Load Balance of Tomcat with Apache
George Fu, UCCS

CS 526 Semester Project Report
Spring 2009
1. Abstract
With the fast development of Internet, there is an explosive increase in accessing to Web sites. However, people often complain about slowness in approaching Web sites. This problem can be usually solved by load balancing with the additional involvements of hardware and software, especially on a Solaris platform. However, Load balancing is not necessarily a hard and expensive thing to do. In this paper, the author will show how the load balancing can be easily implemented for Tomcat Web servers on Solaris with Apache without any additional resources.

2. Introduction
Today, we have a Web system as shown below in Fig. 1. This system consists of two Web servers: websvr1 and websvr2. The OS for each Web server is Solaris. As shown in the figure, each Web server has its own Apache and Tomcat. The Apache is used as a proxy and the real jsp pages are served by the Tomcat. Apache and Tomcat are connected by mod_jk [1]. Right now, one server is used as the primary and the other one used as a hot standby backup. In other words, the setup and configurations of the two servers are identical. Primarily, the users use and only use the primary Web server. The only time the users will use the backup Web server is when the primary Web server is down for any reasons. At such a time, a user must be notified and they will then switch to use the backup URL manually.

As can be seen, such a system architecture has many drawbacks. First, it doesn’t have load balancing. All the requests are served by only one machine, and most of time, the backup server are just sitting there idle, which immediately reduce the system overall performance by 50%. This not only uses the resources inefficiently, also does it substantially decreases the overall system availability. Further, since the traffic will always goes to one machine, the whole system has a single point of failure. If the primary server is down and a user is not somehow notified, he/she will loss the services.

Second, the system has no transparent failover and failback. In the event of a planned outage, such as a scheduled maintenance or an unplanned outage, such as a hardware failure that disables the operation of a production site, a user must be notified to use the backup server. After the primary server is operational, the user must be notified again to move back to the primary site. This is not only inconvenient, but also not acceptable for any mission critical operations.
The last, but not the least, problem is scalability. Scalability is the measure of how well a computer, service, or application can grow to meet increasing performance demands. For server clusters, it is the ability to incrementally add one or more systems to an existing cluster when the overall load of the cluster exceeds its capabilities. For our system, even it appears like a two-machine cluster, it is not scalable. Since all the requests virtually go to one machine, the increasing performance demands are totally depends on that one machine’s capacity. In other words, it is not scalable at all.

[image: image23.png]Load balancer 1 Apache)

) ‘Load balancer 2 (Apache)

Fig. 1. The schematic of our current Web system
3. Load Balancing on Solaris
As described in Section 2, our current system cannot deliver continuously available and high-performance Web applications. Even though our Web system is not currently mission critical in our business, it is a vital concern to our management because more and more critical users are signed on. Our management wants to solve the problem. However, they want to solve the problem with no/little additional expense and resources. After researches, it appears to me that the load balancing is the best way to tackle the problem. Load balancing distribute processing and communications activity evenly across a computer network or cluster so that no single device is overwhelmed. Load balancing is especially important for networks where it's difficult to predict the number of requests that will be issued to a server. Busy Web sites typically employ two or more Web servers in a load balancing scheme. If one server starts to get swamped, requests are forwarded to another server with more capacity. Load balancing can also refer to the communications channels themselves. However, unlike Linux LVS, Sun Solaris OS does come with load balancing feature in the kernel (However, I heard that the Solaris 10 Operating System includes a new facility, called Solaris Zones, that can be used with resource management techniques to create a container to manage unbalanced load problems). Therefore, load balancing on a Solaris platform must be done by a third-party product or at the application level. There are many ways to implement load balancing on Solaris platforms, which includes, but not limit to, the following.
· Hardware based load balancing

· Reverse proxy:mod_proxy_balancer, mod_jk, mod_cluster

· Third party load balancing appliance (LSF,Juniper, Cisco…)

· Tomcat balancer application

· DNS load balancing (Round Robin)

Two popular methods of load balancing are DNS round robin and hardware load balancing. DNS round robin provides a single logical name, returning any IP address of the nodes in the cluster. This option is inexpensive, simple, and easy to set up; but it doesn't provide any server affinity, transparent failover, or high availability. In contrast, hardware load balancing solves the limitations of DNS round robin through virtual IP addressing. Here, the load balancer shows a single IP address for the cluster, which maps the addresses of each machine in the cluster. The load balancer receives each request and rewrites headers to point to other machines in the cluster. If we remove any machine in the cluster, the changes take effect immediately. The advantages of hardware load balancing are server affinity and high availability; the disadvantages are that it's very expensive and complex to set up. Generally speaking, hardware load balancing normally will give the best performance among all the methodologies. However, it is also normally most expensive, proprietary, and inflexible. A third part product like LSF can also usually get the job done. However, it will always incur additional cost, resources or steep learning curve [2].
Load balancing capability was not provided in previous Tomcat versions before Tomcat 5 [3]. The integration of the Apache web server and the Tomcat servlet container together has been a popular choice to handle web requests and to balance loads. In an Apache-Tomcat setup, a Tomcat instance called Tomcat Worker is configured to implement load balancing. The Tomcat 5 server comes with a rules-based load balancer application. Two simple custom load balancing rules (extending the rules API) were written based on round-robin and random algorithms to redirect incoming web requests. The Tomcat load balancer application is a rules-based application that uses a servlet filter mechanism to redirect incoming web requests to the next available member in the cluster. The load balancing is enabled by creating a rules configuration file (called rules.xml) that contains various rules and redirection URLs. The balancer filter checks the RuleChain to determine where to redirect the request by checking the rules in the same order as they are defined in the rules.xml file. As soon as a Rule matches the criteria, the filter stops the evaluation and redirects the request to URL specified for the matching rule. However, as mentioned on the Tomcat balancer Web site [4], the Tomcat balancer application is not designed as a replacement for other robust load-balancing mechanisms. Rather, it's a simple and extensible way to direct traffic among multiple servers. Further, Tomcat 5 does not provide a built-in fail over mechanism to detect when a cluster member crashes.

Mod_cluster, mod_proxy_balancer and mod_jk are Apache modules and can all provide load balancing for Tomcat when it works with Apache. Mod_cluster is a JBoss product. It is similar to mod_jk and mod_proxy and allows httpd to act as a load balancer in front of Tomcat based Web servers. Compared to other similar Apache modules (mod_jk, mod_proxy and mod_rewritter), mod_cluster provides a few substantial advantages for load balancing. With mod_cluster, there are little to configure at the Apache side (only need to add the mod_cluster shared libraries into the httpd.conf file). Also, main calculations of the load balancing are done on the backend servers, where more information is available. Further more, during the startup, backend servers register themselves with httpd. Therefore, no static topology configuration and no more workers.properties at the Apache side are needed. Mod_cluster load balancer can also make optimal balancing decisions because it uses critical backend server metrics, e.g. CPU utilization, available memory, DB connection pool usage to derive the balancing factor.
As a new feature in Apache HTTP Server 2.2, mod_proxy_balancer is part of mod_proxy and provides two load balancing methods. One is by number of requests and the other is by number of bytes. It can also detect failed backends and presents the transparent failover and failback. The configuration of the mod_proxy_balancer is very straightforward. An example of the configuration is shown in Fig. 2.
As described before, Tomcat provides load balancing in three different ways: using the JK native connector, using Apache 2 with mod_proxy or mod_rewrite, or using the balancer web app. Among them JK connector is the earliest and most often used. JK connector is an Apache module called mod_jk. It’s primarily designed to connect Apache and Tomcat so Apache can be used as a proxy to Tomcat. However, load balancing with nice failover feature is also built in the module. The only limitation for mod_jk is that it can only used for load balancing between Apache and a java Web server.
In summary, hardware load balancing is expensive and inflexible; The DNS one is simple, but can only do round-robin and no failover; Third party product most likely will incur additional expense and resource. Apache modules and Tomcat balancer are the best fits for our requirement. However, considering that our current architecture already uses Apache as an HTTP server and uses the JK connector to connect the Apache and the backend Tomcat servers (see Fig. 1.), the best solution for us is obviously the mod_jk module. With this approach, we don’t need to change anything in our current architecture. With only a few minor changes in three configuration files (see Section 4), we will have the load balancing which will solve our problems mentioned in Section 2, without need of any additional resources.

[image: image2.emf]Apache mod_proxy Configuration

• Listen 80

• LogLevel debug

• TransferLog logs/access_log

• LoadModule proxy_module modules/mod_proxy.so

• LoadModule proxy_http_module modules/mod_proxy_http.so

• LoadModule proxy_balancer_module modules/mod_proxy_balancer.so

• ProxyPass / balancer://mycluster/

• ProxyPassReverse / http://1.2.3.4:80

• ProxyPassReverse / http://1.2.3.5:80

• <Proxy balancer://mycluster>

• BalancerMember http://1.2.3.4:80

• BalancerMember http://1.2.3.5:80

• </Proxy>

Fig.2. Apache mod_proxy_balancer configuration in the Apache httpd.conf file

4. Load Balancing with mod_jk
Since our Web system already have Apache, Tomcat and JK connector in place, it turned out that adding the load balancing is a very straightforward thing to do. There are only three existing configure files to tweak to add load balancing.

The first file needed to tweak is the worker.properties file at the Apache side. Basically, before the load balancing, this file only point to one machine. With load balancing, all the backend servers need to be in the file. For our case, since we have two Tomcat servers, we have two servers in this file. Please see Fig.3 for the details of this file. Please be noted that, for load balancing to work, the ports for different Tomcat server should be different. In the file, we set the balance method to 'Busyness' or balance by busy factor. Apache will delegate the next request to the Tomcat instance which is least busy. Please note that there are a couple of options for the method. Please consult the Apache/Tomcat documentation which lists out options for the workers properties file [3].
The second file to tweak is the httpd.conf file at the Apache side. The changes to this file are very simple. All one has to do is to replace the “ajp13” in the file to “loadbalancer”. The following is an example of the changes.

· JkMount /jsp-examples loadbalancer
· JkMount /jsp-examples/* loadbalancer
The last file to tweak is the server.xml file at the Tomcat side. In this file, two things need to be done. One is to change the JK connector port to the new port defined in the worker.properties file. The default JK connector port is 8009. The other tweak is to add the jvmRoute directive. Fig. 4 gives an example regarding to changes. The figure only shows the configuration for one Tomcat server. The rest of the Tomcat servers need to be added similarly. In our case, we just need to add one more into the server.xml file. By the way, if you want to use session stickiness, you must set different jvmRoute attributes in the Engine element in Tomcat's server.xml. Session stickiness is also called Server Affinity. A simple load balanced setup which does not provide ‘server affinity’ is not suitable for stateful web applications. In stateful web applications, user state (session data) is held on one server. All further requests from that user must be processed by the same server. A load balancing which can do this is said to have the session stickiness. Since session stickiness is not critical in our applications, we have not considered it in our configuration.
That is it. Amazingly, with only a few configure file tweaks as described above, our Web system has the load balancing. Now, with the load balancing, our Web system architecture is completely different from what shown in Fig. 1. The Fig. 5 shows the current architecture with load balancing. In a typical clustering solution, this involves use of a load distribution algorithm, like a simple round robin algorithm or more sophisticated algorithms, which distributes requests to the servers in the cluster by keeping track of the load and available resources on the servers.

This new architecture not only gives us load balancing, it also brings us scalability. With higher volume of the traffic, we can simply add more backend Tomcat servers by adding more entries in the configuration files.

[image: image3.emf]Apache Worker-Properties File

• worker.list=loadbalancer

worker.tomcat1.port=18081

worker.tomcat1.host=localhost

worker.tomcat1.type=ajp13

worker.tomcat1.lbfactor=1

worker.tomcat2.port=28081

worker.tomcat2.host=localhost

worker.tomcat2.type=ajp13

worker.tomcat2.lbfactor=1

worker.loadbalancer.type=lb

worker.loadbalancer.balanced_workers=tomcat1, tomcat2

worker.loadbalancer.method=Busyness

Fig. 3. Apache worker.properties file with load balancing

[image: image4.emf]Tomcat server.xml File

• <Engine name="Standalone"

defaultHost="localhost" debug="0"> with:

<Engine jvmRoute="tomcat1"

name="Standalone" defaultHost="localhost"

debug="0">

• <Server port="8009" with: <Server port="18081"

Fig. 4. The Changes for Tomcat server.xml file.

[image: image5]
Fig. 5. The architecture with load balancing
4. Future Work
The load balancing provided by the JK connector also gives us high availability (HA). In other words, it provides failover. When one Tomcat server goes down, another one will be able to take over transparently. Also, when the down Tomcat server come back online, Apache proxy will automatically fail it back. The failover and failback usually involves using a heartbeat mechanism to keep track of the server status and avoiding sending requests to the servers that are not responding. As we mentioned before, some system also need session stickiness, which is also called Session-Level Failover. An HTTP client can have a session that is maintained by the HTTP server. In session level failover, if one of the servers in the cluster goes down, then some other server in the cluster should be able to carry on with the sessions that were being handled by it, with minimal loss of continuity. This involves replicating the session data across the cluster (to one other machine in the cluster, at the least). JK connector can also do session-level failover. However, since our applications are not session critical, we don’t implement session stickiness for now. In the future, we can easily add it into our picture by simply tweak the worker.properties and server.xml files.

Our Web system with load balancing does seem perfect now. It has all desired features like low cost, easy implementation, load balancing and failover. However, it does introduce one critical problem –a single point of failure. As shown in Fig. 5, the Apache server is our single point of failure. The whole system will not work if it fails. To solve this problem, a redundancy of the Apache servers must be introduced. Since we originally already had two Apache proxy servers (see Fig. 1), we can use the second one to add the redundancy. Please keep in mind that the redundancy of the Apache servers might introduce another set of new problems. Load balancing of Apache servers and session stickiness are just two among them. Usually, the single point failure problem brought by load balancer can be reduced by using round robin DNS to delegate user requests to more than one load balancer. The load balancer delegates requests to more than one application server. In this scenario, if the load balancer and/or the application server goes down, the other load balancer and application servers can still provide the same level of service. This is illustrated in the diagram below in Fig. 6. The DNS server generally contains a single IP address mapped to a particular site name. For example, before DBS load balancing, our site www.verizon.com maps to the IP address 123.24.23.3. To balance the server loads using DNS, the DNS server maintains several different IP addresses for a site name. The multiple IP addresses represent the machines in the cluster, all of which map to the same single logical site name. Using our example, www.verizon.com could be hosted on three machines in a cluster with the following IP addresses:
123.34.23.3
123.34.23.4
123.34.23.5

 Setting up DNS load balancing is simple. In the above example, the DNS server contains the following mappings in its zone file.
www.verizon.com 123.34.23.3
www.verizon.com 123.34.23.4
www.verizon.com 123.34.23.5
When the first request arrives at the DNS server, it returns the IP address 123.34.23.3, the first machine. On the second request, it returns the second IP address: 203.34.23.4. And so on. On the fourth request, the first IP address is returned again. Using the above DNS round robin, all of the requests to the particular site have been evenly distributed among all of the machines in the cluster. Therefore, with the DNS round robin method of load balancing, all of the nodes in the cluster are exposed to the net and thus solve our single point failure problem

As can be seen, DND round robin is inexpensive and easy to setup. The system administrator only needs to make a few changes in the DNS server to support round robin, and many of the newer DNS servers already include the failover feature. It doesn't require any code change to the Web application; In fact, Web applications aren't aware of the load-balancing scheme in front of it. Although DNS round robin is a cost-effective way for us to solve the single point failure problem, it also comes with disadvantages. Two main disadvantages of this software-based method of load balancing are that it offers no real support for server affinity and doesn't support high availability. We are not going to worry about the server affinity here because, as said before, it is not critical to our current applications. For the high availability problem, we can consider a cluster of n nodes. If a node goes down, then every nth request to the DNS server directs you to the dead node. An advanced router solves this problem by checking nodes at regular intervals, detecting failed nodes and removing them from the list, so no requests go to them. However, the problem still exists if the node is up but the Web application running on the node goes down. In such a case, some users of that ISP couldn't access your site on their first attempt. This is also a bigger problem when removing or adding a node. When you drop a node, a user may be trying to hit a non-existing server. When you add one, that server may just be under-utilized until its IP address propagates to all the DNS servers. Further, although DNS round robin method tries to balance the number of users on each server, it doesn't necessarily balance the server load. Some users could demand a higher load of activity during their session than users on another server, and this methodology cannot guard against that inequity. All these problems needs to be carefully considered when applying DNS round robin method into the system.

[image: image6]
Fig. 6. DNS round-robin load balancing
6. Conclusions
· Apache/Tomcat load balancing is easy to setup

· No dedicated balancer machine is needed.
· For better performance, mod_cluster can be used.
· DNS Round-Robin is an easy to load balance the balancer with some caveats.
7. References
1. Tom Bialaski, Optimizing Solaris Resources through Load Balancing, Sun Blue Print Online, June 1999, http://www.sun.com/blueprints/0699/lsf.pdf
2. Srini Penchikala, Clustering and Load Balancing in Tomcat 5, 2004, http://www.onjava.com/pub/a/onjava/2004/03/31/clustering.html
3. http://jakarta.apache.org/tomcat/tomcat-5.0-doc/balancer-howto.html
4. Brain Stansberry, A new httpd-based load balancer http://www.jugs.ch/html/events/slides/090313_BrianStansberry_mod-

 HYPERLINK "http://www.jugs.ch/html/events/slides/090313_BrianStansberry_mod-cluster-jug.pdf" \t "_parent" cluster-jug.pdf
5. Aveneet Manget, Load-balancing Tomcat with Apache, 2008 http://www.theserverside.com/tt/knowledgecenter/knowledgecenter.tss?l=LoadBalancingTomcatApache

 HYPERLINK "http://www.theserverside.com/tt/knowledgecenter/knowledgecenter.tss?l=LoadBalancingTomcatApacheWeb" \t "_parent" Web
6. Apacheand Tomcat load balancing http://confluence.atlassian.com/display/DOC/Apache+and+Tomcat+load+balancing[image: image7][image: image8][image: image9][image: image10][image: image11][image: image12][image: image13][image: image14][image: image15][image: image16][image: image17][image: image18]

:

Internet

Client

16

[image: image1][image: image19.jpg]

[image: image20.jpg]

[image: image21.png]

[image: image22.png]Tomeatnsance 2

