Semester Project

CS526

Spring 2009

George E. Turner

Single SOAP Update Operation

There are 4 standard methods used to manipulate complex types in SOAP. These are Create, Read, Update, and Delete (CRUD). The CRD methods are straightforward, but the Update method presents many problems and complexities. Given the following schema for a shopping cart:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:simpleType name="FruitType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Apple"/>

 <xs:enumeration value="Orange"/>

 <xs:enumeration value="Pear"/>

 <xs:enumeration value="Bananna"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="VegetableType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Green Bean"/>

 <xs:enumeration value="Cabbage"/>

 <xs:enumeration value="Squash"/>

 <xs:enumeration value="Carrot"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="MeatType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Pork"/>

 <xs:enumeration value="Beef"/>

 <xs:enumeration value="Poultry"/>

 <xs:enumeration value="Fish"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:simpleType name="DairyType">

 <xs:restriction base="xs:string">

 <xs:enumeration value="Milk"/>

 <xs:enumeration value="Cheese"/>

 <xs:enumeration value="Egg"/>

 <xs:enumeration value="Yogurt"/>

 </xs:restriction>

 </xs:simpleType>

 <xs:element name="OrderItem" type="OrderItemType"/>

 <xs:complexType name="OrderItemType">

 <xs:sequence>

 <xs:choice>

 <xs:element name="FruitItem" type="FruitType"/>

 <xs:element name="VegetableItem" type="VegetableType"/>

 <xs:element name="MeatItem" type="MeatType"/>

 <xs:element name="DairyItem" type="DairyType"/>

 </xs:choice>

 <xs:element name="Quantity" type="xs:int"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="ShoppingCart" type="ShoppingCartType"/>

 <xs:complexType name="ShoppingCartType">

 <xs:sequence>

 <xs:element name="Item" type="OrderItemType" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="id" type="xs:string"/>

 </xs:complexType>

</xs:schema>
And the following shopping cart instance:

<?xml version="1.0"?>

<ShoppingCart id="12345”>

 <Item id=”1”>

 <FruitItem>Bananna</FruitItem>

 <Quantity>6</Quantity>

 </Item>

 <Item id=”2”>

 <VegetableItem>Carrot</VegetableItem>

 <Quantity>5</Quantity>

 </Item>

 <Item id=”3”>

 <MeatItem>Fish</MeatItem>

 <Quantity>3</Quantity>

 </Item>

 <Item id=”4”>

 <DairyItem>Yogurt</DairyItem>

 <Quantity>2</Quantity>

 </Item>

</ShoppingCart>

The standard Update method requires that the entire shopping cart instance be passed, just to modify the quantity of one of the order items. Another method can also be created that would take only key values to use to update the quantity, but what if the object being updated is massively more complex than this simple shopping cart, then multiple methods would need to be created to accomplish these tasks.

This project will attempt to provide a single method to be used to update any part of a complex type using XPath as the determining factor as xml fragments as the value to update.

There are several advantages to be gained by providing this improved implementation that should be recognized during evaluation of this new capability. A list of these advantages includes, but is not limited to:

1. Bandwidth – The amount of XML required to complete an update of data on the server is now static and is not a factor of the size of the complex type. No matter how complex the type definition is, only the length of the XPath value is different. There may be some additional weight incurred if the method is used to update a complex type field of the parent complex type, but this change is still a significant improvement in most occurrences.

2. Overloading – The update method can be used for not only primitive field type updates by complex type field updates as well. Any XPath notable value of the parent complex type can be replaced with a value that meets the schema specification. This means that inserts or deletes of child complex types can be performed by specifying a new list with different contents. This also means that no matter how many complex types are defined in the namespace, one single method can be used to update any part of any complex type, which provides a multitude of method overloading in a single consistent interface.
3. Method reduction – This is somewhat of a duplication of the previous advantage, but is worth stating explicitly. Without this new capability, it would be necessary to state a separate definition of every type of allowed modification in uniquely represented messages in the WSDL. This means that the WSDL itself is much smaller when using this single update style and thus also affects the bandwidth of retrieving the WSDL. This also reduces the need for constant WSDL modifications every time a part of the complex type needs to be defined as modifiable. Now the server side code just needs to stop throwing an IllegalModificationException and just perform the requested update.
In order to prove the viability of these claims, it is necessary to provide a suggested reference definition and subsequent implementation to determine if the method is both plausible and possible. This project will provide the definition as well as a possible implementation using the JAX-B (Java API for XML Binding) based implementation of JAX-WS (Java API for XML Web Services). If the definition is compatible from an XML viewpoint, then other toolsets should be able to be adapted to use this definition in a similar capability. It should also be noted that it is not the intent of this project to provide a complete reference implementation using the given toolset, but rather to prove the plausibility of completing the implementation at a later time.
The suggested update method definition is expressed using the complex type given as:

 <xs:complexType>

 <xs:sequence>

 <xs:element name="className" type="xs:QName"/>

 <xs:element name="xpathValue" type="xs:string"/>

 <xs:any/>

 </xs:sequence>

 </xs:complexType>
The className value is a fully qualified expression of the top level object requesting to be updated. Traditionally this would be the complexType of a standard update method, but with this implementation is now expanded to include any uniquely identified object in the namespace of the service. This is accomplished by including the xpathValue. This string is a proposed simplification of XPath and XPointer syntax of the following form:

key=value[<,key=value>…][/ attribute:key=value[<,attribute:key=value>…]]
The example used for this prototype is:

id=12345/Item:id=3
which is interpreted as 12345 is the value for the key identifier “id” of the ShoppingCart instance. The instance has a child list of Item, of which the Item instance with a key identifier “id” of value 3 is specified. The “:attribute=value” is required only if there is a list involved, otherwise only the name of the child object is required. Finally the third value is the any. This is the schema equivalent of Java Object, and is the value to update the current instance of “className” with. It can be another complexType or a primitive value. In the example prototype, it is a simple String.
The following is the test message for this prototype:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:urn="urn:UpdateService:Operations"

 xmlns:shop="urn:UpdateService:Shopping">
 <soapenv:Header/>

 <soapenv:Body>

 <urn:update>

 <urn:className>shop:ShoppingCart</urn:className>

 <urn:xpathValue>id=12345/Item:id=3</urn:xpathValue>

 <shop:MeatItem>Pork</shop:MeatItem>

 </urn:update>

 </soapenv:Body>

</soapenv:Envelope>

The test message will change the MeatItem in Item instance id=”3” from Fish to Pork to show that a single value can be changed without submitting the entire instance.
The code relies upon a modification of the generated classes produced by the JAXB API. The ObjectFactory class includes the QName for all classes in a given namespace. The part that is missing in these classes is the mapping from the QName values to the actual Java class that implements the complexType definitions. By adding this mapping, the class is now capable of providing the required class to use to perform the update. This class is required to use the Java Persistence API (JPA) in order to retrieve the current instance from the database. This is accomplished by using the keys of the XPath like value to build a JPA Query to retrieve the current instance. Once the current instance is retrieved, it is a simple matter to set the fragment into the current instance and then store the instance back to the database.
This prototype is only a rough draft of the capability in order to show that the new capability is possible. A complete implementation would probably be more successful in transforming the current instance into a Document Object Model (DOM) in memory and then applying the fragment to it. It is then again a simple process to change the DOM instance back into a Java object instance to persist it to the database.

In conclusion, please refer to the actual code in the Appendix for a complete implementation of the prototype. This paper is to be considered to be a first draft that will be submitted to W3C for possible incorporation into the SOAP XML standards.

References:

JAXB – Reference Implementation – http://jaxb.dev.java.net
JAXWS – Reference Implementation – http://jaxws.dev.java.net
METRO – Reference Implementation – http://metro.dev.java.net
JPA - Persistence API - http://java.sun.com/javaee/technologies/persistence.jsp
Appendix – Web Service Implementation Code

package service;

import updateservice.service.UpdateServicePortType;

import updateservice.operations.UpdateResponse;

import updateservice.operations.Update;

import updateservice.shopping.ObjectFactory;

import javax.jws.WebParam;

import javax.jws.WebService;

import javax.jws.soap.SOAPBinding;

import javax.xml.namespace.QName;

import javax.xml.bind.annotation.XmlSeeAlso;

import javax.annotation.Resource;

import javax.persistence.EntityManager;

import javax.persistence.Query;

import java.util.List;

import java.lang.reflect.Method;

import org.w3c.dom.Element;

@WebService(name = "UpdateServicePortType",

 serviceName = "UpdateService",

 portName = "UpdateServicePort",

 targetNamespace = "urn:UpdateService:Service",

 wsdlLocation = "WEB-INF/wsdl/UpdateService.wsdl")

@SOAPBinding(parameterStyle = SOAPBinding.ParameterStyle.BARE)

@XmlSeeAlso({

 updateservice.shopping.ObjectFactory.class,

 updateservice.operations.ObjectFactory.class

})

public class UpdateService implements UpdateServicePortType

{

 @Resource

 private EntityManager em;

 @Override

 public UpdateResponse update(

 @WebParam(name = "update",

 targetNamespace = "urn:UpdateService:Operations",

 partName = "parameters") Update parameters)

 {

 QName qname = parameters.getClassName();

 String xpath = parameters.getXpathValue();

 String[] paths = xpath.split("/");

 Element fragment = (Element) parameters.getAny();

 try

 {

 ObjectFactory of = new ObjectFactory();

 Class c = of.getClass(qname);

 if (c != null)

 {

 String[] keyValue = paths[0].split("=");

 // build a query based upon the input

 StringBuilder sb = new StringBuilder("SELECT object from ");

 sb.append(qname.getLocalPart());

 sb.append(" object ");

 sb.append("WHERE object.").append(keyValue[0]);

 sb.append(" = :").append(keyValue[0]);

 // execute the query

 Query query = em.createQuery(sb.toString());

 query.setParameter(keyValue[0], keyValue[1]);

 List tmpList = query.getResultList();

 // if the parameters did not define a unique instance, we may

 // get more than one instance back

 if (tmpList != null && !tmpList.isEmpty())

 {

 // for now, assume the keys defined a unique instance

 Object instance = tmpList.get(0);

 String[] classKeyValue = paths[1].split(":");

 String classname = classKeyValue[0];

 keyValue = classKeyValue[1].split("=");

 Method getMethod = c.getMethod("get" + classname);

 Object subInstance = getMethod.invoke(instance);

 // if the item to update was in a list, find the correct item

 if (subInstance instanceof List)

 {

 for (Object obj : (List) subInstance)

 {

 Method meth = obj.getClass().getMethod("get" + keyValue[0]);

 Object o = meth.invoke(obj);

 if (o.equals(keyValue[1]))

 {

 Method setMethod =

 obj.getClass().getMethod("set" + fragment.getLocalName());

 setMethod.invoke(subInstance, fragment.getTextContent());

 break;

 }

 }

 }

 else

 {

 Method setMethod = subInstance.getClass()

 .getMethod("set" + fragment.getLocalName(), String.class);

 setMethod.invoke(subInstance, fragment.getTextContent());

 }

 // save the updated object back to the database

 em.persist(instance);

 }

 }

 }

 catch (Exception e)

 {

 e.printStackTrace();

 // TODO add a web exception if somethind went wrong

 }

 return new UpdateResponse();

 }

}
Appendix B – ObjectFactory modification
@XmlRegistry

public class ObjectFactory {

 private final static QName _ShoppingCart_QNAME = new QName("urn:UpdateService:Shopping", "ShoppingCart");

 private final static QName _OrderItem_QNAME = new QName("urn:UpdateService:Shopping", "OrderItem");

 private static final Map<QName, Class> QNAME_CLASS_MAP;

 static

 {

 Map<QName, Class> tmp = new HashMap<QName, Class>(2);

 tmp.put(_ShoppingCart_QNAME, ShoppingCartType.class);

 tmp.put(_OrderItem_QNAME, OrderItemType.class);

 QNAME_CLASS_MAP = Collections.unmodifiableMap(tmp);

 }

 public Class getClass(QName qname)

 {

 return QNAME_CLASS_MAP.get(qname);

 }

