
Intrusion Detection Systems

Sireesha Dasaraju
CS526 – Advanced Internet Systems

University of Colorado Colorado Springs

Abstract

        With the overwhelming increase of Internet enabled critical services geared towards

individuals, companies and organizations, more and more of these entities are connecting

to the commercialized Internet.  As a result, it becomes extremely important that these

entities  take  appropriate  measures  to  protect  their  internal  networks  from  malicious

attacks through the unpoliced Internet.  An Intrusion Detection System (IDS) plays an 

important  role  in  dealing  with  the  threats  against  the  internal  networks.   This  paper

documents the need for and benefits of using an IDS and various techniques used for

detecting an attack.  And then progresses into an indepth study of a popular, open source

IDS,  Snort.   The  structure  of  Snort  rules  is  examined  in  detail.   Finally  automatic

signature  generation  and  payload  anomaly  detection  techniques  are  explored  and  a

technique  to integrate them into Snort is proposed.

1. Introduction

        With the explosion of access to the Internet enabled services, a computer network

belonging to an individual, company or an organization should be on guard to protect

itself against different threats.  Some of the threats the networks should watch out are

worms, viruses, DDoS attacks and so on.

      The first step towards protecting a single computer or a network of computers is



setting up a firewall as a intemediary between the network and the internet.  A properly

configured firewall can help shield the network from the outside hacker attacks.  But a

firewall may not work in the following situations 

• A  new  attack  may  compromise  hosts  before  the  firewall  rules  can  be

updated.

• Laptops may become compormised when offsite and then infect machines

behind the firewall when they are connected to the network.

• Wireless access points may allow intruders into the network.  

        The next step in securing an internal computer network is to add an IDS.  An IDS is

an  application  that  detects  attacks  against  a  computer  or  network  and  informs  the

administrator when the attacks occur.

2. IDS Basics

        An Intrusion Detection System monitors network traffic and monitors for suspicious

activity and alerts the system or network administrator.  In some cases, the IDS may also

respond to anomalous or malicious traffic by taking action such as blocking the user or

source IP address from accessing the network.

2.1  Benefits of using an IDS  

   A few benefits of using an IDS are listed below.

• Detecting attacks :   An IDS can inform an administrator if  a worm is

attacking the network or if a computer system has been comprimised.

• Enforcing policies :  An IDS can monitor an internal network for behavior

that violates an organization's network security or acceptable user policies.

• Providing an audit trail :  An IDS can provide an after-the-attack audit



trail for seeing how far an attacker got, and where it came from.

2.2  IDS Detection Techniques  

        There are two different ways an IDS can detect attacks , Signature Detection

and Anomaly Detection.  Some IDS solutions use signature detection, some use anamoly

detection and some use a combination of both.

2.2.1     Signature Detection  

        Signature-based threat detection scans traffic for a set of pre-defined attack

patterns.  The signatures are typically important bits and pieces of the attack that the IDS

should look for in incoming network packets and flag as "bad" traffic.

        Signatures have two main limitations.  First, they are prone to false positives

without extensive tuning.  Second, they are not effective at detecting unknown attacks.

2.2.2     Anomaly Detection  

Behavior-based  anomaly  detection  compares  a  profile  of  all  allowed

application behavior to  actual  traffic.   Any deviation from the profile is  flagged as a

potential attack.  Behavior anomaly detection has the potential to detect attacks of all kind

, including "unknown" attacks.

This technique also leads to high false positives.

2.3  Types of IDS  

There are two types of IDS, Network-based and Host-based.

2.3.1 Network-based IDS (NIDS)

A network-based IDS analyzes packets coming across a network connection

for data that looks like its part of an attack.  NIDS perform the following tasks:



• Analyze network traffic for attacks, using signature or anomaly detection

(or both).  Its network interface card (NIC) captures all network traffic that

goes by its NIC, not just the traffic destined for the IDS system itself.

• Generate real time alerts to notify an administrator of an attack.

• Generate logs that can be used to analyze the attacks,  typically after the

attack has occurred.

2.3.2 Host-based IDS (HIDS)

A host based IDS differs from network based IDS, in that it only monitors for

intrusions on te system it's running on.  It performs the following tasks

• Analyze network traffic for attacks, using signature or anomaly detection

(or both).  Its network interface card (NIC) captures just the traffic destined

for the IDS system itself.

• Examine system logs for unusual events,  such as multiple  invalid login

attempts.

• Check the integrity of files on the system.  

2.4  IDS Performance  

The performance of an IDS is measured interms of  False Positive Rate, False

Negativ Rate and Crossover Error Rate.

2.4.1  False Positive Rate  

The False Positive Rate is the frequency with which the IDS reports malicious

activity in error.  A false positive occurs when an IDS generates an alert on either

• Network traffic that looks like an attack to the IDS, but isn't an attack.

• A real attack that attack doesn't apply to the system being monitored.



                  

False positives are a problem because they create alert noise that can hide a

real attack.  They are the nuisance reports that require investigation but lead to dead end.

These are also sometimes called "Type 1 errors".  Increasing the sensitivity of an IDS

results  in a higher false positive rate, while decreasing the sensitivity lowers the false

positive rate.  

2.4.2  False Negative Rate  

The False Negative Rate is the frequency with which the IDS fails to raise an

alert  when malicious activity actually occurs.   These are the most  dangerous types of

errors, as they represent undected attacks on a system.  These errors are also referred to as

Type II erorrs.  False negative rates change in an inverse proportion to a false positive

rates, which means as the false positive rate increases, the false negative rate decreases

and vice-versa.  

2.4.3  Crossover Error Rate  

The Crossover Error Rate (CER) is often used to provide a baseline measure

for comparision of Intrusion Detection Systems.  As the sensitivity of systems may cause

the false postive/negative rates to vary, it is critical to have some common measure that

may be applied across the board.  The CER for a system is determined by adjusting the

system's sensitivity until the false positive rate and the false negative rate are equal.  Then

different IDSs may be run on the same network and measure the CER for each.



3. Snort IDS 

Snort is an open sourced,  network based IDS that uses signature detection.

3.1.1  Reasons for using Snort  

• Snort is an open source project and so is readily available and is free.

• Snort is passive, which leads it to monitor any system on the network with

no configuration to the target computer.

• Snort is portable and fast.

• Snort  is  versatile and can be used as an IDS, IPS (intrusion prevention

system), scrubber, Inline firewall.

• Snort is able to log to numerous databases include Oracle, Microsoft SQL

Server, MySQL and PostGre SQL.

• Snort rule files are simple, easy to write and are effective.

• Snort is ported to every major operating system.

• Flexible and simple, Snort uses plugins for all of its functions so adding

new functionality is easy.

3.1.2 Components of the Snort IDS 

Snort is desinged to be composed of several components, with each of the

components performing a specific task.  These components are connected to each other as

shown in the figure.



Figure 1 Components of a Snort IDS 

When  a  network  packet  arrives  at  the  network  Snort  it  monitoring,  the

following sequence of events occur.

 a.  The packet capture library delivers the packets to Snort, via the network card. These

are the unprocessed Data-Link Layer pockets.

 b.  The packet decoder takes the Layer 2 data sent over from the packet capture libray and

takes it apart.  First it decodes the Data Link frame, then the IP protocol, then the TCP or

UDP packet. 

c.  The decoded data is then preprocessed, which performs a variety of transformations

making the data easier for Snort to digest.  Preprocessors can alert on, classify or drop a

packet before sending it on to the more CPU-intensive detection engine.

Packet Capture 
Library

Snort Packet
Decoder

Preprocessor
(plug-ins)

Detection 
plug-ins

Output
plug-ins

Detection 
Engine



d.  The detection engine is the heart of Snort.  It takes the information from the packet

decoder  and preprocessors  and  operates  on  it  at  the  transport  and  application  layers,

comparing the contents of the packet to its rules-based detection plugin.

 e.  Finally if any of the rule conditions are met, an alert is generated and logged.

3.1.2 Snort Rules 

        Snort uses a simple, lightweight rules description language that is flexible and quite

powerful.  Each Snort rule should be completely contained on a single line.

        

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|"; msg:

"mountd access";)

        Snort rules are divided into 8 major categories :

• Low-level protocols (icmp, netbios, tcp udp)

• High-level protocols (http,ftp,dns,pop3,imap)

• Web server specific (web-attack, web-cgi, web-client)

• Exploit specific (shellcode, backdoor, exploit)

• Service impacting (dos, ddos)

• Policy specific (policy, info, misc,porn)

• Scanning and probing activities (scan, bad-traffic)

• Viruses, worms and other malware (virus)

There are two parts to a Snort Rule, a Rule header and a Rule Options.

3.1.2.1  Snort Rule Header  



        The rule header contains the information that defines "who, what and where" of a

packet, as well as what to do in the event that a packet with all the attributes indicated in

the rule should show up.  The header acts as a front-end filter that separates our traffic by

using five key factors : source IP address, destination address, source port, destination

port and protocol.

3.1.2.1.1  Rule actions  

        Rule action is the first item in the rule.  The rule action tells Snort what to do when it

finds a packet that matches the rule criteria.  There are five rule actions available for

Snort.

• log : The log action logs the offending packets to the output logging  that is

setup during the Snort configuration.

• alert :  The alert action will log the entry and post a notification when some

event is associated with  higher priority.  This is the default action for most

rules that come with Snort.

• pass  :  The  pass  action  can  ignore  a  matched  packet  and  continue

processing.

• activate/dynamic : These two actions act  together.   The  activate action

triggers an alert and executes what is specified by dynamic action.  The

dynamic action is associated with a rule that shouldn't run until another

event is encountered.

3.1.2.1.2 Protocols

        The next field in a rule is the protocol.  Snort can analyze suspicious behavior of the

protocols, IP, ICMP, TCP and UDP.

3.1.2.1.3  Soure/Destination  IPAddress/PortNumbers  



        The next field deals with the IP address and port information.  The source and

destination networks are identified in a rule that is of the form

          (source network) (port) -->  (destination network) (port)

         The IP addresses in the rule are expressed using CIDR (Classless Inter Domain

Routing) notation.  Using CIDR notation, a single or a range of IP addresses/ports can be

specified in the rule.  Negation operator !, can be used to exclude a specific IP address or

port.

log udp any any -> 192.168.1.0/24 1:1024  

log udp traffic coming from any port and destination ports ranging

from 1 to 1024
log tcp any any -> 192.168.1.0/24 :6000  

log tcp traffic from any port going to ports less than or equal to 6000
log tcp any :1024 -> 192.168.1.0/24 500:  

log tcp traffic from priveleged ports less than or equal to 1024 going

to ports greater than or equal to 500
alert tcp !192.168.1.0/24 any -> 192.168.1.0/24 111 (content: "|00 01

86 a5|"; msg: "external mountd access";)

3.1.2.1.4     The Direction Operator  

        The direction opeator -> indicates the orientation or direction of the traffic that the

rule applies to.  The IP address and port numbers on the left side of the direction operator

is  considered to be the traffic coming from the source host,  and the address and port



information  on  the  right  side  of  the  operator  is  the  destination  host.   There  is  also

bidirectional opeator, which is indicated with a "<>" symbol.  This it to indicate Snort to

consider the address/port  pairs  in  either the source or destination orientation.   This is

useful for recording/analyzing both sides of a conversation.

log !192.168.1.0/24 any <> 192.168.1.0/24 23

3.1.2.2  Snort Rule Options (Rule Body)  

        The Rule option part of the Snort's rule should follow a specific structure outlined as

below :

• The option section of the rule is always wrapped by one set of parenthesis.

• Body options (keywords, instructions, tests and commands) are written

inside the parantheses.

• Each body option is separated by a semicolon.

• Each body option confirms to the format, item: "value";

• The entire line is terminated with a semicolon.

3.1.2.2.1     The "content" option  

        The content option allows the user to set rules that search for specific content in the

packet payload and trigger response based on that data.  The search is case sensitive.  The

data that is specified for search can be ASCII text or binary data or a combination of both.

The binary data is generally enclosed within the pipe ("|") character and represented as

bytecode.  



alert tcp any any -> 192.168.1.0/24 143 (content: "|90C8 C0FF FFFF|/

bin/sh"; msg: "IMAP buffer overflow!";)

    

3.1.2.2.2     The "depth" option  

        The depth option specifies how many bytes into a packet the Snort processor should

examine before moving on to the next rule.  The main reason for using the depth option is

to restrict the search to the most likely places where a match is found, without wasting

valuable processor resources to search the entire packet.

3.1.2.2.3  The "nocase" option  

        The nocase option indicates that the case of the characters submitted for searching

should be ignored.

3.1.2.2.4  The "offset" option  

        The offset option indicates that the search should skip the number of bytes specified.

3.1.2.2.5     The "Uniform Resource Identifier (URI)" option  

        The uricontent is similar to the content, but with this option the search is limited to

the URI in the payload of the packet.

3.1.2.2.6     The "sid" option  

        The "sid" option is used to uniquely identify a snort rule.

3.1.2.2.7  The "priority" option  

        The "priority" option is used to associate a priority with a rule.  The lower the

priority number, the higher the risk posed by the attack that tripped the rule.

3.1.2.2.8     The "classtype" option  

        The "classtype" option is used to organize rules into major groups.



3.1.2.2.9     The "rev" option  

        The "rev" option is used to associate revisions with the rules.

3.1.2.2.10     The "mesg" option  

        The "mesg" option creates a customized output message that can be included with

any logs, alerts and data dumps processed by the detection engine.

3.1.2.2.11     The "reference" option  

         The "reference" option is used to point to an external resource from the rule, for eg.,

a Web-based resource.

4. Automatic Signature Generation

Identifying  new  intrusions  and  developing  effective  signatures  that  detect

them is essential for protecting computer networks.  This section summarizes the Nemean

system that is used for automatic generation of signatures from honeynet packet traces.

The building blocks of this architecture are transport and service normalization, intrusion

profile  clustering  and  automata  learning  that  generates  connection  and  session  aware

signatures.

Generation and maintenance of signatures is a difficult  task because of the

competing requirements.  On one hand signatures should be specific so that they identify

only the characteristics of specific attack profiles.  The lack of specificity leads to false

alarms,  On the other hand the signatures should be general so that they match variants of

specific attack profiles.  Nemean aims to create signatures that result in lower false alarm

rates by balancing specificity and generality.  This balance is achieved by including the

semantics awarenesss, i.e., the knowledge of session-layer and application-layer protocol



semantic in the process of signature generation.

Nemean  architecute  consists  of  two  main  components,  a  data  abstraction

component and a signature generation component.  The input Nemean is a packet trace

collected from a honeynet.

The  Data  Abstraction  Component  (DAC)  aggregates  and  transforms  the

packet  trace  into  a  well-defined  data  structure  suitable  for  clustering  by  a  generic

clustering module without specific knowledge of the transport protocol or application-

level  semantics.   These  aggregation  units  are  called  Semi  Structured  Session  Trees

(SSTs).    The aggregation step of the DAC groups packet data between two hosts into 

                               An Architecture for Generating Semantics-Aware Signatures
                                       Proceedings of Usenix Security Symposium 2005

sessions.  The normalized packet data is first composed and stored as flows.  If a same

pair  of  hosts  and  ports  communicate  again,  the  flow is  converted  into  a  connection.

While a flow is composed of packets, connections are a collection of request-response

elements.  A flow might be expired if a flow has been inactive for a time period greater

than a user defined timeout.  A session is a sequence of connection between the same host

pairs.

                                



Before the above sessions are clustered, service specific information in the

sessions is normalized to make the clustering independent of the type of service and to

enable generation of a more compact signature set.  These normalized session are XML

encoded to create Semi Structured Session Trees (SST).  Weights are assigned to the

elements of the SST to highlight the most important attributes like the URL in an HTTP

request and deemphasize the less important attributes, such as encrypted fileds and proxy-

cache headers in HTTP packets.  

The clustering module groups sessions and connections with similar attack

profiles according to a similarity metric.  The sessions grouped together will correspond

to  a  single  attack  type  or  variants  of  a  well-known  attack  while  disparate  clusters

represent distinct attackts or attack variants that differ significantly from some original

attack.  Clusters are created based on two properties, the data that corresponds to an attack

and its  variants  should be measurably similar  and the data corresponding to different

attacks must be measurably dissimilar.  Properties of normal traffic vary so greatly that

effective clusters cannot be  created from the normal traffic.  

Once  the  clusters  are  created,  an  automata  learning  module  constructs  an

attack  signature  from a cluster  of  sessions.   Clusters  that  contain  many non-uniform

sessions indicate minor changes made to an attack either to mask an existing attack or to

create a variant of an existing attack.  The signature generation component generalizes

these  minor  changes  to  produce  a  signature  that  is  resilient  to  evasion  attempts.

Generalization enable signatures to match malicious sequences that were not observed

during the automata training.



5.      Anomalous Payload-based Network Intrusion Detection   

There  are  many IDS systems  available  that  are  primarily  signature-based

detectors.   Although  these  are  effective  at  detective  known  intrusion  attempts  and

exploits, they fail to recognize new attacks and carefully crafted variants of old attacks.

This is the main drawback of a signatrue based IDS.  An anomaly based IDS, first models

normal  or  expected  behavior  in  a  system and detect  deviations  of  interest   that  may

indicate a security breach or an attempted attack.  And so an anomaly based IDS is able to

detect a new attack that as easily as it would an existing attack.

An anomaly based IDS operates in two different phases, a learning phase and

a anomaly detection phase.  During the learning phase, the IDS learns a model or profile

of the expected payload delivered to a service during normal operation of a system.  Each

payload is analyzed to produce a byte frequency distribution of those payloads, which

serves as a model for normal payloads.  After this centroid model is computed during the

learning phase,  an  anomaly detection  phase  begins.   The  anomaly dectector  captures

incoming payloads and tests the payload for its two statistical distributions.  Any new

payload found to be too distant from the normal expected payload is deemed anomalous

and an alert is generated. 

Mimicry  attacks  are  possible  if  the  attacker  has  access  to  the  same

information as the victim to replicate normal behavior.  In case of the application payload,

attackers would not know the distribution of the normal flow to their intended victim.

Consider the string of bytes corresponding to the sorted, rank ordered byte

frequency of a model.  The following figure shows the view of this process.



The frequency distribution  of payloads of length 185 is  plotted  in the top

graph.  The lower graph represents the same information by the plot is reordered to the

rank ordering of the distribution.  Here, the first bar in the lower plot is the frequency of

the most frequently appearing ASCII character.  The second bar is likewise the second

most frequent and so on.  This rank order distribution follows a Zipf-like distribution ( an

exponential function or a power law where there are few values appearing many times,

and a large number of values appearing very infrequently).  The rank order distribution

also defines a "Z-string".  Thebyte values ordered from most frequent to least frequent

serves  aa  a  representative  of  the  entire  distribution.   The  rank  ordered  byte  value

distribution  of  the  new  payload  deemed  anomalous  and  can  server  as  a  simple

representation of a "new worm signature".  If an anamalous payload appears at a site and

its rank ordered byte distribution matches another site, it  is evidence that a worm has



appeared.

6.      Integrating Automatic Signature generation with Snort  

Snort  supports  extensions  to  its  functionality  through  pluggable

processors/preprocessors.   A component  that  can automatically generate  signatures  as

metioned in the section #4, can be easily plugged into Snort as a "Signature Generation"

processor.  The incoming traffic will be first directed the detection engine. The detection

engine will generate an alert if the traffic matches any of the existing signatures, there by

detecting attack if it is already known.  If the traffic packet generated an alert, then it will

not be passed onto the new processor since the attack is already represented by an existing

signature.  But if no alert was generated, the traffic packet is directed to the new signature

generation processor.   This new processor will  analyze the incoming traffic using the

process outlined in Section 4 and generates new signatures.   These exisitng singature

store of Snort can be dynamically updated with these new signatures.

7 Integrating Anomalous Payload-based Network Intrusion Detection 

Snort is primarily a signature based  IDS.  But can be extended to be a hybrid

IDS by including a anomaly detection component. The new feature can again be plugged

in as a new processor. The new processor, a "Anomaly Detector" can detect attacks using

the process outlined in Section 5.  The incoming traffic packet will be first directed to the

singature based detection engine.  This traffic packet may or may not generate an alert

based on the comparision with existing signatures.  If no alert is generated by signature

detection, the traffic will then be directed to the Anamoly Detection processor.  Thus the



hybrid system will be able to capture both a reoccurance of an existing attack and first

occurance of a new attack.

8 Conclusion

An Intrusion Detection System protects a single computer or a network of

computers from malicious traffic by analyzing the incoming traffic and generating real

time alerts.  High sensitivity of an IDS can lead to high false positive rates, but lowering

the senstivity can lead to high false negatives, so a system administrator should try to

achieve a balance when configuring an IDS.  Snort  provides signature detection for a

network of computers via very simple alert rules.  Snort can be extended via pluggable

processors to include the automatic signature component.  Snort can be extended to be a

hybrid IDS by including an anamoly detection component.



Bibiliography

1. Intrusion Detection.  http://www.itarchitect.com/article/NMG20001130S0007

2. Types of internet threats.

http://www.integratedsoftwaresolutions.ca/Documents/SecurityAlerts/Types_of_Threa

ts.htm

3. Inroduction to Intrusion Detection Systems (IDS) 

http://netsecurity.about.com/cs/hackertools/a/aa030504.htm

4. What is signature detection?

http://www.imperva.com/application_defense_center/glossary/signature_detection.htm

l

5. Evaluating and tuning an intrusion-detection system

http://searchsecurity.techtarget.com/tip/1,289483,sid14_gci918619,00.html?track=IDS

LG

6. A look into IDS/Snort.

http://www.antionline.com/showthread.php?s=&threadid=253920

7. Writing Snort rules  http://packetstormsecurity.nl/papers/IDS/snort_rules.htm

8.  Anomalous Payload-based Network Intrusion Detection by Ke Wang, 
Salvatore J. Stolfo.

9. An architecture for Generating Semantics-Aware Signatures by Vinod Yegneswaran,
Jonathon T. Giffin, Paul Barford, Somesh Jha.


