Windows Server 2003 Active Directory
Patricia C. Marquez
CS526 Semester Project

Spring 2006

pmarquez@uccs.edu
Abstract

This paper describes the Windows Server 2003 Active Directory service. It describes the standards, protocols, and interfaces used in this directory service. An overview of the X.500 Directory Standard and the Lightweight Directory Access Protocol is also provided. The physical architecture including the security subsystem and directory data store is explained and illustrated. The logical architecture of a directory information tree and its components is also explained and illustrated.
1. Introduction
The need for management of network resource information is growing with the increasing use and size of distributed computing environments. Directory services have become an indispensable technology by offering mechanisms and standards for organizing and accessing resource information.
2. Directory services
A directory service is used to manage network resources by providing the mechanisms to organize, access, and modify detailed information about each resource. Resources can include users, printers, files, applications, and other network entities. The information is typed, ordered, and stored in a special database. This data repository is not a general-purpose relational database and is referred to as a directory because of its hierarchical structure.
Directories are optimized to store relatively static information and provide rapid access to directory data. They can be searched using the object’s name to retrieve attribute information. Or, if an object with a certain characteristic is sought, the directory can be searched by attribute. [4]
3. X.500 Directory Standard

X.500 is an international standard that defines the specifications of a directory service. It defines the hierarchical, directory-like structure of the data model and the organization of entries within it. It also defines, among other features, search and retrieval capabilities.

For communication between the directory client and the directory server, it specifies that the protocol DAP be used. However, this protocol is resource-intensive and at the time of its introduction could not be supported by small environments. The alternative, lighter-weight protocol developed was LDAP. [4]
4. Lightweight Directory Access Protocol

The Lightweight Directory Access Protocol (LDAP) is an open-industry protocol for accessing and updating directories. It has lower resource requirements than DAP because it runs directly over TCP/IP and implements a simplified version of the X.500 data model.

Consequently, it has been widely accepted and is now supported in many network operating systems. Companies like Novell and Microsoft adopted LDAP as the protocol for their directory services. Novell uses LDAP for NDS and Microsoft uses LDAP for Active Directory. Web browsers like Netscape Navigator and Microsoft Internet Explorer also support LDAP.
LDAP directories can be accessed programmatically by using APIs for C and Java. Additionally, the Java Naming and Directory Interface (JNDI) enables directory access from a Java application. LDAP directories can be accessed from the Microsoft development environment by using Active Directory Service Interfaces (ADSI). [4]
5. Active Directory

Active Directory is the Microsoft Windows Server 2003 directory service. It was introduced in Windows 2000, replacing Windows NT’s user account database. The Active Directory implementation in Windows Server 2003 introduced enhancements addressing some of its predecessor’s limitations. For example, it is now possible to rename domains, selectively replicate subsets of data, and delete schema objects, among other features.
Active Directory uses LDAP as its primary protocol. Therefore, its hierarchical directory structure resembles that of an X.500 directory. Every resource contained in the directory is represented as an object and must conform to the rules defined by the schema. The schema is a set of rules defining all object classes and their attributes and is also contained in the directory. Millions of objects can now be contained in the database.
Clients can use various application programming interfaces (APIs) to access the directory. LDAP provides APIs for C and Java. Active Directory provides the Active Directory Service Interfaces (ADSI). These interfaces enable a client application to programmatically query or modify the directory depending on permissions the client has been granted.
Intersite and intrasite replication is not a new feature of Active Directory, but the application partition is. The partition enables the administrator to isolate subsets of the directory data. This makes selective replication possible when other domain controllers do not require the entire database. Partitions containing DNS information, for example, would not be needed by domain controllers that are not DNS servers.
The separation between the physical and logical layers of Active Directory makes it possible to protect directory data from being modified by unauthorized clients. All client requests must be authenticated before ever reaching the data store. [1, 3]
6. Physical Architecture

Active Directory is a component of the security subsystem. Before a client request is granted permission to access the data store, it must first pass through the access control and authentication components of the security subsystem. Additionally, access to individual objects is controlled with the object’s Address Control List (ACL). Logically grouped objects can be protected by using security policy. [3]
6.1. Security subsystem
Figure 6.1 below shows the components of the security subsystem. The top layer consists of mechanisms used by various clients requiring different types of authentication. Kerberos is the default authentication protocol used by Active Directory. Its subcomponent, the Key Distribution Center (KDC) service, runs on all domain controllers and sends the Kerberos client a key if authentication passes.
Windows NT 4 clients send logon information to the directory service and receive security identifiers for objects using the NET LOGON logon/access control mechanism. NTLM has been maintained for backward compatibility with these clients.
The Local Security Authority (LSA) Server works similarly with logon information and security identifiers but it enforces security policies for Kerberos and Secure Sockets Layer (SSL) authentication.

[image: image12.png]

Figure 6.1: Windows Server 2003 security subsystem using Active Directory [3]

6.2. Clients and Interfaces
Figure 6.2 below shows different types of clients issuing requests via their associated interfaces. Those requests are passed to the security subsystem and, if authenticated, are directed to the Extensible Storage Engine (ESE) to read from or write to the data store.

[image: image2]
Figure 6.2: The directory service architecture [3]
6.3. The data store

Figure 6.3 shows the structure of the data stored on a domain controller’s hard disk.

[image: image3]
Figure 6.3: Active Directory data store [3]

7. Logical Architecture

Objects contained in a directory can be organized in logical groupings. These groupings exist at different levels resulting in a hierarchical tree structure. The directory schema defines this structure as well as the parent-child relationships. The components of a directory tree include:

· Objects

· Domains and Domain Trees
· Organizational Units

· Forests

· Trust relationships
7.1. Objects

An object is the fundamental component in a directory tree and represents a resource in a network. An object has attributes that contain information about that resource. For example, if the resource represented by the object is a printer, attributes might include the printer’s name, location, and resolution. Some attributes are mandatory and must be populated while others can be optional. An object can also contain others objects in which case it would become a container or a container object.

When an object is created, it must comply with the rules defined in the schema for that object class. When an attribute is added to an object, the schema will validate it as an available attribute. If the attribute is mandatory it must also be defined.
7.2. Domains and domain trees
A domain is a logical grouping of objects. A domain tree is a logical grouping of domains. In a domain tree, the domain at the top is referred to as the root domain and is the parent of the domains directly below it. Lower-level domains can also have child domains of their own. This parent-child relationship continues through all levels of the hierarchy.
Figure 7.2 shows a domain tree and the parent-child relationships between domains.

[image: image4]
Figure 7.2: A domain tree

7.3. Organizational units

By creating organizational units within a domain, an administrator can logically represent the organizational structure of a company. By doing this, permissions can be granted or denied to specific units.
Figure 7.3 shows a domain tree with organizational units within each domain.

[image: image5]
Figure 7.3: Domains with organizational units

7.4. Forests and trust relationships
A forest is a collection of one of more domain trees. Within the same forest, two-way trusts are automatically established between the root domains of each tree and parent and child domains in the same tree. Trusts are transitive so if Domain A trusts Domain B and Domain B trusts Domain C, then Domain A trusts Domain C. [3]
Permissions are not inherited when a trust relationship is established. The trust enables administrators to grant permissions.

Figure 7.4 shows a forest with two domain trees and the trust relationships between them.

[image: image6]
Figure 7.4: Forest with two domain trees and trust relationships

7.5. Naming objects
Every object in a directory is named relative to the container that stores it. This is called the relative distinguished name. The distinguished name is the object’s full name including all of the containers of which it is part of. The table below includes the identifiers associated with directory objects.
	Identifier
	Object Name

	CN
	Common name

	DC
	Domain controller

	DN
	Distinguished name

	OU
	Organizational Unit

	RDN
	Relative distinguished name

Table 7.5: Object identifiers

8. Active Directory API
Active Directory Service Interfaces (ADSI) is a set of interfaces that makes is possible for client applications to communicate with Active Directory as well as directory services from other network providers such as Novell’s NDS Server. A client application can perform administrative tasks using various languages like C, C++, C#, Java and Visual Basic. ADSI can also be used to access data using scripts or ASP pages. The code samples that follow are written using the C++ language.
8.1. Development environment
Before attempting to compile an application, the header file Activeds.h must be included in the project and the library files Activeds.lib and Adsiid.lib must be linked.
8.2. Binding to an object

In order to communicate with an object, the application must first bind to that object. The example code below shows one of the ways to bind to an object. It performs a binding operation on the user object “chow” in the “homenet.local” domain.

IADs *pObject;

HRESULT hr;

hr = ADsOpenObject(L"LDAP://CN=chow,DC=homenet,DC=local",

NULL,

NULL,

ADS_SECURE_AUTHENTICATION,

IID_IADs,

(void**)&pObject);

if (SUCCEEDED(hr))

{

// Use the object.

// Release the object.

pObject->Release()

}

Figure 8.2: Example code for binding to an object with C++ [2]
8.2. Creating an object

The code example below creates a user object. The binding operation is performed using a different function this time. For brevity, error checking has been omitted.

HRESULT hr;

IADsContainer *pCont = NULL;

IADs *pADs = NULL;

IDispatch *pDisp = NULL;

CoInitialize(NULL);

hr = ADsGetObject(L"WinNT://myMachine",

 IID_IADsContainer,

 (void**)&pCont);

hr = pCont->Create(CComBSTR("user"), CComBSTR("cn=JeffSmith"), pDisp);

hr = pDisp->QueryInterface(IID_IADs, (void**) &pADs);

pADs->SetInfo(); // Commit

pADs->Release();

pCont->Release();

pDisp->Release();

return hr;

Figure 8.2: Example code for creating a user object with C++ [2]

8.3. Accessing attributes of an object

The code example below queries the “name” attribute of a user object.

HRESULT hr;

IADs *pUser;

// Bind to user object.

hr = ADsGetObject(

L"LDAP://CN=Edward Chow,CN=Users,DC=homenet,DC=local",

IID_IADs,

(void**)&pUser);

if(SUCCEEDED(hr))

{

BSTR bstrName;

// Get property.

hr = pUser->get_Name(&bstrName);

if(SUCCEEDED(hr))

{

wprintf(bstrName);

SysFreeString(bstrName);

}

pUser->Release();

}

Figure 8.3: Example code for accessing attributes of the user object with C++ [3]

9. Conclusion

While not perfected, the Active Directory implementation in Windows Server 2003 has introduced significant improvements. The application partition, for example, makes it possible to replicate selectively. Domains can now be renamed and schema objects can be deleted. Its shortcomings are mainly in the reorganization of forests.
10. References

[1]
Kouti, Sakari, and Mika Seitsonen, Inside Active Directory – A System Administrator’s Guide, Addison-Wesley, 2002
[2]
MSDN Library, http://msdn.microsoft.com/library/default.asp?url=/library/en-us/adsi/adsi/active_directory_service_interfaces_adsi.asp, 2006
[3]
Stanek, William R, Microsoft Windows Server 2003 Inside Out, Microsoft Press, 2004

[4]
Tuttle, Steven, Ami Ehlenberger, Ramakrishna Forthi, Jay Leiserson, Richard Macbeth, Nathan Owen, Sunil Ranahandola, Michael Storrs, and Chunhui Yang, Understanding LDAP – Design and Implementation, IBM Redbooks, 2004
PAGE
10

[image: image1][image: image7.png]NTL e || Kereros s
(vt .0 (Kdosve.dl) (Kerberosl) || (Schaml.)
‘Authentication povider
(Secur32.l)
Ree Rec
——] nerLocon LA Server
(Netlogon i) (Lsarsreal) =
Rec
Security Accounts Manager
— samsrvy
Loap !
L Diractory service
(tdsa diy

[image: image8.png]Replicaton with other
LD ADSI, directory servers Outlook
Outookclients (RPC, SMTP over) clients Windows NT 4

L o o ol

Tnerfacas

Loap REPL et s

1 ! ! !

NTDSADLL

Diratory System Agent (DS4)

o et sty

T data store

Bxtensible Storage Engine (ESE) —
s -

[image: image9.png]Active Diactory

Data Store
Prmary data fle Tansacton ogs
(st
inary g e
ccu (Edb.og)
Daa Unk | Securty
wble || b || esEEer
table Sacondary log fle
(E4b000001 og)
Sacondary log fle
(E4b000002 og)
Worting Fles

Checkpont fils [Edb.ehk)

Resarve Iog fls (Res . log)

Temporary data (Tmp.adh)

Resarve Iog fls (Res2.log)

[image: image10.png]PARENT

GHILD OF ROOT DOMAIN CHILD OF ROOT DOWAN

[image: image11.png]

