message field values and perhaps correcting them before allowing them to pass onto their the service or returning to the client.

· They can be used as a protocol layering mechanism, such as to insert SOAP headers on output messages or strip them off on inbound messages (note SOAP messages don’t have to have headers).

· Handlers can be used as a message “sniffer” to log the contents of SOAP messages. This would be an alternative to other OS level services, such as the “tcpmon” utility or other JWS utilities such as those available in Metro.

[image: image1]
Figure 3 - Web Service Message Flows and Handlers

Using handlers, however, does have the disadvantage in that coding is very complicated to manipulate a message - which was supposed to be one of the main reasons for using JAX-WS – so you wouldn’t have to. This is relieved somewhat however, by leveraging other JWS API’s for accessing the messages. For example, all of the APIs that JAX-WS relies on internally (StAX, JDOM, SAAJ and JAX-B) can be used to assist the developer when writing handlers.
Handlers are invoked as callbacks by the JAX-WS runtime. They must be configured for callback by setting up an XML configuration file called a “handler deployment file” or by registering the handler as a callback within the client or service code. The preferred method is to use a deployment file since it allows handlers to be easily configured to be used or not to be used and to have their ordering changed. Logical handlers always execute closest to the service or client as it may be desirable to modify the header last – and only SOAP handlers can do that. For example, if you were placing a checksum in the header, you would have to compute it using the body first and then updating the header last. The following methods are required of handlers, which are executed in the order listed:

· getHeaders(). This method is used to modify SOAP message headers, so it is only required for SOAP handlers.

· handleMessage(). This method is used to process the message body.

· close(). Indicates that the message processing is done, and the next handler or client or service can be sent the message.
· handleFault(). This method is used to catch faults thrown by handlers called further down the processing chain.
Besides all of these above capabilities that JAX-WS supports, it is also important to note that JAX-WS is also one of the primary components of the Web Services Interoperability Technologies (WSIT) project, which attempts to advance JWS technologies that are interoperable with Microsoft’s Windows Communication Foundation (WCF) (.Net) framework. [4] After explaining some of the powerful capabilities provided by JAX-WS, the next section will go into more specifics about how to build a basic JAX-WS web service and client.
3.0 Developing JAX-WS Services and Clients.
This section describes the details of building a Java web service and client using JAX-WS. To aid in understanding, a document style example application has been developed for this project and the associated code and related artifacts can be found at:

http://windom.uccs.edu/~cs526/studentproj/projS2009/wchampli/src/Attachment_1_JAXWS_Program.doc. This application is referenced throughout this section by line number.

The following six basic steps are used to create a web service and client using JAX-WS (based on [1] and [2]):
1. Code and compile the annotated Java web service. A web service developed using JAX-WS typically starts out by coding the client interface to the service, which is done by creating a top level Java interface or a class known as the Service Endpoint Interface (SEI). The SEI is implemented as a Java Bean which must provide setters and getters for all object fields that will be transmitted by SOAP messages between the service and the client. If an interface is chosen to represent the service, then it becomes the SEI and the implementing class is called the Service Implementation Bean (SIB). If an interface is not used, then the implementing class is both the SEI and the SIB. What distinguishes a SEI / SIB from any other Java interface / class is the use of special annotations that the JAX-WS run-time and utility programs will examine to transform it into a service. Two key annotations are used to define a Java interface or class as a web service. The first one is the @WebService annotation, which is placed immediately before the SEI declaration and defines the SEI as the endpoint type of the service (line 6). The second is the @WebMethod annotation (line 9 & 17), which is placed immediately before the SEI methods which causes them to be defined as operations of the service. The developer should verify the SEI and SIB compile.
2. Create the “artifacts” needed to deploy the service endpoint. For our example application, this is accomplished by running the “wsgen” utility as follows:
% wsgen –cp . demo.CsCourseListingClass where the “-cp” option indicates next argument is the class path. Also note “demo” is the top level Java package / directory under the current working directory. The wsgen utility examines the CsCourseListingClass (the “endpoint” class) in the demo package for JAX-WS annotations. In this example, it finds the two key annotations described above and creates two additional Java classes for each operation (not listed with the code) – one that defines a type for a message representing the request to the operation, and another that represents the return value or response message going back to the client. These classes represent the “artifacts” used to create a WSDL document when the service endpoint is deployed (see step 3) and to create XML schema definition (XSD) types (not listed in example code) that match the Java types. These types are used to translate between Java objects and SOAP XML messages by JAX-B and are referenced in the WSDL’s “type” section (line 88). The WSDL defines the service interface in XML and is used by other utilities to create proxy services for clients. Alternatively, wsgen optionally accepts the “–wsdl” option that will generate a WSDL as a text file instead of being dynamically created and accessible only via HTTP – which is the default. The wsgen utility program created a “demo.jaxws” package and generated into it these new class files (not shown in example) for our service operation and response messages:
GetCourseData.java, GetCourseDataResponse.java, GetCourseNumbers.java and GetCourseNumbersRespons.java. After creating these Java files, it automatically compiles them to create byte code that is used to create the WSDL and perform Java / XML translation.
3. Deploy the service using one of several methods – not all of which are listed here:
a. Using a Java publisher program (this method was chosen for our example program – line 76). Write a java program using the publish() method of Endpoint class, which takes the URL of the endpoint and object reference for the service. Once created the publisher program is ran, which publishes or “deploys” the service at the specified URL which allows it to be accessed both for determining how it’s interface is defined as well as invoking its operations. In the former case, the WSDL document is made available at the endpoint URL address plus “?wsdl” concatenated at the end (see text between lines 83 and 84).
b. Package the service class files and artifact files into a Web Archive (WAR) file (a JAR file with web application files) as you would for a servlet running under a web application server, such as when using Apache Tomcat or GlassFish, and deploy it by copying the WAR file to a specified directory where the web server will find it and publish it.
c. Use the asant build tool in J2EE. This may be a deprecated approach since the inclusion of GlassFish in Java EE.
d. Using Metro. In this case, the steps of running the wsgen utility and publishing the application occur automatically when the service is executed. Metro creates a wrapper class that calls Endpoint.publish() and invokes the wrapper bean automatically to deploy the service.
4. Run the wsimport utility to create client proxy classes. For example, the next command creates the client proxy classes and XSD equivalent Java class files:
%wsimport –p <destination package> -keep <WSDL URL>
where -p creates a proxy SEI and XSD equivalent java types using the WSDL. It generates proxy source files into the <destination package> directory and automatically compiles them. If –p is left off and your service interface is in the same directory, then the default is to create the SEI package (such as the demo package) which will unfortunately overwrite the real SEI with the proxy - so use –p option to prevent this from happening. The -keep option tells wsimport to keep generated source (.java) files; otherwise they’re deleted after compiling. The <WSDL URL> can be just a local file location and not a URL for the WSDL – it doesn’t matter.
5. Code the client program against the proxy SEI and XSD types. See the Client class example line 149. For the most part, the client code looks like it would if it was using a local, instead of a remote, Java service object. The main difference is that the client will create a service object using a service proxy interface and then use the service to fetch a service interface object located at the port (line 151 & 152). Once this is done, service operations are invoked just as if the object were local to the client (line 154 & 158).
6. Execute client(s) and handle any returned faults as Java exceptions. See the example client output (line 178). Line 173 shows the client’s exception handler and line 184 shows the reported fault.
4. Summary.
This paper described how JAX-WS fits into the overall Java Web Services tool set and how the upper level tools, such as Metro and GlassFish, rely on it for their middleware services - which is what allows heterogeneous clients and services to interoperate. It covered how JAX-WS allows web services and clients to be created without requiring developers to create or parse messages, although that capability is provided via lower level APIs if needed. In addition, it described some of the additional features supplied by JAX-WS, including the ability to support both the RPC and document style messaging, different message exchange patterns, asynchronous requests, binary payloads, RESTful messages, fault handlers and message handlers or “interceptors”. It also described the basic steps to create a web service and a client based on a WSDL generated from the service interface. Finally, this paper provided two example programs: one that implemented a simple web service and client following from the basic development steps, and another that provided an example of how to use the low level JAX-B API, which JAX-WS uses under the hood, to marshal and de-marshal Java objects to and from XML, and which is also useful when writing message handlers or when using an alternative transport protocol to send XML messages.
5. References.

[1] Java Web Services: Up and Running, by Martin Kalin. Copyright 2009 Martin Kalin, 978-0-596-52112-7.
[2] The Java Web Services Tutorial, For Java Web Services Developer’s Pack, v2.0. February 17, 2006, Sun Microsystems, Inc. (http://java.sun.com/webservices/docs/2.0/tutorial/doc/)

[3] Service-oriented architecture (SOA) definition. http://www.service-architecture.com/web-services/articles/service-oriented_architecture_soa_definition.html
[4] Web Services Interoperability Technology, Wikipedia. http://en.wikipedia.org/wiki/Web_Services_Interoperability_Technology
[5] What is Metro? https://metro.dev.java.net/discover/
[6] Web Services Reliable Messsaging. IBM, BEA Systems, Microsoft, TIBCO Software, February 1, 2005. http://www.ibm.com/developerworks/library/specification/ws-rm/
[7] SearchSQLServer.com Definitions. Application Server Definition by Terrence Rourke, April 1, 2005. http://searchsqlserver.techtarget.com/sDefinition/0,,sid87_gci211584,00.html
[8] J. Stearns, R. Chinnici and Sahoo. Update: An Introduction to the Java EE 5 Platform. Sun Developer Network (SDN). May 2006. http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/
Message Flow

Log

I

Ca

l

 Handlers

SOAP

 Handlers

SOAP

 Handl

ers

Log

I

Ca

l

 Handl

er

s

SERVICE

CLIENT

HTT

P

� EMBED Visio.Drawing.11 ���

PAGE
3

[image: image3.wmf]J

2

SE

text

Metro WS

Stack

JAX

-

WS

2

.

1

Glass

Fish

JWS

JAX

-

RPC

1

.

X

J

2

EE

Figure

1

–

Java Web Services Toolsets

_1303988102.vsd
text

Metro WS Stack

J2SE

JAX-WS 2.1

Glass Fish

JWS

JAX-RPC 1.X

J2EE

Figure 1 – Java Web Services Toolsets

