
Detecting Early Signs of Insider Attack Using

Role-Based Analysis and Classification

University of Colorado at Colorado Springs

CS 526

Jeff Hinson, Fadi Mohsen, Joe Taylor

May 4, 2009



Abstract

The main purpose of this paper is to detect insider attacks before they happen, or at

least to mitigate attack consequences and loss, by monitoring users access and

actions. First, we collect users normal actions, then using the learning classifier and

genetic algorithm application, we can solidify a set of rules that represent a normal

working environment. After the rules are set in place, the system will continue to learn

and analyze the new user's actions and compare them to the stored rules. Any user

action that contradicts the rules will be considered abnormal, and thereby initiating

notifications to be sent to predefined administrators for further investigation.

Introduction

Information security has been studied and analyzed for years. This can be seen in the

many security innovations available today such as intrusion detection systems (IDS)

and centrally managed security systems similar to that used by Microsoft's Active

Directory. Most of these security innovations are geared toward preventing malicious

individuals outside the organization from gaining access to private information and

networks within the organization.

The research tends to overlook and underplay the threat from within. What happens

when a seemingly good employee decides to turn against his organization? This can

be a very difficult problem to solve and the potential for organizational harm is very

high. A well maintained and proactive security approach can mitigate this risk to a large

degree but what happens if this employee is an administrator over the network? He



would have legitimate need to have almost complete control over all security within the

network in order to complete his job duties.

Insider Attacks

Insider attacks involve legitimate network users that have decided to act against the

organization that employs them or that had formerly employed them. Research has

shown that insiders usually take noticeable action within the network prior to the attack

[1]. Without active monitoring for this activity, it is likely to go unnoticed. The battle

against insider attacks is waged with the following goals: preventing attacks, detecting

attacks and mitigating the damage. To effectively prevent insider attacks, an

organization must have a clear understanding and prioritization of its critical assets.

They need to know what critical information and resources might be a target of an

insider attack. If they are aware of what needs to be protected, they can then use the

techniques, tools, and procedures more efficiently. Fighting the insider attack battle on

multiple front lines is not a wise choice regardless of how secure the organization thinks

it is. The second goal is detecting insider attacks and the activities that generally occur

prior to the attack. This can be done by implementing the tools and techniques that can

discover the insider activity before a big loss occurs. Honeypots and honeytokens are

techniques used to detect the attacks. They set a trap for the insider who is looking for

sensitive information by baiting them with information that seems sensitive. Although

both honeypots and honeytokens are traps, the former works on the system level

whereas the latter works on the file level. The third and last goal is to mitigate the

insider attack. Once the attack occurs, the organization needs to take quick action to

reduce damages. Mitigation of an insider attack depends on having a solid emergency

plan in place and ready.



According to a study done at Carnegie Mellon University [2], three categories were

found to summarize styles of insider attacks: theft of information, fraud, and IT

sabotage. Theft of confidential or proprietary information covers the cases in which

current or former employee or contractor intentionally misused an authorized level of

access to networks, systems or data with the intention of stealing confidential or

proprietary information from the organization. Broadcasting this sensitive information

would likely be a big concern for a government organization, especially if the information

could reach enemy hands. It also harms the business process for an organization if the

competitors receive such sensitive information. It is important to say here that most of

these attacks were detected using non-technical means such as notification by a

customer or informant. The second type of insider attack is fraud in which the attacker

intentionally misused an authorized level of access to data with the intention of

committing fraud using this data to obtain property or services. Here the identification of

the attacks were based on system logs including database logs, system file change logs

and file access logs. Lastly, IT sabotage is when an attacker intentionally misuses

authorized levels of access to networks and systems with the intention of harming the

organization. The attacker here used his legitimate account, and in some cases used

other accounts.

What prompts insiders to attack their own organization? According to a study that was

conducted by the US Secrete Service and the Carnegie Mellon University Software

Engineering Institute CERT program in which 150 insider cases from across US critical

infrastructure sectors were analyzed [1], they found that most insiders had a personal

predisposition to this type of activity which can be recognized by monitoring certain

characteristics like mental problems, previous crimes, and interpersonal skills. Many of

the insiders were found to commit an attack after becoming angry with their employer

[3]. One of the key findings of the study was that insiders exhibited such behavior ahead



of their attack [3]. These findings require us to change our plan instead of just using

techniques and tools we must also observe employee behavior. This new angle on

insider attacks motivated the researchers to focus their research on building a model for

capturing employee behavior [4]. Their model focuses on observable influences that

affect employees.

Because experience has shown that insider attacks are becoming an increasingly big

concern, it is recommended to use every possible means to prevent, detect, and

mitigate them. Windows Server 2003 and Windows Server 2008 support the ability to

prevent and detect insider attacks to some degree. However, knowledge of correct

security procedures are not always known within an organization. Educating the

department responsible for monitoring employees is a key to successfully decreasing

the attacks. They must be aware of the tools' capabilities and limitations. As mentioned

above, Windows Server 2008 has a number of capabilities such as auditing, but

integration with other tools is also likely to be beneficial.

In this paper, our concern is with designing a tool that can help the security department

detect attempts to sabotage the IT resources of an organization. The tool will depend

on the input received from Windows Server 2008 auditing and logging.

Role-Based Analysis

Role-based access control has been heavily used since the 1990s in enterprise level

systems. Roles provide administrators of large organizations an efficient and organized

way of assigning permissions to individual users. These roles can be assigned to an

individual user and that user inherits the security permissions assigned to that role [5].



Similar benefits can be gained by using roles for activity analysis. Users within a role

have the same permission within the network and also usually have similar usage

patterns. By analyzing these activities in groups by role, rules can be created for these

roles that accurately classify this activity as normal or abnormal.

Even though role-based analysis appears to be the best option for analyzing a large

group of users for unusual activity, research also finds that organizations often fail to

maintain their role-based access control systems. Exception management,

documentation maintenance and policy changes are sited as frequent issues within this

type of access control [6]. Improper maintenance of the roles will have an impact on the

effectiveness of the rules generated for those roles.

Normal vs. Abnormal Activity

Normal activities are those activities that a person would be expected to perform on a

regular basis according to the function that they perform for the organization. Abnormal

activities are activities that are unusual or unnecessary for a person to be involved with

based on their function with the organization. Installing network monitoring software

might be considered normal for an administrator while it would be highly unusual for a

member of the marketing team to do the same. Deleting account history for a customer

might be a normal clean up activity for someone in the finance group but it would be

high unusual for a system administrator to do the same thing.

Insider attack perpetrators regularly display noticeable abnormal activity prior to an

attack. These abnormal activities were displayed by 87% of the MERIT research

insiders and included such activities as setting up and using extra accounts, installing



and using hacking software, failing to document systems, failing to backup systems and

accessing inappropriate web sites from work [1].

Research by the University of Texas at Austin has found that the number of systems

calls made by a user can help predict whether the user's activity is normal or abnormal

[7]. System call monitoring has been proven effective in detecting external attack

scenarios but research has also shown that the characteristics of system calls vary

greatly between internal versus external threats [7]. This appears to be a promising

research direction for identifying normal versus abnormal user behavior.

Information Gathering

Information gathering is a central issue in any system seeking to prevent insider

attacks. Important considerations have to be made as to what information should be

collected and how it is to be collected. Data can be collected by either the server or by

a local client. A server-side solution might seem appealing, but poses multiple risks.

For example, if information is collected solely by the server, a user could create a local

account on a computer that would go undetected by the server. A client-side solution,

however, would require a lot of programming, as well as strictly-defined rules for

detecting when a client is manually turned off. For the purposes of this paper, we will

consider Windows Server 2008 for a server-side solution of information gathering, and a

custom client as a client-side solution.

Windows Server 2008 Event Logging

Windows Server 2008 has several new features in the auditing configuration which

allow system administrators to target more distinct types of activities [8]. These options



allow administrators to easily turn on or off auditing in many specific ways, which

significantly reduces the effort needed for collecting data. It also contains options for

exporting the gathered information into an XML document, which can be easily parsed

or decoded.

Although Windows Server 2008 may seem to be a simple, all-in-one solution for

information gathering, it poses some potential security risks. For example, it is

incapable of monitoring local accounts. This introduces the risk of an employee

generating a local account that would bypass the server's auditing system.

Furthermore, given how easily an auditing feature could be turned on or off, a system

administrator could easily turn off auditing for his own account and plant malicious code

before anyone notices.

Custom Client

Another option for consideration is the creation of custom, local, network-specific

monitoring client. Such a client could be designed to collect a specific set of

information. As opposed to using Windows Server 2008, where all of the data is

collected by the server and the data is limited to the auditing features available, a

custom client could be installed on the individual computers to manually and locally

collect data. A custom client would have more freedom in what data is collected (e.g.

local accounts), but would require more programming effort. Some examples of the

data that could be collected by such a client are listed below.

Registry Analysis

The user's registry - in part or in whole - could be scanned or copied periodically. This

would allow the server to see how the user's computer is changing over time. This



could be especially important in determining how a system is affected during normal

operations. Because the registry is so large and complex, it is highly unlikely that

someone could make a serious system change without it being detectable by the

registry. On the same note, however, an exhaustive analysis of the entire registry

would be complicated and difficult.

Process Monitoring

Monitoring a process, or a class of processes, provides a real-time map of what the

user is actively doing. Information about what resources are being collected, what files

are being accessed, etc. could provide valuable insight for preventing an insider attack.

Process monitoring allows the network to carefully monitor every step a user makes, as

well as provides early detection for actions that could be malicious.

Peer to Peer Data Sharing

Peer to peer data sharing serves two purposes within the custom client: improving data

delivery and being secure against a direct attack. By allowing clients to share data with

each other, the likelihood of data loss at a single client is reduced. A globally unique

identifier is assigned to each set of client data to assist in getting a single copy of the

information to the server. Should the server be down for some reason, the clients will

continue to gather data and share it amongst themselves until the server can be

contacted for final delivery.

The clients will be able to communicate with each other as well as the server. This

allows for a mesh of monitoring to prevent direct attacks on the clients and the server. If

the client is disabled on a machine, the other clients and the server will notice and

provide an alert. If the server is disabled, the clients will notice and be able to provide



an alert. The communication scheme will need to be planned out to prevent all nodes

from monitoring all other nodes since this would cause excess network traffic.

Classifier Systems

Learning Classifier Systems (LCS) have been in use since the late 1970's to build rules

based on environmental input. In general terms, a classifier system learns by analyzing

input from the current environment, responds to this input with an action and receives a

reward based on the action taken. This analyze-act-reward process encourages good

rules by assigning points and discourages bad rules by withholding points. As this

process continues to analyze input, the good rules are separated from the bad by

points, and new, potentially good, rules are created based on the best current rules.

These new rules replace old unsuccessful rules and the process continues analyzing

input and improving its rules.

The original LCS systems suffered from a common problem called overgenerals. These

overgenerals are rules that cover a large area of the problem space and often cover up

small areas where their overly general rule is not appropriate. For example, an LCS

might be attempting to learn which street corners require a vehicle to stop. If a

particular neighborhood had many corners but only one stop sign, an overgeneral rule

might be created that says that vehicles do not have to stop at any corner in that

neighborhood.

Accuracy-Based Classifier Systems

In 1995, Wilson solved the overgeneral problem of LCS with the Accuracy-Based

Classifier System (XCS). [9] An XCS resists overgenerals by altering the way it assigns



rewards. For each input received from the environment, a set of matching possible

rules is created from the entire population of rules in the system. From this matching

set of rules, only those with the correct associated action are selected and pulled into an

action set. Rules in the action set receive rewards while all other rules do not.

Genetic Algorithm

Classifier systems typically have a genetic algorithm component that assists them in the

creation of new potential rules. There are three primary genetic functions that act on

the rules: reproduction, crossover and mutation. [9] Reproduction is usually

implemented by selecting two parents from the existing rule set based proportionately

on their fitness. These two parents may be used in crossover, mutation or both.

Crossover takes both parents and selects certain attributes from each parent for the

new child rule and the remaining attributes are assigned to the second child. This

allows crossover to produce two new children that a similar to their parents but

decidedly different as well. Mutation is typically implemented by introducing a fairly

small chance to randomly alter attributes in the new child rules. By combining

reproduction, crossover and mutation, new rules are introduced into the rule set to

compete for rewards. Just as new rules are added, so low performing rules are

removed.

XCS systems use a specific approach when it comes to these genetic algorithm

functions. First, reproduction only occurs among the action set rules meaning that only

rules that have matched an actual environmental event and provided the correct action

are allowed to be considered for reproduction. This insures high quality parents for

reproduction. Second, rules are also removed from the action set based not only on

their fitness or rewards but also on how specific they are in comparison to other rules in



that action set. This allows for accurate removal of overly specific rules when a more

general rule applies the correct action. Third, the rewards calculation is somewhat

different from the standard implementation. Rather than simply assign points to all

action set rules, the XCS proportions the points to action set member rules based on a

probability of accuracy which considers how specific and how fit a rule is deemed to be.

[9]

Lessons Learned

Administrative Access Complicates Monitoring

Since it is frequent for administrators to also be the inside attackers, their inherit

privilege level within the network creates difficulties for monitoring activity and detecting

insider attacks. Administrators, depending on the organization, usually have complete

control over the network. This security level allows administrators to stop programs,

disable logging and generally circumvent most security precautions.

Larger organizations that need multiple administrators can work around this

administrator permission issue. Administrators can be granted high privilege access to

select areas and other administrators can be assigned to perform security audits over

the other areas. Newer technologies such as smart-cards and RFID badges can also

be used to restrict and track administrators within the network. [6]

Windows Server 2008 Auditing

To learn about the auditing abilities of Server 2008, we created a virtual lab consisting

of a Server 2008 domain controller virtual machine and three domain client virtual



machines running Windows XP. We were able to configure the auditing, utilize the

client VMs to generate events and observe the recorded results in the server event log.

We exported the test events into XML to allow us to examine how a processing

application would be able to access this information. The table below shows examples

of useful audit event types that can be captured using the Windows Server 2008

auditing features.

Audit Type Description

Audit account logon events

Tracks user account logon and logoff information.

Domain accounts are logged to the domain server and

local accounts are logged to the local computer’s security

log.

Audit account management
Tracks the creation of new user accounts and changes to

user accounts including password changes.

Audit object access
Tracks user access to objects including files, folders,

registry keys and printers.

Audit policy change Tracks changes to policies with the domain.

Audit process tracking
Tracks detailed audit information about applications

starting and stopping.

Audit system events

Tracks events that affect the system security or security

log and includes events such as restarting a computer or

shutting down a computer.



Microsoft .NET Socket Communications

Code samples demonstrating socket communications with client and server applications

were explored. Sharing information across sockets was proven out by connecting

multiple application processes via sockets and exchanging XML information.

Future Direction

To move this project forward further, the rule layout will need to be defined and

additional details will need to be decided for the client and server processes. Defining

the rule layout will involve analyzing the events and information to be tracked and

translating this into a chromosome layout usable by the classifier system and genetic

algorithm. The client process definition will need to determine if and how peer-to-peer

data sharing will work between the other clients and the server. The server process

definition will need define how events will be managed as they are reported from

multiple clients.



References

[1] Moore, Andrew P.; Cappelli, Dawn M.; & Trzeciak, Randall F. “The ‘Big Picture’ of

Insider IT Sabotage Across U.S. Critical Infrastructures” Software Engineering Institute,

Carnegie Mellon University, May 2008. http://www.cert.org/archive/pdf/08tr009.pdf

[2] D.M. Cappelli, A.P. Moore, and T.J. Shimeall, Common Sense Guide to Prevention/

Detection of Insider Threats, tech. report, Carnegie Mellon Univ., CyLab and the

Internet Security Alliance, July 2006; www.cert.org/archive/pdf/

CommonSenseInsiderThreatsV2.1-1-070118.pdf.

[3] Cappelli, D. M.; Desai, A. G.; Moore, A. P.; Shimeall, T. J.; Weaver, E. A.; & Willke,

B. J. “Management and Education of the Risk of Insider Threat (MERIT): Mitigating the

Risk of Sabotage to Employers’ Information, Systems, or Networks.” Proceedings of the

24th International System dynamics Conference. Nijmegen, Netherlands, 2006.

http://www.albany.edu/cpr/sds/conf2006/proceed/proceed.pdf

[4] Puleo, A.J., "Mitigating Insider Threat Using Human Behavior Influence Models",

Master's thesis, Air Force Inst Of Tech Wright-Patterson AFB OH School Of

Engineering And Management ,June 2006.

[5] J.S. Park, J. Giordano, "Role-based profile analysis for scalable and accurate

insider-anomaly detection," pcc, pp.62, 2006 IEEE International Performance

Computing and Communications Conference, 2006

[6] Bauer, L., Cranor, L. F., Reeder, R. W., Reiter, M. K., and Vaniea, K. 2009. Real life

challenges in access-control management. In Proceedings of the 27th international

Conference on Human Factors in Computing Systems (Boston, MA, USA, April 04 - 09,

2009). CHI '09. ACM, New York, NY, 899-908.

[7] Liu, A.; Martin, C.; Hetherington, T.; Matzner, S., "A comparison of system call

feature representations for insider threat detection," Information Assurance Workshop,



2005. IAW '05. Proceedings from the Sixth Annual IEEE SMC , vol., no., pp. 340-347,

15-17 June 2005

[8] Microsoft TechNet, "What's New in Windows Security Auditing",

http://technet.microsoft.com/en-us/library/dd560628.aspx, April 17, 2009.

[9] Butz, M. V., Kovacs, T., Lanzi, P. L., and Wilson, S. W. (2001). "How XCS Evolves

Accurate Classifiers". In Spector, L., Goodman, E., Wu, A., Langdon, W., Voigt, H.,

Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., and Burke, E., editors,

Proceedings of the Genetic and Evolutionary Computation Conference (GECCO'2001),

pages 927-�934. San Francisco, CA: Morgan Kaufmann.


	Abstract
	Introduction
	Insider Attacks
	Role-Based Analysis
	Normal vs. Abnormal Activity
	Information Gathering
	Windows Server 2008 Event Logging
	Custom Client
	Registry Analysis
	Process Monitoring
	Peer to Peer Data Sharing


	Classifier Systems
	Accuracy-Based Classifier Systems
	Genetic Algorithm

	Lessons Learned
	Administrative Access Complicates Monitoring
	Windows Server 2008 Auditing
	Microsoft .NET Socket Communications

	Future Direction
	References

