Will Lefevers

CS526

Dr Chow

5/14/2006

[image: image1.png]

Client Side Mirror Selection

CS526 Advanced Internet and Web Systems

Dr C Edward Chow

Will Lefevers

Abstract

This paper is intended to look into the common process of selecting a mirror for large file downloads. The impetus behind this research is simple -- as the Internet has become more ubiquitous and the average connection speed higher, the files offered for download have grown as well. Large files, especially full CDs and DVDs (ie, Linux Distribution disks), take an exceedingly long time to download and require a stable connection that can provide high throughput for extended amounts of time. For the average Cable or DSL Internet consumer, a 650Mb CD
 requires not less than two hours to download. Considering that well-established distributions are typically three to six CDs in total, and the DVD alternative is roughly 4Gb of data, any given user can be connected for an extended period of time. As download sites are typically swamped with connection requests, many of them employ or encourage peer sites that are willing to help share the load to also serve these large files
. Of a pool of sites distributing a file, selecting the fastest available server with the highest available bandwidth becomes imperative to receiving data in a timely manner. This problem is referred to as Client-Side Mirror Selection.

Assumptions

When we talk about client-side mirror selection, we make a few assumptions to define the borders of the issue. First, we assume that there are a pool of geographically separate servers which are serving an identical file from different networks with different levels of connection. Second, we assume the mirror providers know nothing about the clients that will be initiating a download and that their performance will be affected by client-side configurations such as browser, operating system, and connection type
. Finally, we assume that the clients cannot alter the configurations of the servers or in any way provide them data, such as helper applications
.

Defining Success

Success in mirror selection is defined as picking the fastest of the available download servers, thereby achieving the fastest possible download of the set; in the end we receive the file as fast as the fastest of the servers could have provided it. Since typically only the very last segment of a network route is owned or managed by the client, the vast majority of the route is outside of the user's realm of influence. Success in these terms cannot involve affecting or changing these routes, so it must be a measure of picking the best available server and route given the state of the network at the time the download is initiated. This is especially true because details of the route are normally hidden from the user
.

Speed is the generic term used to define performance in networking. From the user's perspective there is perceived speed, usually a reflection of the responsiveness of the server as well as discrete measurements of bandwidth as the download starts. These subjective measurements may increase the user's happiness with the connection they've established, but they're hardly definitive. Alternately, there is objective speed which must be consistently measurable. Speed, especially along longer routes, has a couple of components. Chief among them are throughput, or the ability to push large amounts of data from the server to the client, and response time, or quickness with which packets are sent or resent when they are lost. Secondary to these are connection stability and burstability, both of which have to do with congestion in the route and whether the infrastructure can overcome limited amounts of it or whether the connection gets dropped. Cost is only a consideration for users paying for their data pro rata, which is typically done between ISPs or backbone providers and very rarely by the end user
.

Since mirror servers are going to be serving large files and keeping connections open for long times, they will be under heavy loads much of the time. Criteria for selecting the best mirror in these circumstances should be (1) ability to fill the data pipeline and (2) response time to requests when packets are lost.

Hurdles To Overcome

As previously mentioned, most of the factors that prevent optimal download speed have to do with forces beyond the user's control. The cleanest part of the link is typically the backbone segment. Backbones are the high volume point-to-point links of major service providers that connect their geographically separated physical sites
. These connections tend to do very high volume of traffic at very high rates of speed. Typical connection types include optical carrier classes OC-48, OC-192, and some types of 10 Gigabit Ethernet
. Optical connections are fast, but have their limits; both the processing capability of the router and line delay as light propagates through the link. These connections tend to be resistant to congestion, but not resilient. When a router or link hits it's practical data limit it can be bogged down and cause congestion. As there are multiple backbones for any packet to travel through, the link will be picked up by another router once the sending router realizes a link has gone down or is unresponsive. In the mean time, the see delay while the network determined the new best route. These decisions are made by exterior routers which communicate amongst themselves according to their own configurations and implementations
.

Local Internet Service Providers (ISP) tend to do less traffic than backbone connections, but they also tend to have less money to invest in maintaining their network. Where backbone providers plan ahead and stay on top of their upgrade plans, local ISPs tend to focus on things that bring in money -- customer service. Factors that affect the speed on an ISP include distance to the backbones, gateway efficiency, peering, and poor design
. Distance to the backbones refers to both the number of hops required to put data on a backbone, and the physical distance which delays optical carrier connections slightly. Gateway efficiency has to do with how quickly a gateway learns its routes and how efficient it is at finding the optimal route as opposed to a non-optimal route
. From the user's perspective this is not measurable, as users to not have access to the routing information that would be necessary to second-guess the router. In addition, routers will choose non-optimal connections based on the weight or preference set in their firmware or configuration in order to prevent any one connection from becoming congested. In fact, implementations of the Border Gateway Protocol (BGP) by various vendors allow for plenty of customization in choice of route. Cisco's IOS, for example, has fourteen different criteria for selecting a route. These criteria include such things as weight, local preference, common network, shortest hops, lowest origin type, and plenty of internal metrics. Between BGPs of the same network or firmware, these decisions can be quite complex, tying in metrics from other routers. Between different BGP implementations, reduced functionality can lead to non-optimal routing. Peering configurations and multi-homing bandwidth can help in selecting an optimal routes by giving the router more options to choose from. The more available peers, the more likely it is that they will use different backbones and the better chance that loss or congestion on one backbone won't slow down all connections. Congestion in an ISP is usually a reflection of either poor design (peering through the same backbone too much) or failure to maintain a solid configuration, typically because management tends to look at working infrastructure as 'good enough' until service degradation is obvious.

The weakest link in the path from a download server to the client is the Metropolitan Area Network (MAN) or Local Area Network (LAN). These terms refer to different types of network, but they serve the same function -- they reside closest to the client. MANs tend to be larger and more geographically dispersed (ie, a corporate campus), while LANs tend to be smaller and closer (ie, a building). These networks tend to have the worst design, the least standardization of equipment, the least planning, and the least investment
. Since they are closest to the client, they also tend to have the lowest overall bandwidth. They suffer much more from congestion as they tend to have more bottlenecks and less alternate routes. Because they are the endpoint of a network, they typically use cheaper and less efficient technologies to deliver data, such as ethernet and token ring. Ethernet's primary weakness has to do with collision domains. Since it uses carrier sense multiple access with collision detection (CSMA/CD) to adjudicate the line. The concept behind CSMA/CD is that each device on the line waits until the medium is idle, then transmits. If another device transmits at the same time, the device detects a collision, waits a random amount of time, and rechecks the line for retransmission. While CSMA/CD works great for less busy networks, when the network is saturated devices tend to cause more and more collisions such that their wait periods tend to cause second and third collisions, thereby reducing the available bandwidth on a hub. Switches alleviate much of this problem as they separate each device into it's own collision domain, but switches tend to delay all data as they have to process the addresses of the devices connected to them in order to pass data from interface to interface. Switches internally use a variant of a token ring in which a 'token' is passed along the data path in a loop. When any device has the token, it can transmit all the data is has up to a certain set limit, then it must pass the token along and wait until it comes back around. Under heavy utilization, this method also induces delay since each device on a network will transmit until it reaches its' data limit, such that the token takes a very long time to return and latencies for all devices rise
. Neither of these technologies are popular outside the MAN/LAN segment, as frame relay and optical carrier routers are much more efficient.

In sum, backbones are limited by congestion, ISPs are limited by their BGP and router efficiencies, and LAN/MANs are limited by their slower and cheaper connection technologies.

Selecting a Mirror

Traditional methods of selecting a mirror have included random selection by the user, geographic proximity, 'brand name' network selection, latency tests, throughput tests, connection stability tests, and infrastructure-based methods. Random selection by the user is the original method of picking a mirror -- a user assumes that a particular server halfway down the server list is less likely to have load, and starts a download. This method is neither scientific or reliable, as psychology suggests people use unconscious cues that lead them to prefer some mirrors over others. Geographic proximity tends to be misleading, as it gives no indication of the things that truly affect the download speed. The assumption is that a geographically close server should have less hops, but this is not necessarily true. In fact, data can be routed through any number of locations based on the routing tables along the way -- it rarely takes the most physically direct path. Brand name selection is the idea that a particular ISP (AOL) or telecommunications company (AT&T) will have better infrastructure which will deliver higher speeds. While this may be true, the route involved to reach that server could be longer and there is usually no obvious method of determining where among the sites that company owns the server is hosted. Evaluating the number of hops between the client and a server can be useful, but is more a reflection of a company's infrastructure philosophy than their throughput. Latency, or the amount of time it takes for data to go from client to server and back, is an incomplete metric when picking a server. Great latency tells you that a server is responsive, but yields nothing about how much data it can put forth. On the other hand, throughput can be useful in selecting a mirror, but if the latency is too low, packets that get lost along the way will cause the entire connection to slow down as a TCP buffer fills up waiting for packets to be resent. As a corollary, servers which the users know have more bandwidth tend to get more connections and are bogged down as a result. Connection stability, measured as Round Trip Time (RTT) variance, can be useful in selecting a mirror that is resistant to connection, but is useless without latency and bandwidth estimation
.

In addition to the user methods of mirror selection, in some cases clients can rely on infrastructure methods. Some routers keep track of available mirrors and can reroute a connection by weight, but few outside of corporate campuses implement this feature
. Helper services which measure their server's throughput or load can be very useful, but few ISPs are willing to install processes to report data back to a central clearinghouse
. Normally only academic alliances such as the Internet2 backbone keep track of this data and do not have easy interfaces to calculate this data into mirror selection scripts. Finally, users can start a download and be aided by their local (LAN/MAN/ISP) cache server which can put forth the data much quicker from a local copy and save bandwidth cost. Unfortunately, many cache servers do not cache documents as large and rarely used as distribution disks, and in the long run save money by caching more commonly requested items.

The Ideal Metric

In picking the best of available mirrors before starting a download, metrics are critical. The metrics a client verifies should be robust and representative. They should account for throughput to identify the lowest bandwidth bottleneck in the route as well as response time to predict both server load and ability to resend lost packets, thereby preventing TCP buffer issues. The TCP window and buffer cannot be underestimated for longer connections, as a full TCP buffer results in no activity until the lost packets are received. Connections can idle because of fragmentation or loss of a route which can stall a connection. Taking into account these factors, the ideal metric would be Bandwidth-Delay Product (BDP). BDP is the multiplication of the estimated throughput with a utility like Bing for Linux and delay (RTT) in milliseconds as estimated by some variant of the Ping utility. This product should accurately predict the quality of the connection, and assuming congestion rises and falls uniformly, should still be accurate late in the download. In addition, the utilities which check for bandwidth and delay are affected by default buffer sizes, TCP auto-tuning, window scaling, and MTU Path Discovery the same way a download will be; if the links along the route are burstable and resilient to high-volume connections, BDP will predict it
.

Implementation

The goal in implementing a client-side mirror selection script is simple -- to test a list of mirrors for BDP, sort them efficiently, and start a download. At the beginning of this exercise, the intent was to implement a script in JavaScript to acomplish these goals. The script methodology was:

1. Read in the mirror list from a text file and parse it into fully qualified domain name (FQDN) and file address

2. Quickly check which of the server list was up by initiating a connection and remove the servers that failed in order to minimize time spent waiting for a timeout

3. Test each server for three RTTs and create a preferred server list of the top ten servers

4. Throughput-test the top ten servers using a bing-like ICMP ping and add these values to the server list

5. Stack the results by the calculated BDP and initiate a download with the fastest server.

The majority of issues I ran into when implementing this project have to do with the lack of a robust and fully featured client-side scripting language. The biggest obstacle to overcome is the fact that JavaScript is intentionally very limited in its' capabilities
. While it does well in formatting data for displaying a page, it cannot initiate new connections outside it's domain and port, call non-javascript programs, or access non-javascript files on the server (except for cookies)
. Without these facilities, testing for BGP (or even pinging other hosts) becomes impossible. These functions can be implemented on the server side, using any number of scripting languages, but the metrics will not be valid if the server initiates the tests.

Java Applets were another option I considered, as they could be downloaded and run from the client side producing statistically significant results, but applets have their own limitations: they cannot read or write files from the client and they cannot initiate network connections except with their originating host. In addition, they are not allowed to start programs on the client, load libraries, or define native method calls
.

What now? If the plan was to implement a client-side script to perform these tests using technology assumed to be either in the browser or executed by the browser, where does that leave us? Downloading and installing a program defeats the purpose of client-side mirror selection and takes the elegance out of our solution. Are there options to put the elegance back in? Certainly.

Similar Implementations

In implementing client-side mirror selection, there are plenty of alternatives to look at. Unfortunately every last one of them is a client-side application, not a script. In each case, they were written to serve a particular purpose in a particular language.

In the Gentoo Linux operating system, files are fetched for installs be a package called portage. Portage, in essence, is a series of python scripts that determines which version of a program to download, where to get it, and how to compile it to be best optimized on your system. The process is quite elegant, and includes a mirror selector used before downloading files. Having combed through the source code, I was surprised to see that mirror select never actually tests the mirrors. It feeds in a master list and selects one at random when a file needs to be fetched. While this does not help the client get the fastest download, it does ensure that over time the loads on the file mirrors are roughly equal. If a server's load it too high, it stops taking connections and the client falls back to the next random server. The other half of the equation for portage is that files (largely flat text source code) are transferred via rsync which compresses them during transmission
. Obviously this won't work for ISO files, but it's an extremely elegant method of retrieving sources.

Along the same lines as mirrorselect is fastestmirror for yum. Yum is the Yellow Dog Linux Updater, Modified. While Yum itself doesn't include a mirror selection utility, a later module was coded in Python to server this purpose: fastestmirror. This script opens a socket on port 80 with each server, records the response time, closes the socket, and sorts the list by time before picking at mirror
. This method is easy and fast (especially in Python) and requires no additional configuration.

The Middle Way

Having looked at alternative ways other programs and scripts had addressed these problems, I cobbled together an alternative that works within the javascript limitations that solves most, but not all of the problems. It's an HTML/Javascript implementation as a proof-of-concept that uses the 'onload' function in javascript to time index-retrieving connections, much like fastestmirror. It requires nothing more than a webserver and javascript, and times sets of index connections. In order to avoid skewed data from caching, it includes a 'cache buster' feature that appends each request with a random number to ensure the browser refetches the file each time. Run it batches, it can gage server responses and allow the user to select the server with the least RTT variance, a roundabout way of estimating server performance. This metric should reliably predict load and responsiveness, but wouldn't predict throughput unless the index files were large and roughly the same size. For http mirrors such as the slackware mirrors I utilized in the implementation, the indexes will be uniform in size, but not necessarily large. Larger files (300k) would predict bandwidth better, but the trade off is that results would be slower to return. This method doesn't solve all of the requirements because it does not initiate the download automatically, it doesn't measure bandwidth very well, it cannot re-check the servers periodically to see if one is suddenly better, and it cannot fall back to another server if the connection is lost. On the bright side, given additional research into the obscure and complex java applet security model, a full implementation in java should be feasable.

Current Alternatives

Other technologies can easily fulfill the requirements for easy mirror selection or bypassing mirrors, but as mentioned, the all require downloading and installing a program, plus additional configuration of the servers. The most popular methods include torrents, compressed servers, multi-source downloads, distributed fileshares, and sneakernet. Torrents are a fairly recent technology which involves using a single server to 'seed' clients with parts of the file, after which the clients send each other the parts they have until each has all of it
. Compressed servers, like those using rsync, sftp, and scp alleviate bandwidth problems by sending less data in total and uncompressing it on the client side. Obviously this requires a bit of additional configuration, but depending on what kind of data is being compressed, can be quite useful. Multi-source downloading, like torrents, allows such things as resuming and downloading different files from different sources. This is different from torrents in that the servers are putting out the entire file to each client; clients are not uploading to each other. Programs like Getright implement these technologies to overcome the bandwidth cap on any one server, but they're still constrained by the local bandwidth bottlenecks of the client. Distributed file shares like Freenet are another great alternative as each node/client has some part of the file stored and a user that wants a file can get it from multiple sources simultaneously
. The only downside is that if there isn't enough redundancy in the system, some critical piece of the file may be lost or hard to find, thereby slowing completion. Last but not least, there's the old fashioned alternative called 'sneakernet'; borrowing a disc from a friend who has already downloaded it and walking it over. This tried and true method is based on effective social networking, which depending largely on the local community, may not be feasible.

In Sum

All things considered, client-side mirror selection is still a feasible and tractable problem assuming the java security model can be overcome. Unfortunately, java and javascript implementations vary widely in implementation and standards support by version. Either can be disabled by the client, and depending on trust and signatures, clients may be likely to bypass a client side mirror selection script. For those that use it, there are significant benefits. For those that don't, the worst case is a slow and tedious download.

�	"University of Utah Slackware Mirror", University of Utah. http://slackware.cs.utah.edu/slackware-10.2-iso/

�	"The Slackware Linux Project: Get Slack", Patrick Volkerding, et al. http://slackware.com/getslack/

�	"Automatically Selecting a Close Mirror Based on Network Topology", Giray Pultar, LISA Conference, 1998. http://www.usenix.org/publications/library/proceedings/lisa98/full_papers/pultar/pultar_html/pultar.html

�	"NLANR Network Performance and Measurement Tools", Distributed Applications Support Team, National Laboratory for Applied Network Research, 8 Oct 02. http://dast.nlanr.net/NPMT/

�	"Introduction to Network Performance Measurement", Daniel McRobb, Academ Consulting Services, 1997. http://www.academ.com/nanog/june1997/performance.html

�	"Enabling High Performance Data Transfers", Matt Mathis, Raghu Reddy, Jamshid Mahdavi, Pittsburgh Supercomputing Center. http://www.psc.edu/networking/projects/tcptune/

�	"Internet Backbone", Wikipedia.org, 29 Apr 06. http://en.wikipedia.org/wiki/Internet_backbone

�	"10-gigabit Ethernet", Wikipedia.org, 7 Apr 06. http://en.wikipedia.org/wiki/10_Gigabit_Ethernet

�	"BGP Best Path Selection Algorithm", Cisco Systems, May 08, 2006. http://www.cisco.com/warp/public/459/25.shtml

�	"Introduction to Network Performance Measurement", Daniel McRobb, Academ Consulting Services, 1997. http://www.academ.com/nanog/june1997/performance.html

�	"BGP Best Path Selection Algorithm", Cisco Systems, May 08, 2006. http://www.cisco.com/warp/public/459/25.shtml

�	"Automatically Selecting a Close Mirror Based on Network Topology", Giray Pultar, LISA Conference, 1998. http://www.usenix.org/publications/library/proceedings/lisa98/full_papers/pultar/pultar_html/pultar.html

�	"Networking Essentials Unleashed", Mark Sportack, et al, Sams Publishing, 1998

�	"Automatically Selecting a Close Mirror Based on Network Topology", Giray Pultar, LISA Conference, 1998. http://www.usenix.org/publications/library/proceedings/lisa98/full_papers/pultar/pultar_html/pultar.html

�	"BGP Best Path Selection Algorithm", Cisco Systems, May 08, 2006. http://www.cisco.com/warp/public/459/25.shtml

�	"NLANR Network Performance and Measurement Tools", Distributed Applications Support Team, National Laboratory for Applied Network Research, 8 Oct 02 http://dast.nlanr.net/NPMT/

�	"Enabling High Performance Data Transfers", Matt Mathis, Raghu Reddy, Jamshid Mahdavi, Pittsburgh Supercomputing Center. http://www.psc.edu/networking/projects/tcptune/

�	"JavaScript Limitations", Alexei Kourbatov, 2000. http://www.javascripter.net/faq/javascr2.htm

�	"JavaScript Security", Sun Microsystems, 27 May 99. http://docs.sun.com/source/816-6409-10/sec.htm

�	"Applet Security FAQ", Sun Microsystems, 2006. http://java.sun.com/sfaq/

�	“Mirrorselect”, The Gentoo Foundation, http://www.gentoo.org/

�	"fastestmirror for Yellowdog Updater, Modified", Luke Macken, RedHat Linux, 2005. http://laiskiainen.org/yum/plugins/fastestmirror/fastestmirror-meta.py

�	“BitTorrent Frequently Asked Questions”, BitTorrent, Inc, 2006. http://www.bittorrent.com/faq.myt

�	“Freenet Frequently Asked Questions”, The Free Network Project, 2006. http://freenet.sourceforge.net/index.php?page=faq

- 19 -

