
A Collaborative Game Development Tool
Brian Thorpe#1

Computer Science Department, University of Colorado at Colorado Springs
1420 Austin Bluffs Parkway, Colorado Springs, Colorado, USA

1bthorpe@uccs.edu

Abstract— This document describes an approach to developing a
collaborative game development tool. The paper describes an
approach for the tool, the design for the tool, and an
implementation of such a tool.

Keywords— Game Development, Collaborative, Networking,
Tool, Terrain, Models.

I. INTRODUCTION

Game development requires a significant amount of input
from a variety of roles. Artists, programmers, game
designers, story writers, all are involved in the creation of the
game. There could be several different artists producing
content for a scene in a game, one may be producing textures
for buildings, and other textures for the ground. A
collaborative tool is needed to facilitate the development when
these assets are being placed into a game. This would allow
for artists, and game designers to have the ability look at the
same game scene at the same time and discuss modifications
to provide a user the best game play experience possible.

A collaborative game development tool would be a
composition of other game development that share the data
between clients through a server. Some of the tools included
in a collaborative game development tool could be a terrain
editor, an asset placement tool, lighting effect tools, character
placement, etc.

The paper describes an approach to developing one such
collaborative game development tool, a terrain editor. The
terrain editor is synchronized with a server. When a client
connects it receives the current server data, and the current
server state. Once synchronized the user can begin looking at
the current game content, and begin creating new terrain
content.

The paper discusses the design, implementation, and future
enhancements of a collaborative terrain editor.

II. COLLABORATIVE TERRAIN EDITOR

The Collaborative terrain editor is composed of both a
client and a server. The client and server work on a standard
client server model. Clients connect to the server, and the
server communicates back to the other clients.

A. The Client
The client is composed of game data, a game engine for

rendering the game data, a user interface for modifying the
data, and a client for connecting and communicating with the
server.

1) Client: The client will communicate with the server by
sending and receiving messages. The messages are a set of
defined packet types which will contain the different
operations necessary to synchronize and edit terrain.

2) Client Terrain: The client terrain is composed of several
components. The elevation data for the terrain which is
shared with other clients and the server. The terrain geometry,
for rendering the terrain mesh. Mesh triangle data for
performing picking operations and collision detection.

The elevation data is being kept synchronized with the
server. This data is updated when edit messages are received
which further updates the other client data components.

3) Game Engine: The game engine is responsible for
rendering the client terrain to the user. The game engine in
his case is a deferred shading graphics engine built to render
the terrain and texture it using a height normal technique.

4) User Interface: The user interface provides the user with
the ability to select the editing tools, and their parameters.
The user needs to be able to raise, lower, flatten, and smooth
terrain as well as add additional pieces of terrain. The user
needs to be able to select three different parameters for the
edit, the inner radius of the edit, the outer radius of the edit,
and the amount of power applied for the edit.

B. The Server
The server is composed of only the game data, and the

server for connecting an communicating with the clients.

1) Server: The server can handle chat messages, edit
commands, and synchronization data. The server processes
this incoming data and forwards it to the client.

2) Server Terrain: The server terrain is only the elevation
data. The server uses the same processing commands as the
clients to apply edit data requests.

3) Server State: The server state holds all of the edit requests
made by clients since the last save. This state allows for a
client to join in during an editing session, acquire the current
baseline file data and then synchronize to the current state in
the server.

III. COLLABORATIVE TERRAIN EDITOR PROCESS DESIGN

The synchronization and editing process has three major
steps. The first step is to synchronize the files with the server,
this is referred to as file syncronization. The second step is to
synchronize to the state of the server, this is referred to as

state synchronization. The final step is the editing step, this is
the state at which clients send and receive updates actively
seeing changes made by other clients.

A. File Synchronization
 The server maintains a list of files it is serving to clients.

The list of files is associated with an MD5 hash of the file.
When a client connects to the server, the client sends the MD5
hash of the client's local content. Any mismatches or missing
files are sent back to the client. Once the client has the correct
files it can be considered synchronized to the files.

B. State Synchronization
Once a client is synchronized to the files on the server, the

client must synchronize to the active state of the server. The
server's active state is a set of modifications to the data since
the last save to the files. The server transmits any
modifications back to the client for processing, once
processed the client can enter the editing state.

C. Editing
Once the client is in the edit state, the client actively listens

for modifications by other clients transmitted by the server.
The client can also make edits to the terrain data and the
server listens and forwards the requests to the other clients.

IV. COLLABORATIVE TERRAIN EDITOR IMPLEMENTATION

To test the design a client and server were implemented in
C#. The client makes use of a preexisting rendering engine
developed by the author, and the Lidgren C# Networking
Library. The server uses only the Lidgren C# Networking
Library.

The large portion of the logic is located in the design of the
terrain, and terrain editing. The rest of the logic is in the
client-server communication.

A. Terrain
Terrain is the ground representation in some games see Fig.

1. In this particular implementation terrain is a set of grids of
vertexes that can be assigned to a location on the x,z plane.
The y values account for the height data on this plane.

Terrain pieces are 129x129 vertexes of height data, called a
terrain block. The server is responsible for maintaining the
height data for each Terrain Block. The server is responsible
for updating the height data, and the normals associated with
it. Whereas the client is responsible for updating this data to
match the server but also updating the other data structures to
display and interact with the terrain correctly. In this
particular terrain implementation vertex morphing information
is stored as well to facilitate smooth switching from different
levels of detail.

Fig. 1 Example of game terrain from client.

1) Terrain Elevation Data: Applies to both server and client.
Terrain elevation data is the set of data holding only the
terrain elevation data that is being stored on the server and
synchronized with the clients. This is the dataset that the
client and server both store and manipulate to change the
terrain. Terrain Elevation Data stores the same number of
vertices as a Terrain Block. For this implementation, Terrain
Elevation Data is composed of two Vector4 representations
which is a grouping of 4 floats for a total of 8 floating point
numbers. The first 3 (x,y,z) components of the first Vector4
correspond to the normal of the vertex, the 4th (w) component
corresponds to the elevation. The first 3 (x,y,z) components
of the second Vector4 correspond to the morphed normal of
the vertex, the 4th (w) component corresponds to the morphed
elevation. The second Vector4 is the extra information to
support vertex morphing.

The Terrain Elevation data is stored in a binary format on
the server and transmitted to clients upon connecting. The
format when saved is the output of both Vector4s
x,y,z,w,x,y,z,w and can be read in by reading singles from a
byte stream.

2) Terrain Blocks: This applies to the client only. A terrain
block consists two pieces. The Base Terrain Block, and the
Terrain Elevation Block. The Base Terrain Block is set of x,z
values corresponding to the 129x129 vertexes for a Terrain
Block stored in a Vertex Buffer. The Terrain Elevation Block
is only the height data in this case the Terrain Elevation Data,
moved into a Vertex Buffer. This design is to reduce the
memory footprint of terrain by removing the x,z data that is
stored with the elevation and reused for each Terrain
Elevation Block.

129x129 vertexes was chosen for several performance
enhancing properties. 129X129 vertexes allows for multiple
levels of detail by removing every other vertex. This can be
done multiple times since the number of quads formed by the
vertexes is a power of 2. 129x129 is also the largest number
of vertexes alllowing for the level of detail processing and
enabling indexing using a short two byte value.

When the Terrain Elevation data is edited the Terrain
Elevation block must be updated as well. This requires

locking the vertex buffer on the graphics card and writing the
new terrain elevation data to the vertex buffer.

3) Terrain Patches: This applies to client only. A Terrain
Patch is a subset of the larger terrain. The patches only serve
as a way of building a subset of a terrain for rendering a
smaller portion or multiple pieces of the terrain with different
levels of detail. Each patch contains a set of index data which
corresponds to the triangle formation scheme for the specified
level of detail. This does not need to be updated when the
terrain is edited.

4) Terrain Physics: The terrain is represented in the games
physics engine as a set of triangle data. This data is used to
perform the picking operations on the terrain to determine the
cursors location in the 3D coordinate system. The triangle
height data is updated when the terrain is edited.

5) Terrain Edit Parameters: The terrain edit supports
editing height values with a round paint brush. Two
parameters control the inner and outer radius of the brush as s
shown in Fig. 2. The inner radius edits terrain with the
maximum power. The outer radius edits the terrain with a
linear degradation towards the outside. The power parameter
controls how strong an effect the edit has on the terrain. The
parameters are controlled by the client using the GUI show in
Fig. 3.

Fig. 2 Example of terrain edit brush with inner radius (red) and outer
radius(green).

Fig. 3 Example of of terrain edit parameters.

1) Terrain Edit Strategies: The terrain can be edited using
four different edit strategies. The raise strategy raises the
terrain within the cursor by the amount given by power,
degrading linearly in the outer radius to 0. The lower strategy
lowers the terrain within the cursor by the amount given by

power degrading linearly in the outer radius to 0. The flatten
strategy move terrain up or down depending on the difference
to the cursors center point by the difference multiplied by the
power this degrades towards 0 linearly in the outer radius.
The smooth strategy averages the elevation of the neighboring
four vertexes and moves the vertexes towards the average
height difference multiplied by the power; this degrades
towards 0 linearly in the outer radius. The four strategies are
shown in Fig. 4.

Fig. 4 Example of terrain strategies control with raise selected.

B. Packet Types
The client and server communicate using pre defined

packet type messages. The packet types are given in Table I,
Packet Types.

TABLE I
PACKET TYPES

Packet Type Packet Data
Login Type-Byte

Username-String
Logout Type-Byte
Chat Type-Byte

Message-String
AssetRequest Type-Byte

FileName|MD5|FileName|MD5|...-String
*List of FileNames and MD5s split with
'|'

AssetTransferStart Type-Byte
Name-String
Size-Integer

AssetTransferAck Type-Byte
AssetTransferProcess
Complete

Type-Byte
BufferPosition-Integer
Length-Integer
Data-Byte[Length]

SyncStart Type-Byte
SyncComplete Type-Byte
TerrainCreate Type-Byte

PositionX-Single
PositionY-Single

TerrainEdit Type-Byte
EditType-Byte
NumberOfEdits-Integer
TargetX-Single
TargetY-Single
TargetZ-Single
RadiusX-Single
RadiusY-Single
Power-Single
*TargetX-Power repeats for
NumberOfEdits

Login is a packet sent containing a single string Username
which displays in both the server and client it is used to
identify users in chat conversations. The user name is also

announced to the clients when connecting and logging into the
server.

Logout is a packet sent to the clients when a user
disconnects from the server. It notifies all of the clients that a
user has left.

Chat is used by the client to communicate to other users
when working on the data. The Server appends the username
to the front of the message before sending it to all of the
clients.

AssetRequest is used by the client to send a list of file
names and files hashes to the server for comparison. When
the server receives the file list and files hashes it compares the
files determines which file are out of date or missing and
sends them to the server.

AssetTransferStart is used by the server to signal the client
it is about to start sending a file. This allows the client to
open a file for writing the server data.

AssetTransfer contains the position in the file buffer, the
length of data, and the data to be written to the file. These are
generated by the server and are a maximum number of bytes
and continues sending these packets until the client has each
piece of the file.

AssetTransferProcessComplete is sent by the server when
the server has no more files to send to the client. The client
can then load the data files it has and begin the client
visualization.

SyncStart is sent by the client to the server to inform the
server it has loaded the file data and is ready to synchronize
the data with the server.

SyncStop is sent by the server to the client to inform the
client it is now synchronized and ready to edit.

TerrainCreate is a message sent by a client to the server
requesting a new block of terrain be added. The x,z positions
are in grid coordinates not actual coordinates.

TerrainEdit is a message sent by a client to the server
requesting a specific edit. These messages are batches by edit
type and sent to the server every .1 seconds. The coordinates
sent in this message are in game coordinates.

C. File Manager
The file manager for both the client and the server store the

list of actives files and their hashes. This is used for loading
the data and making comparisons on the server. The File
Manager is also responsible for receiving the segments of files
and building the files on the client as the data comes from the
server.

D. Client
The client is composed of all of the terrain components, the

file manager, a GUI to interface to the terrain, and chat form.
The user interface for the Client has three major sections.

The game window which allows for terrain edits to be made.
The chat window which allows client communication. The
parameters window which allows the user to change the edit
type and brush parameters.

When a user has the mouse over the game window the
cursor follows the mouse pointer. When the user clicks the

left mouse buttons edits are applied. The user navigates using
w,a,s,d for forward, backward, left, right movement
respectively. Forwards movement is in the direction of the
camera. The user can move up and down using q up, and z
down.

When a user makes an edit by pressing on the game
window, first a ray is projected into 3d space via the cameras
directional vector and the screen coordinates clicked on. This
ray is intersected against the physics triangle data to return the
resulting intersection point. This intersection point is used to
determine where the center of the ground cursor is and where
the edits are applied. The parameters are passed to one of the
four edit strategies and the edit is performed. The target and
parameters are then sent to the server where this edit is also
applied. The only time actual vertex data is sent to the client
is on the file synchronization step, the rest is done by sending
edit information which is then calculated on the server and
client data sets.

Fig. 5 Screen Shot from the Client Editor

E. Server
The server is composed of four windows, the assets form

which displays what files are being shared for
synchronization, the asset transfer window which displays
active file transfers, the users form which displays connected
users and the chat form which displays any chat messages.

The server only displays information to the users and
allows a user to save. The server provides no other features to
the user other than displaying information.

When the server receives an edit data packet the edit is
applied to the servers terrain dataset and then the edit packet is
forwarded to each of the clients.

The server and client both use Lidgren C# Networking
Library for communication. Lidgren handles all of the
connection setup and tear down, as well as sending the data
buffers and resolving when packets are lost, and how to
respond. Lidgren is based on UDP, and provides four transfer
modes on a number of channels. Reliable Ordered is used for
the server and client to guarantee the edits are kept in sync
with the server.

Fig. 6 Screen Shot from the Server with active file synchronization

V. FUTURE WORK

This project only looked into creating a single collaborative
tool which could be part of a larger collaborative game editor.
This tool provided simple but effective means for
manipulating terrain data across a network. The next step
would be to integrate additional tools to work with the terrain
and the collaborative setup.

The first additional tool that would be easy to integrate and
add value to a collaborative environment would be an asset
placement tool. This tool would allow a user to import a 3D
model and manipulate its position and orientation. This could
be used to create forests or castles, see Fig. 7.

Fig. 7 Screen Shot from client with proposed 3D Model Manipulation

VI. CONCLUSIONS

After implementing the collaborative terrain editor. The
software was tested with three users working on a set of
terrains. One user was local, and hosting the server, while one
was located in state, and the other out of state. All three users
were able to communicate effectively while developing the
terrain. The tool showed great potential for becoming a
valuable game development asset.

With additional tools incorporated into this collaborative
editor the tool could be used to produce game content.

REFERENCES

[1] (2009) The Lidgren-Networking Library website. [Online]. Available:
http://code.google.com/p/lidgren-network/

