[image: image1.png]

DNS Cache Poisoning: Insights and Detection Strategies

DNS Cache Poisoning

INSIGHTS AND DETECTION STRATEGIES
Overview
A security researcher named Dan Kaminsky discovered a new vulnerability in the DNS protocol that could be exploited via an attack known as “DNS Cache Poisoning.” This set off the flurry of analysis and the eventual leakage of the attack vector to the public. This document provides an overview of the new DNS Cache Poisoning exploit and how organizations can detect and potentially stop this type of attack.
DNS Primer
Domain Name System (DNS) is a hierarchical technology relying on both the advantages of the distributed system to scale to the size of the Internet today, as well as provide a resilient, fault tolerant mechanism to translate canonical resource addresses (e.g., www.example.com) to Internet Protocol (IP) addresses.
All applications that recognize Uniform Resource Locators (URLs) or Uniform Resource Identifiers (URIs) rely on the accuracy and validity of the DNS records to properly translate canonical addresses to the IP address locations of content.
[image: image2.png]

1 src: client q » www.example.com?
DN S CLI E NT
DN S R E SOLVE R
2 src: resolver; dst: client: answer
www.example.com A 192.168.0.1
3 src: client, dst: www.example.com
www.example.com
192.168.0.1
Figure 1: DNS Client/Server Model of Communication
DNS relies on a client-server model of communication. Each time any application needs to map a canonical name (Figure 1) to a machine IP address or its reverse mapping, that system makes a client request to its local Domain Name Server (sometimes referred to as a DNS Resolver). If the local DNS Resolver has the answer to this question, it will respond directly to the requesting client with the answer of either an IP address or with the reverse mapping of a name.
However, if the local DNS server does not know the answer locally, it will begin a series of recursive requests to search out the answer requested by the client. The local server, not having an answer to a request in its local cache of answers, will first try to decipher what system is the known DNS authority to answer the question.
For example, let us look at a request from a client looking to browse to an online resource known as www.example.com. The local DNS Resolver will first attempt to answer the request with the IP address of example.com. If this answer is not available to it in its local DNS cache, then the local DNS Resolver will next attempt to resolve what DNS name server (known as the DNS Authoritative Server) has the authoritative answer for www.example.com. If this is not known, then the local DNS server will look deeper into the DNS name tree to find the DNS name server for.com.
[image: image3.png]

The .com DNS Authoritative server will provide an answer to the local DNS Resolver for the address of example.com DNS Authoritative server. The local DNS Resolver then has an IP address to send its original request searching for the address of the www.example.com server. The Authoritative domain server for example.com will provide an answer for the address of www.example.com (Figure 2).
[image: image4.png]

1 src: client q » www.example.com?
2 src: resolver; dst auth-ns: q » www.example.com?
DN S CLI E NT
DN S R E SOLVE R
4 src: resolver; dst: client: answer
www.example.com A 192.168.0.1

3 src: auth-ns; dst resolver: answer
www.example.com A 192.168.0.1

DN S AUTHOR ITATIVE
auth-ns
(example.com, foo.com, bar.com)
5 src: client, dst: www.example.com
www.example.com
192.168.0.1
Figure 2: DNS Resolver to DNS Authoritative Communication
The messages between the local DNS Resolver and the DNS Authoritative system originate on a source port from the DNS Resolver and contain a transaction ID to identify the requests received from the authority. With this transaction ID the DNS Resolver will be ensured that the outstanding requests have actually been answered. It is this combination of the source port and transaction IDwhich is the vulnerable part of the DNS protocol and is exploited by the DNS Cache Poisoning attack.
The following section describes how this attack exploits the source port and transaction ID vulnerability.
Explanation of DNS Cache Poisoning
DNS Cache Poisoning attempts to replace valid records on a DNS server with incorrect IP addresses in an attempt to seamlessly redirect client systems to locations that masquerade as legitimate resources on the Internet. With the DNS server “poisoned” with an incorrect IP address to name mapping, the hacker can leverage a number of vectors to infect or gather data from the innocent, redirected client.
Transaction ID Race and Time to Live
A very basic principle was realized: BIND (Berkeley Internet Name Domain) did not randomize the source ports of its requests, instead it used the same source port for each request and only relied on the Transaction ID to differentiate outstanding requests. Aside from Layer 3 and Layer 4 protocol checking (source and destination IP addresses and ports must match), the transaction ID is the sole form of authentication for a DNS reply. Because an attacker was only tasked in guessing the next transaction ID after making their request, a cache poisoning attack could be carried out using a spoofed query followed by a spoofed answer. In essence, the attacker was racing the authoritative DNS server to respond to the DNS Resolver with a matching transaction ID (Figure 3). If the attacker won the race, they would “poison” the DNS cache with a bogus DNS entry—which the attacker could then exploit.
To solve this, all new versions of BIND were updated to use randomized 16bit transaction IDs and a range of port numbers[image: image5.png]

 (0-65535). This made it harder for an attacker to match the correct port/transaction ID combination, but still not impossible.
2 src: resolver; dst auth-ns: q » www.example.com?
DN S CLI E NT
DN S R E SOLVE R

[image: image6.png]

Too Late! Already Poisoned

4 src: auth-ns; dst resolver: answer
www.example.com A 192.168.0.1

DN S AUTHOR ITATIVE
[image: image7.png]

auth-ns
(example.com, foo.com, bar.com)
3 src: auth-ns: A »
www.example.com A 1.2.3.2

www.example.com
92.168.0.1
[image: image8.png]

ATTACKE R (1.2.3.1)
Figure 3: DNS Cache Poisoning: The Race for Correct Transaction ID
More over, in DNS, wrong answers are simply silently discarded and as such the attacking system can send as many guesses to the Transaction ID (TXID) value as possible before the real answer is received by the DNS Resolver from the true DNS authoritative server. If the attacking system is unsuccessful in guessing the answer before the true authority actually responds with the right answer, and correct TXID, then the answer record is cached in the DNS Resolver for a period-of-time determined by the Time To Live (TTL) value. The TTL is not a security feature, but rather a mechanism to reduce the overhead of the distributed DNS system. Common TTLs are set for 24 hours, meaning that any record’s data is deemed valid for a period of 24 hours following its last update. The TTL function therefore, will reduce the need for the DNS Resolving DNS system to further query the Authoritative DNS server for the duration of the TTL. Therefore, any attacker who fails to guess a port/transaction ID combination before the real authoritative system responds will simply have to wait for 24 hours, or the length of the TTL, before attempting an attack on that record again. This may slow down an attack on a particular record but certainly does not secure this record from future poisoning attempts. In fact, if the record or DNS zone is valuable enough, the attacking system will simply generate false records in order to force the DNS Resolver to open its request to an authoritative system.
[image: image9.png]

DNS Pointer Record Writing/Overwriting
[image: image10.png]

The TTL does add some suppression of any particular name record from being exposed to continuous bombardment of poisoning attempts. However, as stated above, TTL is not a security mechanism nor is it something that would prevent this attack from being leveraged against non-existent domains or from repeated attempts after the TTL expires. In other words, the TTL function does not limit the ability of the attacker to create their own list of bogus domains which creates a huge number of opportunities for the attacker to force the DNS Resolver to open their request and inject one or more poisoned DNS Pointer records, otherwise known as DNS Pointer Record Writing/Overwriting.
[image: image11.png]

6 src: client, dst: www.example.com
4 src: client q » www.example.com?

BOG US (1.2.3.2)
www.example.com
2 src: resolver; dst auth-ns: q » www.pork.com
DN S CLI E NT

5 src: resolver
dst: client: answer
www.example.com
A 1.2.3.2

DN S R E SOLVE R

Hit on
“Pork”
3 src: auth-ns: A »
pork.example.com A 1.2.3.2
Additional RR: example.com
NS 1.2.3.2, TTL=Long Time

DN S AUTHOR ITATIVE
auth-ns
(example.com, foo.com, bar.com)
Ride in
“example.com”

3a src: auth-ns: A »
www.example.com A 1.2.3.2
Additional RR: example.com
NS 1.2.3.2, TTL=Long Time

www.example.com
[image: image12.png]

192.168.0.1
3b src: auth-ns: A »
milk.example.com A 1.2.3.2
Additional RR: example.com
NS 1.2.3.2, TTL=Long Time
[image: image13.png]

ATTACKE R (1.2.3.1)
Figure 4: DNS Cache Poisoning Attack Using the DNS Pointer Record Writing/Overwriting
Let us look at how an attacker could conduct a DNS cache poison attack using the DNS Pointer Record Writing/Overwriting exploit. In the example below, let us assume the attacker wants to poison the example.com domain name. The attack would work as follows (Figure 4).
1. The attacking system asks the DNS Resolver for the answer to a bogus domain name such as pork.example.com,milk.example.com, etc.
2. The DNS Resolver, not knowing the answer for this Fully Qualified Domain Name (FQDN), opens its own request to the upstream DNS Authoritative Server for pork.example.com.
3. The attacking system then issues a series of attempts to answer the DNS Resolver with a correct TXID for pork.example.com. All of these attempts use the poisoned answer record of pork.example.com and a second poi- soned DNS pointer record update for the bogus address of the authoritative DNS server of the domain example.com.
3a-3b. When the TXID is correct for the DNS Resolver’s session for pork.example.com, the additional pointer records contained in the response are injected into the DNS Resolver’s DNS cache—one of them being the poisoned address of the Authoritative server for the entire domain of example.com. This is what is known as “DNS Pointer Record Writing/Overwriting”.
Additionally, the message contains a high-value TTL. This allows the attacker to retain control of the poisoned DNS cache for a longer duration of time and control the TTL Refresh rate in an attempt to maintain control of the poisoned domain or record. A good example of the fact that the TTL is not a security measure as it begins to work against the legitimate Authoritative DNS system in regaining control of the domain example.com. The DNS Resolver then answers the original question from the attacker of “Where is pork.example.com?” This provides the attacker validation that the attempts were successful and now the domains pork.example.com, example.com and milk.example.com are now cached on that DNS Resolver. In other words, the primary target domain of example.com is now poisoned on that DNS Resolver. The attacker now owns this domain for all clients who contact that DNS Resolver for DNS services.
4-6. From now on, when any client asks the DNS Resolver for example.com, the DNS Resolver will provide a response from its poisoned DNS cache. (example.com =1.2.3.2) and the attacker executes their attack vector (e.g., Pharming).
5
So the question remains, “If there is no fix for this vulnerability, how do to detect if DNS system is being tampered with or has been a victim of a DNS Cache Poison attack?”
There are two answers to this question. The first is a short-term answer and second is the long-term fix to this situation.
1. The short-term approach is to use the Arbor Peakflow SP solution (“Peakflow SP”) to help detect and alert when DNS records come under poisoning attempts and attacks by malicious systems on the Internet. The Peakflow SP and Peakflow SP Threat Management System (TMS) can provide specific and actionable data to discover and block attackers attempting to poison DNS records.
2. The long-term approach is to use DNS-SEC on DNS Resolving and Authoritative Systems to ensure that the response of the Authoritative system is authenticated through a chain of trust. Without this capability, the DNS systems remain vulnerable to poisoning attempts and hijacks of domains through the methods described above.
How to Detect a DNS Cache Poison Attack Using the Arbor Peakflow SP Solution
The Arbor Networks Peakflow SP solution is a network-wide infrastructure security and traffic-monitoring platform that enables to proactively identify threats, improve network performance and make more informed business decisions. The Peakflow SP solution has the capability to detect and mitigate many types of network or service threats.
Peakflow SP leverages multiple types of data sources on the network. These data sources can be put into two major groups.
1. Information from IP Flow (e.g., NetFlow, sFlow), SNMP and BGP. This information enables broad, cost effective network visibility, distributed threat detection (e.g., DDoS or DNS attacks) and mitigation.
2. Network Packets. More specifically, Peakflow SP TMS analyzes network packets to detect and surgically mitigate application-layer attack traffic. By leveraging both major groups of data, the Peakflow SP solution enables cost effective, broad visibility into network and routing traffic; infrastructure security and can simultaneously serve as a platform for in-cloud managed security services (e.g., DDoS or DNS protection services).
Two Network Locations for Detection
There are two locations in the network to detect a DNS Cache Poison attack using the Peakflow SP solution.
Network Location 1: In front of DNS Resolvers. Figure 5 displays how the owner of one or more DNS Resolvers can detect high rates of DNS answer records (e.g., poisoning attempts against a FQDN or non-existent FQDN).
Poisoning attempts require the attacking system to issue a single request for a FQDN to a DNS Resolving server and then follow that request with a flood of poisoned answers, each attempting to guess the Transaction ID of the recursive request to the Authoritative system.
Each of these responses may or may not be sourced from the same IP address (it is likely they will not be, but they all will constitute a total aggregate larger volume of traffic into the DNS Resolving system).
DN S R E SOLVE R
3 src: auth-ns: A »
pork.example.com A 1.2.3.2
Additional RR: example.com
[image: image14.png]

NS 1.2.3.2, TTL=Long Time
3a src: auth-ns: A »
www.example.com A 1.2.3.2
Additional RR: example.com
NS 1.2.3.2, TTL=Long Time
3b src: auth-ns: A »
milk.example.com A 1.2.3.2
Additional RR: example.com
NS 1.2.3.2, TTL=Long Time
ATTACKE R (1.2.3.1)
Figure 5: Detect High Rates of DNS Answer Records In Front of DNS Resolvers
In this scenario, use the Peakflow SP solution in front of the DNS Resolvers to detect an abnormally high rate (as compared to network’s normal rate) of DNS answer records, which is indicative of an attacker’s poisoning attempts against a FQDN or non-existent FQDN. There are two Peakflow SP deployment options:
1. Rely solely upon IP flow data and simply use a Peakflow SP Collector Platform (CP) device.
2. Use a Peakflow SP TMS device in combination with Peakflow SP CP device to analyze packets (e.g., from a SPAN/mirror).

Network Location 2: Between a DNS Resolver and DNS Authoritative Server. Figure 6 displays how the backscatter from domain’s Authoritative server to DNS Resolvers is a flurry of ICMP type 3 (destination unreachable) code 3 (port unreachable) error messages. Unfortunately, this means that the attacker has most likely succeeded in his attempt to poison the DNS cache of the DNS Resolver.
Backscatter: ICM P 3/3 error messages
DN S R E SOLVE R
DN S AUTHOR ITATIVE
[image: image15.png]

auth-ns
[image: image16.png]

Non-existent domain responses

(example.com, foo.com, bar.com)
[image: image17.png]

Figure 6: Backscatter from a Domain’s Authoritative Server to DNS Resolvers
[image: image18.png]

Backscatter: ICM P 3/3 error messages

Detection at the auth server will miss downstream resolver poisoning attempts
[image: image19.png]

FI RST LEVE L DN S R E SOLVE R

S ECON D LEVE L DN S R E SOLVE R

DN S AUTHOR ITATIVE
[image: image20.png]

auth-ns
[image: image21.png]

(example.com, foo.com, bar.com)
Figure 7: Multiple Levels of DNS Resolvers Cause Missed Detection
The Peakflow SP solution can be used to monitor the router interfaces between an Authoritative DNS Server and the DNS Resolver(s). Detecting the presence of backscatter traffic between the Authoritative Server and the DNS Resolver is another indication that there is an attempt to poison a domain or domains located on the Authoritative Server. These side effects will manifest themselves as a high rate of backscatter from domain’s Authoritative server to DNS Resolvers in the form of ICMP type 3 (destination unreachable) code 3 (port unreachable) error messages.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 src: client q » � HYPERLINK http://www.example.com �www.example.com� ?

src: attacker q » pork.example.com?

src: attacker q » milk.example.com?

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

1 src: attacker q » pork.example.com?

src: attacker q » milk.example.com?

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

[image: image22.png]

4

[image: image23.png]

[image: image24.png]

[image: image25.png]

[image: image26.png]

[image: image27.png]

[image: image28.png]

[image: image29.png]

[image: image30.png]

[image: image31.png]

[image: image32.png]

[image: image33.png]

[image: image34.png]

[image: image35.png]

[image: image36.png]

[image: image37.png]

[image: image38.png]

[image: image39.png]

[image: image40.png]

[image: image41.png]

[image: image42.png]

[image: image43.png]

[image: image44.png]

[image: image45.png]

[image: image46.png]

[image: image47.png]

[image: image48.png]

[image: image49.png]

[image: image50.png]

[image: image51.png]

[image: image52.png]

[image: image53.png]

[image: image54.png]

[image: image55.png]

[image: image56.png]

[image: image57.png]

[image: image58.png]

[image: image59.png]

[image: image60.png]

[image: image61.png]

[image: image62.png]

[image: image63.png]

[image: image64.png]

[image: image65.png]

[image: image66.png]

[image: image67.png]

[image: image68.png]

[image: image69.png]

[image: image70.png]

[image: image71.png]

[image: image72.png]

[image: image73.png]

[image: image74.png]

[image: image75.png]

[image: image76.png]

[image: image77.png]

[image: image78.png]

[image: image79.png]

[image: image80.png]

[image: image81.png]

[image: image82.png]

[image: image83.png]

[image: image84.png]

[image: image85.png]

[image: image86.png]

[image: image87.png]

[image: image88.png]

[image: image89.png]

[image: image90.png]

[image: image91.png]

[image: image92.png]

[image: image93.png]

[image: image94.png]

[image: image95.png]

[image: image96.png]

[image: image97.png]

[image: image98.png]

[image: image99.png]

[image: image100.png]

[image: image101.png]

[image: image102.png]

[image: image103.png]

[image: image104.png]

[image: image105.png]

[image: image106.png]

[image: image107.png]

[image: image108.png]

[image: image109.png]

[image: image110.png]

[image: image111.png]

[image: image112.png]

[image: image113.png]

[image: image114.png]

[image: image115.png]

[image: image116.png]

[image: image117.png]

[image: image118.png]

[image: image119.png]

[image: image120.png]

[image: image121.png]

