Nicholis Bufmack – CS 526 – Spring 2008

WS-PolicyNegotiate


WS-PolicyNegotiate

A Web Service Standard for Policy Negotiation

Abstract


Web services need to be protected from malicious  attacks. This has led web service providers to  create security policies that they then implement to  protect the service. However, in some instances,  details of the security policy may need to be  negotiated between the web service provider and  the web service requester. In this instance, a  protocol for web service negotiation is needed. 


In this paper, a simplified proposal is made for a web service protocol to handle policy negotiation between service provider and service consumer on the Internet. The policy is defined as being an extension of the already established protocol for policy transmittal between parties in a web service transaction, namely, WS-Policy. The new proposed web service protocol, WS-PolicyNegotiate, is defined using Simple Object Access Protocol (SOAP). Finally, some issues with this approach are discussed.

Introduction


Web services need to be protected from malicious attacks. This has led web service providers to create security policies that they then implement to protect the service. However, in some instances, details of the security policy may need to be negotiated between the web service provider and the web service requester. In this instance, a protocol for web service negotiation is needed.


An example of when this may be needed is as follows: A service provider has a service that nominally offers password level user authentication access control. A defense contractor has need of the  provider's service, but requires a higher degree of security in regard to access control (for instance, biometrics). How does the service provider meet the need of the defense contractor? Of course, the trivial answer is that the service provider can not meet the needs of the defense contractor regarding security. However, assuming that the service provider wishes to have the contractor as a customer, in what ways can the consumer be accommodated?


One way would be to have a separate service for each level of access control provided by the service provider. While this is certainly done, it is not an ideal solution. It can lead to redundancy within a service architecture, inefficiency in design, difficult to maintain software, and a confusing aspect presented to the web service consumer.


Another, perhaps better, solution is to provide a single transparent service to the consumer and publish a mechanism for negotiating the different security levels of each side. Under the single service approach, the provider and consumer can each attempt to reach a common accord regarding what security policies will be in place. We will take it as given that the service provider and consumer have the infrastructure in place to handle the different acceptable policy levels under consideration.


This approach has definite benefits. Policy negotiation allows the service provider to reach a larger market by providing services for customers with diverse security needs, it allows service consumers to tailor their service consumption for their particular needs, and it provides for a better overall service architecture that promotes efficiency by providing only what is needed for a transaction and simplifying service architecture by removing redundancy.


Finally, note that the policies under negotiation do not have to be security policies. Any aspect of the transaction is acceptable for negotiation. For example, the same concept can be extended to the negotiation of what transport is to be used during the execution of a service. In this paper, however, we limit discussion to the implementation of security policies. Other policies would be implemented in a similar fashion.

Background


Web services are a standardized way of integrating web based applications in an open platform manner. The idea is to develop services that can be provided through a programmatic interface across a network. Basically, what is being created is the capability to create a remote function call over the Internet. While this might seem to be similar to Common Object Request Broker Architecture (CORBA) or Java's Remote Method Invocation (RMI), you should note that web services as described below provide only the wire exchange format for deploying web services and not an API or framework as does RMI or CORBA.


Web services utilize Extensible Markup Language (XML),  Simple Object Access Protocol (SOAP), and Universal Description Discovery and Integration (UDDI) to exchange messages over HTTP/S. Each of these components is described below.

XML


XML is the basic format used to exchange web service messages over the wire. A primer on XML is beyond the scope of this paper and can be found here [1]. However, a few things should be noted about how XML is used for web services. 


First, the XML document must be well-formed and valid, meaning all of the tags within it must be correctly terminated and it must follow all the formatting rules defining an XML document and it must conform to all of the rules described within the web services XML schema [2]. Additionally, the XML document must not contain DTD references or XML processing instructions [3]. 

SOAP


SOAP is a communication protocol designed for communicating between applications. It is used for sending messages over a network and is platform and language independent. Based on XML, it is a simple and extensible and under consideration by the W3C for adoption as standard.


A SOAP message is a well-defined, valid XML document containing certain elements defined within and declared in the two default SOAP namespaces: HTTP://www.w3.org/2001/12/soap-envelope for the soap envelope and HTTP://ww.w3.org/2001/12/soap-encoding for encoding and data types. The  required SOAP elements are:

· An Envelope element identifying the XML document as a SOAP message.

· A Body element containing the call and response information.


Additionally, two other elements may be present in a SOAP message as optional components. They are never required and are:

· A Header element containing header information.

· A Fault element providing error handling information.


A more detailed explanation of the SOAP format can be found here [4]. An example SOAP message skeleton is shown in Figure 1.

<?xml version="1.0"?>

<soap:Envelope

xmlns:soap="http://www.w3.org/2001/12/soap-envelope"

soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">

<soap:Header>

  ...

  ...

</soap:Header>

<soap:Body>

  ...

  ...

  <soap:Fault>

    ...

    ...

  </soap:Fault>

</soap:Body>

</soap:Envelope>



Figure 1: A SOAP message skeleton.

UDDI


UDDI is a platform-independent, XML-based registry for businesses worldwide to list themselves and the services that they provide. It is an open industry initiative, sponsored by the Organization for the Advancement of Structured Information Standards (OASIS). In essence, it enables businesses to publish service listings and discover each other and to define how services interact over the Internet [5]. While considered a core of the web services architecture, a formal discussion of which is beyond the scope of this paper.

WSDL


WSDL is used to describe what services are available and to describe where the available services can be found. It is written as a well-formed, valid XML document and is published to a host available to consumers. SOAP-aware applications then use the WSDL to find what services are available, determine the format of request and response messages, and the endpoints for service request submissions.


While WSDL is of extreme importance to the web service architecture, a full discussion of the formatting and details of WSDL documents is beyond the scope of this paper and can be found here [6]. However, a sample WSDL skeleton is included in Figure 2 below.

<message name="getMyRequest">

   <part name="myRequest" type="xs:string"/>

</message>

<message name="getMyResponse">

   <part name="myRespones" type="xs:string"/>

</message>

<portType name="myServices">

  <operation name="getMyService">

      <input message="getMyRequest"/>

      <output message="getMyResponse"/>

  </operation>

</portType>



Figure 2: A simple WSDL example

Web Service Standards


Web Service (WS-*) standards are a set of proposed web service standards put forth by the World Wide Web Consortium (W3C) to deal with the numerous aspects relating to the providing and consuming of web services [7].  The various standards put forth by the W3C cover most areas of web service interaction. Examples include WS-Addressing, which provides transport-neutral mechanisms, WS-Security, which provides enhancements to SOAP messaging to provide quality of protection through message integrity, message confidentiality, and simple message authentication, WS-Reliability, which provides a means for assuring message delivery and receipt, and WS-Policy, which provides a general purpose model and syntax to describe and communicate the policies of a web service. These and more can be found described here [8]. Only WS-Policy, which relates to the present work, will be dealt with in any detail. Note that there is currently no proposed standard for policy negotiation.

WS-Policy


WS-Policy is a specification used by web service providers to advertise their policies and for web service consumers to specify their policy requirements. The policies dealt with are often security related, though they need not be. An example of a non-security policy statement contained within a WS-Policy document is a policy dealing with quality of service.


WS-Policy can be thought of as a set of specifications describing the capabilities and constraints of policies on intermediaries and endpoints. The policy specifications describe how to associate policies with the services and endpoints. Because of these capabilities, it will form the basis of WS-PolicyNegotiate as described in this paper.


While the details of WS-Policy can be found here [9], some details are worth mentioned here as they directly relate to the proposed WS-PolicyNegotiate standard, specifically the concept of Policy Assertions.


Policy Assertions form the basis of WS-Policy. They are the major requirements put upon the web service. The assertions define what can and can not be done by the provider and the consumer during the exchange that takes place when a web service is provided. For example, an assertion could be to “use only the HTTP transport during the web service session.”  Another example assertion could be to “use biometric access control.”


Policy Assertions are defined using two basic operators:

· wsp:ExactlyOne – One Policy Assertion out of a list must be satisfied.

· Wsp:All – All Policy Assertions must be satisfied. This is the default position.


Another thing to keep in mind is that, like all WS-* proposals, WS-Policy can include the namespaces of any other WS-* proposal. This is how, for instance, a security policy defined in WS-Security is referenced as an assertion in a WS-Policy node.


An example basic WS-Policy skeletal structure is listed in Figure 3.

<mappings>

<endpoint uri=”someuri”>

<defaultOperation>

<request Policy=”somepolicy” />

<response Policy=”somepolicy” />

<fault Policy=”somepolicy” />

</defaultOperation>

</endpoint>

</mappings>

<Policies>

<Policy/>

</Policies>

Figure 3: A basic WS-Policy skeletal structure.


A few points are worth noting about the above WS-Policy structure. Endpoint defines the location of the service provider. DefaultOperation lists those policies that are in place when no other policy is referenced and deals with request, response, and fault policies. The references inside of these tags refers to either a policy defined within the Policies/Policy section or to a namespace definition of a policy detailed within another WS-* standard (such as WS-Security). This is also how policies can be referenced within the Policies/Policy section.


For the purposes of this research paper, the following policy, detailed below in Figure 4, will be used. This policy describes a situation where the web site can not be accessed without a valid user name and it further requires the message to be signed with an X.509 certificate belonging to the accessing user.


This simplified policy will be used hereafter as the policy negotiated in the example provided for WS-PolicyNegotiate.

<policies xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd" 

            xmlns:wssp="http://schemas.xmlsoap.org/ws/2002/12/secext" 

            xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"> 

    <!-- This policy ensures that the message is signed with a UsernameToken --> 

    <wsp:Policy wsu:Id="SignedUsername"> 

      <wssp:Integrity wsp:Usage="wsp:Required"> 

        <wssp:TokenInfo> 

          <wssp:SecurityToken> 

            <wssp:TokenType>http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#UsernameToken</wssp:TokenType> 

          </wssp:SecurityToken> 

        </wssp:TokenInfo> 

        <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body()</wssp:MessageParts> 

      </wssp:Integrity> 

    </wsp:Policy> 

    <!-- This policy ensures that the message is signed with a X509 certificate --> 

    <wsp:Policy wsu:Id="SignedX509"> 

      <wssp:Integrity wsp:Usage="wsp:Required"> 

        <wssp:TokenInfo> 

          <wssp:SecurityToken> 

            <wssp:TokenType>http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3</wssp:TokenType> 

          </wssp:SecurityToken> 

        </wssp:TokenInfo> 

        <wssp:MessageParts Dialect="http://schemas.xmlsoap.org/2002/12/wsse#part">wsp:Body()</wssp:MessageParts> 

      </wssp:Integrity> 

    </wsp:Policy> 

  </policies> 



Figure 4: A complete WS-Policy.

Policy Negotiation 


Before we build a basic WS-PolicyNegotiate standard, we must define what requirements the standard will fulfill and  how the requirements will be fulfilled.

Policy Negotiation Requirements


The following minimal requirements exist for developing a standard for policy negotiation.

· The security policies to be negotiated must be clear and identifiable.

· The consumer may negotiate any subset of the policies within the policy document.

· The consumer will initiate policy negotiation.

· Negotiation may be terminated by either party at which point the associated web service may not proceed.


These requirements assure that the policies to be negotiated are known to both parties, that they are in fact in place before the service proceeds, and that there are points of negotiation within the policy. Finally, web services are a consumer initiated process, requiring negotiation to begin on the consumer side of the service. [10]

Satisfying the Requirements


To satisfy these requirements, all policies to be negotiated must refer to a policy described within a WS-Policy policy document. These policies may be referenced by the name or the namespace of the policy document.


Additionally, all policies within WS-Policy nodes may be negotiated. A failure on any sub-node will result in a failed assertion. Likewise, a successful negotiation of all sub-nodes will lead to a positive assertion for that policy. In this way, a requirement is fulfilled by further extending the framework within the WS-Policy structure.


The requirement for web service consumer based initiation of the policy negotiation process is fulfilled by having the consumer submit a request for negotiation and the provider responding with a response message. This process will continue until the negotiation is successful or fails. Only upon success, will the process continue.


Finally, advertisement of policies will follow WS-Attachment and reside within the WSDL definition as defined for WS-Policy publishing. This makes the policies available for negotiation readily available to the consumer.

WS-PolicyNegotiate


The following sections discuss the elements that comprise WS-PolicyNegotiate. These include the role of the responder and initiator, the WS-PolicyNegotiate namespace, the basic SOAP structure, and the types allowed within the SOAP message.

The Responder and Initiator


The responder and initiator are the roles used to describe the message flow during policy negotiation. The initiator is always starts as the consumer. The responder always starts as the service provider.


Roles then change as messages are exchanged. This allows the consumer and provider to keep track of the message flow and the stages of negotiation.


The last message will always be from the provider (as initiator) to the consumer (as the responder). The last stage of message exchange involves the consumer sending a policy to the provider and the provider responding with the same policy statement. In this way, the process of negotiation is known to be complete and actual service execution can begin.

Namespaces


Namespaces within the WS-PolicyNegotiate document either refer to a SOAP specific schema  (for instance, for SOAP encoding) or to a WS-* specification within the applicable WS-Policy named document. The only exceptions are:

· wspn – Refers to the WS-PolicyNegotiate namespace.

· wsp – Refers to the WS-Policy namespace (http://schemas.xmlsoap.org/ws/2002/12/policy/)

Overview


The basic WS-PolicyNegotiate structure is illustrated in Figure 5. It includes the following elements:

· wspn:PolicyNegotiate id – A unique string which identifies a particular instance of policy negotiation.

· wspn:Name – An optional string containing a human-readable reference to this negotiation.

· wspn:Initiator – An element of any type referring to the initiator for this part of the policy negotiation. Note that this will be reversed for messages received from the former responder.

· wspn:Responder – An element of any type referring to the responder for this part of the policy negotiation. As with wspn:Initiator, this role will be reversed for messages sent by the former initiator.

· wspn:Context – A complex type containing the policies that are available for policy negotiation. The id attribute is a unique identifier for this context instance.

<wspn:PolicyNegotiate id=”xsd:String”>

<wspn:Name>xs:NCname</wspn:Name>

<wspn:Initiator>xsd:AnyType</wspn:Initiator>

<wspn:Responder>xsd:AnyType</wspn:Responder>

<wspn:Negotiation id=”xsd:String”>

<wspn:Context id=”xsd:String”>

</wspn:Context>

</wspn:Negotiation>

</wspn:PolicyNegotiation>



Figure 5: WS-PolicyNegotiate basic structure.

Context Complex Type


The context complex type describes the core policies to be negotiated during policy negotiation. The structure of the complex type is shown in Figure 6. The elements of the complex type are:

· wspn:ContextName – An optional human readable identifier.

· wspn:Policy wsu:id – A policy document that represents the initiators or responders policy statement. The id refers to either an included policy or to an external one via a fully qualified name. The policies may be nested or sequenced and may refer to any type or number of policies. 

<wspn:Context id=”xsd:String”>

<wspn:ContextName>xsd:String</wspn:ContextName>

<wsp:Policy wsu:id=”xsd:String”>

</wsp:Policy>

</wspn:Context>



Figure 6: Context complex type.

Policy Negotiation


The basic process undertaken for policy negotiation is as follows:

1. The initiator creates a WS-Policy document describing their desired policy level. A pre-existing WS-Policy document may also be used or a template may be retrieved by reading the web service's WSDL.

2. A WS-PolicyNegotiate document is created as a wrapper for the WS-Policy document from step 1.

3. The initiator sends the WS-PolicyNegotiate document to the responder.

4. The responder reviews the WS-Policy document within the WS-PolicyNegotiate document and decides if the proposed policy document is acceptable.

5. The responder then either returns the same WS-Policy that it received (to indicate acceptance), a WS-Policy document created independently by the responder, or with a WS-Policy that is a subset of the initiator's WS-Policy document. The responder is now in the role of the initiator.

6. This process continues from step 1 with each side changing roles until the negotiation has completed (when an unchanged WS-Policy document is exchanged in step 5).


Important to understand is how this process ends. As stated in step 5 above, policy negotiation continues until a responder returns a minimal set acceptable to both sides. This is indicated when one side receives a policy in wspn:Context that is the same as that which was just sent. They then respond back with this same policy and negotiation is considered complete and the service execution can begin.

An Example


Figure 7 shows a simplified WS-PolicyNegotiate message. It does not show the details of the authentication policy. These were specified above in the section describing WS-Policy. Also note that there are not any policy subsets included. The example only serves to illustrate the process undertaken during policy negotiation.

<wspn:PolicyNegotiate Id=”MyPolicyNegotiation”>

<wspn:Initiator>toys.r.us@fun.com</wspn:Initiator>

<wspn:Responder>http://www.yeehaw.com/</wspn:Responder>

<wspn:Negotiation Id=”PleaseAccept”>

<wspn:Context Id=”WhatIPropose”>

<wsp:Policy wsu:Id = “AuthenticationPolicy”

</wspn:Context>

</wspn:Negotiation>

</wspn:PolicyNegotiation>



Figure 7: A WS-PolicyNegotiate SOAP message.


The process is as follows:


Step 1:


The consumer as initiator looks up the provider's WSDL and notes a WS-PolicyAttachement 
declaring that WS-Security policies can be negotiated. The consumer then sends a WS-
PolicyNegotiate document with a WS-Policy context requesting to use basic authentication or an 
X.509 certificate.


Step 2:


The provider (who is now initiator) responds with a WS-PolicyNegotiate document containing a 
WS-Policy document stating that X.509 authentication is required. This is indicated by the 
absence of any other policy nodes within the WS-Policy attachment within the WS-
PolicyNegotiate document. 


Step 3:


After receiving the provider's WS-PolicyNegotiate document, the consumer (again in the role of 
initiator), having found this to be acceptable, returns the same WS-Policy within a WS-
PolicyNegotiate document as an acceptance token.


Step 4:


The final step has the provider as the initiator sending the consumer's WS-Policy within a WS-
PolicyNegotiate document back to the consumer. The consumer, having received its message back 
as final indicator of acceptance, begins the process of connecting to the web service under the 
terms laid out within the accepted WS-Policy.

Conclusion


What I have attempted to lay out in this paper is a method for using the established WS-* standards to negotiate levels of policy acceptance prior to the establishment of service execution. The strength of this approach is that it leverages the already existing WS-* infrastructure. However, some issues worthy of future investigation exist:

· Would it be better to use a sequence number for flow control?

· Would an ack/nack type of element be a better mechanism for policy acceptance?

· Could elements from WS-Agreement be used to solve the same problem or be incorporated within the solution [11]


Finally, it is worth noting that this is not a full standard. It serves only as a prototype solution for the problem of how to provide for policy negotiation in a web services environment.

References

[1] Extensible Markup Language (XML), http://www.w3.org/XML/

[2] W3 Tutorial on XML, http://www.w3schools.com/XML/default.asp

[3] W3 Tutorial on SOAP, http://www.w3schools.com/soap/soap_syntax.asp

[4] SOAP Specifications, http://www.w3.org/TR/soap/

[5] UDDI, Online Community, http://uddi.xml.org

[6] Web Service Definition Language, http://www.w3.org/TR/wsdl

[7] The World Wide Web Consortium, http://www.w3.org/

[8] Wikipedia list of  Web Service specifications, http://en.wikipedia.org/wiki/WS-*

[9] Web Services Policy 1.2 – Framework (WS-Policy), http://www.w3.org/Submissions/WS-Policy/

[10] Lee, George and Larry Korba, “Negotiated Policies for E-Services and Web Services” in IEEE           International Conference on Web Services, 2005

[11] Web Services Agreement Specification (WS-Agreement), http://www.ogf.org/documents/GFD.107.pdf



