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Proxy Server-based Multipath Connection

(PSMC)

The key challenge in today’s Internet is to improve network performance, security, and reliability for heterogeneous Internet participants. The current network connections are mostly over a single path. This single path connection model is simple and easy to implement. However, the single path connection is vulnerable to potential attacks, link breakage, or even traffic congestion. It may also under-utilize network resources and suffer from performance problems. Therefore, it does not always provide a good and reliable network connection.  A multipath connection provides multiple paths among network hosts. The traffic from a source is spread over multiple paths and transmitted in parallel through the network. The receiver collects the incoming network packets, re-assembles them, and delivers them to the upper-level end users. A multipath connection makes better use of network resources by aggregating the available bandwidth on multiple paths.  Therefore, a multipath connection can significantly improve the network performance. By providing redundant paths or alternate paths, a multipath connection has better ability to cope with network congestion, link breakage, outage, and potential attacks, thus improve network security and reliability.

The operations of computers and networks rely on the availability of various resources such as network bandwidth, data structures, disk space, and power supply.
 A DoS (DoS) attack is an attempt to make a computer resource unavailable to its intended users. Although the means, motives, and targets of a DoS attack may vary, it generally consists of a concerted, malevolent effort to prevent an Internet site or service from functioning efficiently or at all, temporarily or indefinitely.
  A DoS attack may be executed against any resource.
   Distributed Denial of Service (DDoS) attacks are any DoS attacks where tools are employed to rapidly “recruit” and coordinate attacks using a mass number of conspirators from widely diverse systems around the globe. DDoS attacks exploit a number of compromised machines and launch large coordinated packet floods towards a target, thereby causing denial of service for legitimate users.
 DDoS attacks have been an immense threat to the Internet for years. One of the most prominent attacks was launched against Akamai [AKA] in June 2004, causing major Akamai and Internet DNS Problems.

The increasing frequency and severity of network attacks reveal some fundamental security problems of today’s Internet. The Internet was designed to provide fast, simple and reliable communication mechanisms, and its tremendous success is a credit to the original design. However, many network services like DNS and protocols like TCP/IP were not designed with security as one of the basic considerations. Also, the highly distributed and interdependent nature of Internet provides opportunities and resources for the coordinated and simultaneous attacks by malicious participants. Due to the same nature of Internet, it is difficult to enforce common security policies, measurements and coordination among the participants of Internet. Therefore, the existing Internet architecture needs to be strengthened and services / protocols need to be enhanced or re-designed with security in focus.
  

One method of extending the Internet architecture is using overlay networks.  An overlay network is a computer network built on top of another network. Nodes in the overlay can be thought of as being connected by virtual or logical links, each of which corresponds to a path, perhaps through many physical links, in the underlying network. Overlay networks have been proposed as a way to improve Internet routing, such as through quality of service guarantees to achieve higher-quality streaming media. Previous proposals such as IntServ, DiffServ, and IP Multicast have not gained wide acceptance largely because they require modification of all routers in the network. On the other hand, an overlay network can be incrementally deployed on end-hosts running the overlay protocol software, without cooperation from ISPs.
 

The Secure COLlective Defense (SCOLD) system uses overlay networks to protect against DDoS attacks.  The key idea of SCOLD is to follow intrusion tolerance paradigm by providing clients with alternate routes via a set of proxy servers and alternate gateways when the normal route is unavailable or unstable due to DDoS attacks, network failure or congestion.
 SCOLD defends against DDoS by setting up indirect routes between clients and the target server.
  SCOLD uses an Intrusion Detection System (IDS) to raise an intrusion alert and notify the SCOLD coordinator of suspected attack.  Situated in the same or trusted domain as the target server, the coordinator selects a set of proxy servers between the clients and the target server, and notifies the selected proxy servers to set up indirect routes. The proxy servers notify the DNS servers of the client networks to perform a secure DNS update.
  After a secure DNS update, the client side DNS server gets the new DNS entry containing the designated proxy server IP addresses. The clients query their DNS server, get the set of proxy server IP addresses, and set up indirect routes to the target server via the selected proxy servers. The proxy servers examine the incoming traffic and relay it to the designated alternate gateway on the target site.
  The IP addresses of the alternate gateways and the SCOLD coordinator(s) are revealed only to trusted proxy servers to protect them from being attacked by malicious clients. To avoid traffic analysis at the proxy servers by intruders, multiple proxy servers can be deployed in a chain on an indirect route.  SCOLD proxy servers are enhanced with IDS and firewall filters to block malicious traffic that may try to come in through the indirect route.  After the DDoS attack subsides, the proxy servers notify the client DNS servers with another secure DNS update to restore the normal DNS records. The clients query the DNS server and resume their normal direct route. An “expiration time” can also be set so that SCOLD can automatically revokes obsolete indirect routes.
  All control messages communicated in SCOLD are encrypted using Secure Socket Layer (SSL).

SCOLD establishes three defense lines against DDoS attacks. First, based on the preliminary intrusion detection result from the main gateway, some malicious clients will not be notified of available indirect routes. Second, the proxy servers are equipped with IDS and firewall filters to further block malicious traffic. Third, the proxy servers are equipped with admission control and rate-limiting mechanisms to enforce bandwidth throttling and control the aggressive clients.
  In SCOLD architecture, the proxy servers become the “frontline” defenders against DDoS attacks. It brings several benefits. First, with a large number of proxy servers available, the target server gains more resources to defend against DDoS attacks. Second, if a proxy server fails, the coordinator can quickly recruit other proxy servers without significant loss. Third, proxy servers with integrated IDS can provide powerful functionalities to detect and defeat attacks.

Because it’s an overlay network, the SCOLD architecture imposes some performance penalty in the form of overhead.  SCOLD processing overhead comes from IP tunneling and more Internet hops involved in indirect routing. Experiments have shown the overhead in terms of response time to be about 70%. Further experiments show the overhead varies from 30%–200%. However, under DDoS attack, the response time using direct routing increases dramatically, upwards to 1500% and higher, compared to indirect routing through SCOLD, which remains approximately constant.
  As in the race between the hare and the tortoise, consistency wins; SCOLD will always get through.  The advantages of SCOLD became the motivation for PSMC.
Proxy Server-based Multipath Connection (PSMC) provides potential multiple paths between network hosts.  By extending the SCOLD security architecture, PSMC can enhance network performance by spreading the traffic from a source over multiple paths, transmitted in parallel.  Multipath connection not only can improve network performance, but also cope with network congestion, link breakage, and potential attacks.

Previous research has shown that the default Internet route is usually not the best.  Current network connections are mostly over a single path which may under-utilize network resources and suffer from performance problems.  There exist alternate routes which are much better.  

Early work in multipath connection proposed multipath routing requiring changes to intermediate routers, limiting the scheme’s extensibility and usage.  Alternatively, mTCP and pTCP are similar to PSMC, except they are limited to TCP, while PSMC supports both TCP and UDP protocols.  Another difference with pTCP is that PSMC can be installed on two end-hosts enabling two-way multipath transmission.  Finally, mTCP and pTCP are based on RON, which suffers from a scalability problem with more than 50 nodes.

PSMC seeks to improve network reliability and availability with multiple redundant paths.  The establishment of multiple paths in PSMC is based on the Secure Collective Defense (SCOLD) system.
  SCOLD is an overlay network, providing a feasible solution for multipath connection by utilizing the existing Internet infrastructure.
 The PSMC system is comprised of a multipath sender module, intermediate proxy servers, and a multipath receiver module.  The multipath sender module is responsible for packet distribution among the selected multiple paths. Some packets will go through the normal “direct route”, others might go through the alternate “indirect routes” depending on the packet distribution. The intermediate connection relay proxy servers examine the incoming packets and forward to the destinations through the selected path. The multipath receiver module collects the packets arrived from multiple paths, reassembles them in order and delivers to the upper layer.
  The indirect routes are based on IP tunneling.
  Among the key design features of PSMC is performing data striping at the IP layer.  This design allows both TCP and UDP to benefit from multipath connection.  The advantage is most audio/video transmission protocols prefer UDP.
  Despite its simple architecture, PSMC introduces a number of design challenges that must be overcome for practical implementation.
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Multipath connection brings a problem of TCP packet “persistent reordering” problem. Because the individual paths have different latencies, packets over multiple paths are likely to reach destination out-of-order. The TCP receiver observes the received packet sequence numbers, and generates duplicate ACK (Dup ACK) for each out-of-sequence segment. After the sender receives three Dup ACKs, it will enter fast retransmit. TCP fast retransmit is based on the premise that out-of-order packet is an indication of packet loss, which is not true in the multipath environment. Experimental results show that without considering the packet reordering, the aggregate bandwidth of multipath connection might be even worse than that of a single path connection in extreme cases.  The chosen solution is to hold arriving packets in a temporary buffer and wait for all expected packets to arrive before delivering the in-sequence segment to the TCP handler. If the buffer becomes full before an expected packet arrives, indicating a likely packet loss, some out-of-sequence packets are delivered to the TCP handler to send Dup ACKs triggering a fast retransmit.

The size of double buffer needs to be carefully considered. If the buffer size is too small, then it can not hold all the waiting packets. If the buffer size is too large, then it takes too long to trigger a fast retransmit for a real packet loss. The buffer size upper limit is the congestion window size cwnd, otherwise the packet flow may halt.

Another TCP related issue in multipath connection is the TCP congestion control window size.  In PSMC, all paths share the same TCP congestion window. When three Dup ACKs are detected, instead of blandly reducing the congestion window size in half, we should adjust it to the “Residual Bandwidth”, which is equal to the difference between the total bandwidth and the bandwidth of the path causing packet loss.

PSMC on UDP is much simpler than on TCP. The congestion control, packet persistent reordering and transmission errors are usually handled by the UDP application itself.  However, there are a couple of things that need to be addressed. Multipath connection increases the available bandwidth with a price of higher loss rate, and the loss rate increases when the number of routes increases. This is sometimes unacceptable to multimedia protocols. Redundant or error correction information can be sent over multiple routes for packet loss.  The second issue is that UDP is an “aggressive” protocol without built-in transmission rate control and congestion control mechanism. A congested link that is only running TCP is approximately fair to all users. However, when UDP data is introduced into the link, there is no requirement for the UDP data rates to back off, forcing the remaining TCP connections to back off even further. This is unfair to TCP.  One possible solution is to set a UDP transmission rate upper limit on each path at end hosts to control the aggressiveness of UDP. This UDP upper limit can be negotiated between end hosts through the communication channel according to the application requirements.

Experiments show PSMC can indeed improve network performance.  PSMC can effectively aggregate bandwidth for both TCP and UDP transmissions.  The aggregate bandwidth increases when the number of paths increases. However when there are more than 8 - 9 paths, the aggregate bandwidth actually starts to decline slowly. This is due to multipath overhead. As the number of paths increases, the packet loss rate increases. And the double buffer size gets bigger and takes longer to respond to a real packet loss. All these factors slow down the system performance. It is also observed that for a TCP application, when more than 6 paths are in use, the performance of multipath without double buffer get worse than that of single path connection. As analyzed before, this is due to the persistent reordering problem in TCP. Therefore, persistent reordering problem has serious impact on TCP performance.  The same is not true for UDP.  Experiments show that for UDP, PSMC without double buffer can effectively aggregate the available bandwidth.  This is because we don’t have to consider problems like persistent reordering and congestion control for UDP.
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Experiments results also show that path management is important.  Paths with extremely uneven bandwidth distribution can dramatically degrade overall system performance.
 This is because when the paths become more uneven, the double buffer size gets bigger. When packets are lost, it takes longer to enter fast retransmit mode.
 Therefore, bad paths and failed paths need to be removed from the PSMC routing list.  Taking bandwidth as a performance metric (latency and error rate will be similar), if the metric of path i is significantly below the average of other paths, we treat it as a “bad” path. Experimental results suggest the threshold to be 1:10.  When a path is removed from the routing list, the end hosts will stop using this path. However, the packets which were already sent out through this path are unaffected. The end hosts can also dynamically add new paths to the routing list. When the sender observes that the current aggregate bandwidth drops significantly, it can start probing other proxy servers and choose some of them to set up new paths.  Note that even with higher packet loss rate and higher path failure probability, PSMC can still improve the network reliability and robustness. Neither packet loss nor sub-path failure will stop the whole traffic flow. The probability of all sub-path failure is much lower than that of single path failure. Experimental results show that PSMC can recover quickly from a path failure.
  The experimental results show that PSMC can make good usage of network resources and significantly improve network performance, security, and reliability.

One of the key issues in a multipath system is path selection, or proxy server selection. There might be a large number of proxy servers available; we need to select the “optimal” subset of proxy servers from the candidates and achieve the objective functions, like maximum aggregate bandwidth. Different path selection may result in significantly different performance. Therefore, server selection is a critical decision in PSMC.  When the network paths are disjointed, the network reliability is improved, the available throughput increases, the traffic along the paths are load-balanced and less likely to be correlated. Therefore, finding multiple disjoint paths are usually desirable in multipath environment.  There are two types of disjoint paths: link disjoint if no common links between paths, and node disjoint if no common nodes between paths besides the end host nodes. In general a link-disjoint path algorithm can be extended to a node-disjoint algorithm with node splitting.

A genetic algorithm may be used to quickly select an optimal path.  A genetic algorithm has the advantage that it is flexible, extensible, scalable, and provides more controls for the end users.  Some disadvantages to a genetic algorithm are that, because it’s heuristic, it may not always give the best answer, and the execution time might be long for a small scale network.  Two variations on this method include a fixed-length genetic algorithm in which the length of chromosomes is fixed, and a variable-length genetic algorithm in which the length of chromosomes can change.  Both methods work according to the following procedure:

1) Assign sequential server number, node number and path number to denote each proxy server, node and path. Assign the initial bandwidth to each path.

2) Initialize the first generation of chromosomes by filling server number in chromosome. For better performance, we put the last known best results into the first generation.

3) Crossover and mutate at certain probability. Make sure no duplicated server in chromosome, and the length of chromosome is less than the given upper limit. Several different crossover and mutation methods may be combined together for better performance.

4) Calculate fitness function. For a given chromosome, use the objective function as fitness function, and check constraints.

5) Run certain generations, and output the stabilized result.

Alternatively, a greedy algorithm may be used to find the path with maximum bandwidth and jointness.  One such algorithm works as follows:

1) Initialize the data set.

2) Find the maximum aggregate bandwidth, then find the maximum number of link disjoint paths.

3) Convert the original graph G to G2 by assigning unit costs.

4) Apply maximum flow minimum cost algorithm to G2.

5) Combine resulting path sets.

Comparison tests were performed on all three algorithms using simulated and live networks.  The results showed that the execution time of all algorithms increased as the size of the network increased.
  The results also showed that the genetic algorithm can yield satisfactory results in the range of 80%-100% available bandwidth utilization, which are close to the optimal result of 100%, and that there is no significant difference between the fixed-length genetic algorithm and variable-length algorithm. Experiments also showed that while the greedy algorithm may be faster, it selected less optimal bandwidth paths between 60%-80%; this is because the greedy algorithm tends to yield results that are poorly disjoint.

Path selection is a critical decision in a multipath connection network.  Genetic algorithms have better flexibility and extensibility when the context of problem changes. From experimental performance results, it is observed that genetic algorithm can produce satisfactory results within reasonable execution time.

Finally, With the abundant bandwidth provided by PSMC, the end server capacity may become the performance bottleneck. There is an increasing demand for provisioning of different levels of quality of services (QoS) on the end server. By combining multipath on network with service differentiation on the end server, we can provide a comprehensive solution for various applications to improve the performance, security and reliability of the overall system.

Due to the open and dynamics nature of Internet applications, the last decade has witnessed an increasing demand for provisioning of different levels of quality of service to meet changing system configuration and resource availability and to satisfy different client requirements. This differentiated QoS provisioning problem was first formulated by the Internet Engineering Task Force in the network core. There are recent efforts on differentiation provisioning on end servers. On the server side, response time is a fundamental performance metric. Existing response time differentiation strategies are mostly based on priority scheduling in combination with admission control and content adaptation. One method adopted priority scheduling strategies, strict or adaptive, to achieve response time differentiation on Internet servers. The results showed that the differentiation can be achieved with requests of higher priority classes receiving lower response time than those of lower priority classes. However, this kind of strategy cannot quantitatively control quality spacings, say proportionally, among the classes. Time-dependent priority scheduling algorithms developed for PDD provisioning in packet networks can be tailored for PDD provisioning on Web servers. However, they are not applicable for proportional response time differentiation because the response time is not only dependent on a job’s queuing delay but also on its service time, which varies significantly depending on the requested services. Providing proportional response time differentiation on Web servers is not only important, but also challenging.

One method to providing server QoS is to use a fixed process allocation strategy.  It is reasonable to assume that the processing rate of a virtual server is proportional to the number of active processes allocated to its process pools.  On an Apache Web server, we can impose an upper bound on the number of processes listening to a port. This maximum number is usually set to be 32 (or 64). To achieve the processing rate ratios between classes, a straightforward solution is to partition 32 processes into multiple process pools listening to different ports. Each pool works as a virtual server handling requests of a class in FCFS manner. Thus, we expect to achieve the processing rates for different classes. We refer to this solution as fixed process allocation strategy since the number of total processes allocated to the pools is fixed.  The problem with the fixed process allocation strategy is that not all allocated processes are always active due to the workload dynamics. The fixed process allocation strategy may not be able to achieve proportional response time differentiation.

Another method involves a queuing-theoretical adaptive process allocation strategy. Its objective is to dynamically and adaptively change the number of processes allocated to process pools for handling different classes while ensuring the ratio of process allocations specified by the queuing-theoretical processing rate allocation scheme. The rationale is that, to achieve the processing rate ratios among classes, the allocation strategy has to assure that most of the processes allocated to the process pools listening to corresponding ports are active. To utilize the advantage of the Apache pre-forking mechanism, it allows a small number of processes on a port to be idle. The number is identified by a threshold (H). If more than H processes on a port are idle, the approach is to decrease the number of processes allocated to all process pools proportionally.

Yet another approach to server QoS providing fine-grained proportional response time differentiation is to design a feedback controller and integrate it with the queuing-theoretical adaptive process allocation approach. Proportional integral derivative (PID) control is one of the most classical control design techniques widely used in industrial control systems. In the integrated process allocation approach, a PID controller is used to adjust the number of processes allocated to a process pool according to the difference between the target average response time and the experienced average response time of a request class.

Experimental results confirmed that the fixed process allocation strategy cannot achieve proportional response time differentiation because the processing rate of classes cannot be achieved accurately due to workload dynamics.
  On the other hand, the adaptive queuing-theoretical process allocation method failed to meet performance expectations.  This method failed to maintain differentiated response time both when workloads were light and when workloads were heavy.
  Similarly, the integrated process allocation approach failed to live up to expectations.  However, in comparison tests, results showed that the integrated approach improved differentiation proportionality robustness in terms of the achieved mean response time ratios, and significantly outperformed the queuing-theoretical approach.

Providing proportional response time to different client classes is an important and challenging issue. It is important because proportional model is a popular relative DiffServ model and response time is a fundamental QoS metric on Web servers. It is challenging because the conventional application-level process allocation approaches lack fine-grained control of resource allocation and are insensitive to the bursty Internet traffic.

Proxy Server-based Multipath Connection provides multiple paths among network hosts. The traffic from a source is spread over multiple paths and transmitted in parallel through the network. The receiver collects the incoming network packets, re-assembles them, and delivers them to the upper-level end users. A multipath connection makes better use of network resources by aggregating the available bandwidth on multiple paths.  Therefore, a multipath connection can significantly improve the network performance. PSMC is not without its challenges, not the least of which is adapting TCP error control, selecting optimal proxy paths, and ensuring QoS on the server.  However, by providing redundant paths or alternate paths, a multipath connection has better ability to cope with network congestion, link breakage, outage, and potential attacks, thus improve network security and reliability.
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