An analysis of AJAX with SOAP and Comet


[image: image10.jpg]



CS526 Advanced Internet Systems – Dr. Chow

Mike Gerschefske

Justin Gray

James Yoo
Table of Contents

2Table of Contents


3Prelude


3The old way of doing business


3A proposed solution


4XMLHttpRequest


5Introduction


6Who Is Using Ajax?


8Benefits of Ajax


8Downsides of Ajax


9AJAX with SOAP


10AJAX in Action


12Introduction to Comet


13Conclusions





Prelude

Before we can go into the discussion of AJAX we need to establish a baseline set of knowledge of how internet systems have worked and how they have migrated over the users.

The old way of doing business


[image: image2.emf]2

How Web Applications Work

<HTML>

<TITLE>Google</TITLE>

<BODY>

[…]

</BODY>

</HTML>

User Requests

Web Page either by 

clicking a button or 

entering a URL

The entire page is 

changed and reloaded 

with the server 

response

Documents are forced 

to be ‘heavy’, 

displaying new 

information requires a 

new page request

Title

UI

UI

Table

Table

HTTP GET http://www.google.com/

Or

HTTP POST […]


Traditionally web applications have followed a simple model, with user interactions (button push, link click, etc.) the web page would be navigated from one page to another.  This requires the entire new page to be reloaded, all images and src tags to be reloaded and the DOM parser which displays the rendered HTML to have to re-render the entire page.  Unfortunately, this is extremely costly for both the user and the web server.  The user has to wait for all this to occur and the web server has to provide bandwidth for this action.  All static parts of the page have to be reloaded with this model.

A proposed solution

Originally named LiveScript, JavaScript was created by Netscape and included in version 2.0 of the browser released in 1995.  For the first time, developers were able to affect how a web page could interact with the user.  Instead of making requests back to the server for simple tasks as data validation, it became possible for the browser to handle a small bit of processing.  Using JavaScript minimized the number of times that the user had to wait for a response, which was the first major step toward the Ajax approach.


[image: image3.emf]4

Frame – Moving Forward

Right Direction



Provides a way to not pull entire page

Wrong Implementation



Send meta-data and document 

formatting with every page load



Need a way to send just data to reduce 

bandwidth and decrease response time

Title

UI

UI

Table

Table

UI

Table

User interaction (e.g. button 

click) causes a smaller reload 

of certain sections of the web 

page

<HTML>

<TITLE>Google</TITLE>

<BODY>

[…]

<IFRAME ID=Dynamic/>

[…]

<script>

onButtonClick =

{

IFRAME.Dynamic.SRC = mynewpage.html

}

</script>

</BODY>

</HTML>

<HTML>

[Document Subset]

</HTML>


The advent of the frame provided a fix for the above problems.  Now, sections of the web page could be reloaded with out having to reload the entire page.  The framing has the ability to allow us to do Asynchronous calls that use JavaScript and consume XML.  Unfortunately, Frames have a negative stigma associated with them because of often improper and annoying uses of them which have viewed them as bad to use.

XMLHttpRequest

The XMLHttpRequest concept was developed by Microsoft and was called XMLHTTP.  The Microsoft implementation is an ActiveX object which was introduced in Internet Explorer 5.0 and is accessible through Jscript, VBScript and other scripting languages supported by IE browsers.  Instead of using hidden frames or iframes, it was now possible to access the server programmatically using JavaScript, independent of the page load/reload cycle.  The XMLHttp object became a hit for Internet Explorer developers.

With the increase of popularity, the Mozilla project began their own port of XMLHttp.  Instead of allowing access to ActiveX, the Mozilla developers replicated the object’s principle methods and properties in a native browser object XMLHttpRequest.  With both of the major browsers supporting some form of XMLHttp, the development of Ajax-type interfaces really took off and forced the other browsers, Opera and Safari, to support some form of XMLHttp as well.

Introduction

AJAX – Asynchronous JavaScript and XML.  AJAX is a design pattern, not a technology or a product one can buy.  It has been first documented that Adaptive Path is responsible for coining the term “AJAX” in February of 2005.  It’s the simple idea of using JavaScript to make asynchronous calls to send and receive XML
.  The main reasons to use AJAX are to decrease the amount of data being requested and to increase the interactivity, speed and user experience.  The primary use of AJAX is in the browser with XMLHttpRequest, however, since AJAX is just a design pattern, it can be used beyond the browser.
Soon after Microsoft created their version of XMLHttpRequest through ActiveX objects, the Mozilla brand of browsers created XMLHttpRequest as an extension to JavaScript.  Unfortunately, between the two browsers, it is not the same way to create these objects even though these objects have the same functionality.  This has been a constant issue with JavaScript. 
Below shows the differences between AJAX and the older model of how clients would request web pages.




Who Is Using Ajax?

A number of commercial web sites use Ajax techniques to improve their user experience.  These sites are really more like web applications than traditional informational web sites.

One of the first examples using Ajax techniques is Google Suggest (www.google.com /webhp?complete=1&hl=en).  As you type, Google Suggest requests suggestions from the server, showing you a drop-down list of search terms that you may be interested in.  Each suggestion is displayed with a number of results available for the given term to help you decide.  This simple client-server interaction is very powerful and effective without being obtrusive to the user, and updates no matter how quickly you type.

[image: image5.png]Google - Mozilla Firefox
Bl Edt Vew Go Bookmarks ool Help

@O @ (=) m wtpfonow goacle. comjwebhpzcomplte=1eHi-en D)

[wiekcome to Gmail 5 webmail UCCS % Webmail Adelphia [GGoogle ¥ eBay - New & used ele... Y/ Wikipedia, the free en... fp Slashdat: News for ne. )
Personalized Home | Sign in

Web |mages Groups MNews Froogle Maps more »

jax Advanced Seach

ajax <0990 e Lonsuaas oot
ajax amsterdam 502,000 resuts
ajax o 710,000 resuts
ajax ontario 275,000 resuts
ajax grips 5.980 resuts
ajax football club 573,000 resuts
ajax public library 0,500 et
ajax football 464,000 resuts
ajax soccer 457,000 resuts
ajax picketing transit 10700 resuts

As youtype, Goo sults. Learn more





Gmail (www.gmail.com) is Google’s free e-mail service which has been widely talked about for its client-server interaction in the age of Ajax.  When you first log in to Gmail, a user interface engine is loaded into one of the few iframes the application uses.  All further requests back to the server occur through this user interface engine through XMLHttp object.  The data being transferred back and forth is JavaScript code, which makes for fast execution once downloaded by the browser.  These requests serve as instructions to the user interface engine as to what should be updated on the screen.  Additionaly, the Gmail application uses several frames and iframes to manage and cache big user interface changes.  This enables Gmail to function properly with the Back and Forward buttons, which is one of the advantages of using frames or iframes instead of or in conjunction with XMLHttp.  Once again, Google used Ajax to improve on an already simple concept to provide an exceptional user experience.

[image: image6.png]Gmail - Inbox (49) - Mozilla Firefox.
Ele Edt Vew Go Bookmarks Iools Hep

) © O Lo v cnmsipon-pamsasmssmssoncrscamersansmass 9 7 (O)

[wiekcome to Gmail 5 webmail UCCS % Webmail Adelphia [GGoogle ¥ eBay - New & used ele... Y/ Wikipedia, the free en... fp Slashdat: News for ne. )
Goocle Gmall Calencr more s

iyoo7@gmail.com | New features! | Settings | Help | Sign out

Gﬂa” Search Mail ] ( Search the Web | Shasseitch spons

e} BETh

Compose Mail Sl.com - Alonso first Spaniard to win Spanish F1 race - & hours 2g0 WebClip | <[>

Inbox (49) Archive ] [ Report Spam ] [Delete ] | More actions, v | Refresh « Newest ¢ Newer 301 - 329 of 329
i‘h%:“o* Select: All, None, Read, Unread, Starred, Unstarred

Sent h me, Bradley (2) Brad give me a call - Sorry James, | meant to call you on my break wh  5/9/05
Dt Douglas, me (2) did you recieve this - Yes | did On 4/30/05, Douglas Busch <buschjon: P 4/3005
All Mail Sarah, me (2) Contact Information - Hi Sarah, Thanks for giving me a call earlier toda @317/05
Spam ( me, Shae (2) Corks, Bottles, & Brews Logo - Thanks! | sent it to our website person #317/05
Mike, me (2) Logo... - aMike give me a call when you have a chance. Trying to figur P 3/1B/05
Douglas, me (2) FW: corkes march newsletter info - Hi Fon, here is what doug emailed  3/1/05
orderstatus Order Status Update - Dear James Yoo: Thank you for shopping at Mz 3/1/05
Gibhons, Dave Moab - Here's the update on our trp to Moab this weekend: We are st:  2/28005
Meriling.com: DVD-R Bla arder meritine-623761 from Meritine. com: DVD-R Blank Media, CDR 1 2/26/05
UCCS Career Senices resume - Dear James Yoo, Your resume has now been posted for emp 2/22005

Contacts

v Quick Contacts
[Search, add, or imvite

© James Yoo
Set status here v UCCS Career Senvices registration - Your registration has been approved for the Career Resou 2/21/06
© Jessica Stewart

© diyon Yoo

Jackie (no subject) - Hi James, | spoke to my manager and we would like to c  2/11/05
Jackie, me (2) (no subject) - Hi Jackie, | spoke with you on the phone this moming ar #2/11105

Oo0o0ooo0ooo0ooogo

Dore





The latest addition to Google’s dominant Ajax web applications is Google Maps (http://maps.google.com).  Google Maps use Ajax to avoid reloading its main page at all.  Unlike other mapping web applications, Google Maps enable the user to drag the map to move it in various directions.  The dragging code is nothing new to JavaScript developers, but the tiling of the map and seemingly endless scrolling effect are another story.  The map is broken up into a series of images that are tiled together to make the appearance of a contiguous image.  The number of images used to display the map is finite, as creating new images every time the user moves the map would quickly lead to memory problems.  Instead, the same images are used over and over to display different segments of the map.

[image: image7.png]Google Maps - 1420 austin bluffs pkwy, 80918 - Mozilla Firefox
Ele Edt Wew Go Eookmerks Lools tep

) http: jmaps.google.com/ k2
SO0k ®

[Glooe [GlWekame to Gnal 9 Webnai UCCS @ Webml Adeiia [GlGooge #¥eBay -Now s used e

W/ vikipedia, the Free en... /o Slashdot: News for ne.

l Web Images Groups Mews Froogle Maps more
G()Og (S 1420 austin blufs pkwy, 80918 [(Search | Searchthe map

Find businesses:
Maps Get Diections

. hetels near " or 10 markel &, san francisea”

Maps

a
=
<)

Address:
1420 Austin Bluffs Pky
Colorado Springs, CO 80918

Make this my defaul location

Fooky Mountan
Greyhound Park

J

Transferring data from mt3.google.com.





Benefits of Ajax

· Less Traffic: Helps minimize traffic – server only sends data in XML opposed to HTML.  Minimized traffic helps reduce overall browser loading.

· User Frustration: The standard “click and wait” form-based model no longer suffices.  Most people are now au fait with the basics of the web and are ready for something more.  Enriches user experience by making web applications feel more responsive.
· Multiple Access Points: Many people use more than one computer.  People are using computers at home, at work, at school, in cafes.  Laptops and portable hard drives offer one solution, but they are inconvenient, at risk of theft, and often not able to be plugged in.  Hosting the data online is a more straightforward solution and accessing it from a rich web application is a natural fit.

· Web as a Platform: The web is no longer just about websites that expose some information; it’s increasingly being used for full-blown applications.  These applications demand richer styles of interaction.

Downsides of Ajax

· Unexpected Behavior: One major complaint against the use of Ajax is the functionality of the browser’s back and forward buttons.  Users are used to clicking the back button to return to the previous page, but web applications that use Ajax modify the page dynamically, so the user never leaves the original page.  Developers have implemented various solutions to this problem, most of which revolve around creating or using iframes.

· Limited Capabilities: Some Ajax applications are certainly doing things people never dreamed were possible on the web, but there are still substantial restrictions of the web platform.  For example, multimedia capabilities, local data storage, real-time graphics, interaction with hardware such as printers and webcams.

· Performance Concerns: Constant interaction between browser and server can make an application feel unresponsive.  There are, however, quite a few well-known patterns for performance optimization such as browser-side caching.  These usually suffice, even for fast-paced applications like stock trading, but Ajax still might not work for really time-critical applications such as machine control.

· Internet Access Required: The user can’t access an Ajax application in the absence of a network connection.

AJAX with SOAP

The X in AJAX stands for XML.  With the advent of web services being pushed across industry we see web services popping up left and right allowing developers to extend capability and capture other systems applications and role them into their own.  Web sites such as Amazon.com and Progressive Insurance realize that it’s profitable to expose their capabilities to be included in other websites.
While web services range from being SOAP
 based, to REST
ful we are going to primarily focus on SOAP.  REST does do an XML based document exchange but relies on HTTP GET/POST and does not upload XML as part of the request.  There are a few other different types of web services but since SOAP has a WSDL
 definition we feel that it is a better contender to do XML document based exchange.
XMLHttpRequest combined with AJAX now makes the browser a full fledge SOAP based web service consumer.  This now means that web pages have the ability orchestrate a collection of web services and act as a BPEL
.  We have seen this demonstrated in Mash-Ups
 which demonstrates the real power of the browser being able to consume multiple data sources to produce one rendered result.
AJAX in Action

The following is a demonstration of AJAX in action using SOAP.  This example is setup to be used only with Microsoft Internet Explorer.

The following code written in C# will provide the SOAP based method that we will use with AJAX.

[WebMethod]

public int AddNumbers(int i, int j)

{


int myresult = 0;

myresult = i + j;


return myresult;
}
The JavaScript code to create the XMLHttpRequest in Microsoft IE is:

var req = new ActiveXObject("Microsoft.XMLHTTP"); 
After the object has been created, whether in Mozilla or IE it can be used in the same manner as both support the same implementation of the object.

For our implantation we crated a Send SOAP method that has the ability to send a SOAP payload and return a call back function.  The code for it is as fallows:

function sendSOAP(serviceURL, method, payload, callback)

{


req = new ActiveXObject("Microsoft.XMLHTTP");


req.onreadystatechange = callback;


req.open("POST", serviceURL, true);


req.setRequestHeader("Content-Type", "text/xml");


req.setRequestHeader("SOAPAction", "http://tempuri.org/" + method);


var message = buildSoapMessage(method, payload);


req.send(message);

}
In this code we cared a new ActiveXObject so that we don’t have any race conditions between multiple requests happening at the same time.  After that, we define onreadystatechange which is the event handler call back which is called when that state of the XMLHttpRequest is changed after the message is sent.  The state changes when the message is successfully sent and when the message is received back from the server.  This allows us to handle these events and display things such as ‘loading’ so the user knows what is happening.  The XMLHttpRequest supports opening, and change the request header, in this case we set it to be an HTTP POST and setup the header to show it’s a SOAP action and to set it to xml.  As soon as we’re ready to send the payload, we call the send message to initiate this sequence of events.

We want these events to be asynchronous so we can either tie them to a timer or to an event that happens in the browser.  Here we will tie it to a button click.

<INPUT id="AddButton" type="button" onclick="sendSOAP(‘myservice.asmx’, ‘Add Numbers’, myXML, addNumReq)"/>
The HTML above creates a button and adds a JavaScript event to the onclick to call our sendSOAP method that we described above.  Here we are assuming the contents of the myXML structure is already populated with a SOAP message that is capable of being consumed by the web services.

Additionally we need to create a custom area in our HTML to display our results.

<DIV id="myOutput"/>
The last part needed in this AJAX example is to create the call back function, which is as fallows.
function addNumReq()

{

if (req.readyState == 1)

{

  document.getElementsByID[‘myOutput’].innerHTML = “Loading”;


}


if (req.readyState == 4)


{


 document.getElementsByID[‘myOutput’].innerHTML =

     req.responseXML.getElementsByTagName(‘result’)[0].firstChild.data;



}

}
This call back function checks the readyState of our XMLHttpRequest object.  When the readyState is set to one the object is still loading it’s data and that where we let the user know the state is still loading.  When readyState goes to 4 it means the object is completely initialized.  When readyState 4 happens we can access the returned SOAP and parse the XML to return the result of the two added numbers.

With all these code examples defined, we can now combine them into a single document that allows a user to request a Web Service that adds to numbers together and display it on the HTML document with out require an entire document page reload.
Introduction to Comet
Unlike AJAX, Comet is not an acronym.  It was coined to fit into the same family of AJAX soap brand.  The term Comet in Web 2.0 programming is relatively new, however, the idea is not.  Comet is just starting to gain more ground in the application development realm.
Comet takes the idea of AJAX and rather then close the TCP HTTP Stream when the HTML page has been received, Comet maintains the TCP connection between the server and the browser.  Comet sets the keep alive of the connection to a very large amount of time.  The server is then able to effectively push data to the client when ever it thinks it is necessary.

Interestingly enough, this breaks the traditional push/pull model that the browser and the server normally shared.  It now allows more of a publish/subscribe model, one that we normally see on ESB
s.

Using Comet, the server can do a smart push of information apposed to the client having to guess when new data exists and refresh its self.  This can greatly reduce the amount of bandwidth required for a web application.  An example of this would be a stock ticker system.  Instead of the browser refreshing every second to retrieve updated stock information, the server can send the data when it changes.  
Unfortunately, even though Comet can push data to the browser client, the browsers don’t natively support call back functionality when data is received.  So the browser is forced to setup a timer to check its internal buffer to see if new data is received.  This is rumored to be fixed in the next version of IE and Mozilla.

One of the main problems with Comet is the lack of native support in current web servers.  Web Servers now tend to spawn new threads to handle incoming requests.  Since Comet keeps the connection open, this means the web server would have to maintain a thread for every client, regardless if the client is being sent data.  The next version of Apache 2.2 will better support the thread pooling to manage client connections.  Another tool called Java Jetty has also been created to help alleviate this problem.  Again, the Comet idea is still possible with current web servers, it is just not scalable.  Another issue is the lack of standardization for Comet in JavaScript and the back end servers.
Conclusions
The combination of AJAX, SOAP (Web Services) and COMET is going to be able to provide some next generation Mash-Ups and web applications that will make the browser more powerful then thought before.
Applications such as Microsoft Word are already being shifted to web applications.  Using AJAX and Web Services, the applications are becoming more interactive and responsive to the user so they appear to be acting like they’re running locally.  

The next generation of applications are going to fit a billing model more closer to subscription as appose to purchasing a product.  These products are going to be more powerful and rely more on the internet to combine technologies.

AJAX has provided the much needed asynchronous abilities the browser has needed, SOAP has provided the interoperability mechanism and Comet has provided the server smart push that so many applications need to achieve scalability.  Aside from some lack of standardization between these three technologies, application developers should now be questioning why new GUI based applications aren’t developed for the web.
Sites such as meebo.org provide a fully capable instant messaging site that links up with AOL, Yahoo and MSN messengers.  This site can do this be leveraging AJAX, Web Services and Comet.  Without leveraging these technologies meebo would not be able to offter the user experience of instant messaging where the user experience is very close to that of trillian or gaim instant messengers.
Bibliography
1.   Comet. Wikimedia Foundation, Inc., 2006. Available from

http://en.wikipedia.org/wiki/COMET_%28programming%29
2.    SOAP. Wikimedia Foundation, Inc., 2006. Available from

http://en.wikipedia.org/wiki/SOAP
3.    AJAX. Wikimedia Foundation, Inc., 2006. Available from

http://en.wikipedia.org/wiki/AJAX
4.    AJAX: A new approach to web applications  Adaptive Path, 2005 Available from
http://www.adaptivepath.com/publications/essays/archives/000385.php
5.    ajaxian. Available from http://www.ajaxian.com
6.    Crane, Dave, and Eric Pascarello. Ajax In Action. Greenwich: Manning Publications CO, 2006

7.    Asleson, Ryan, and Nathaniel T. Schutta. Foundations of Ajax. Berkeley: CA, 2006
� eXtensible Markup Language


� Simple Object Access Protocol


� Representational State Transfer


� Web Service Description Language


� Business Process Execution Language


� Mash-Ups was coined from when bands mash multiple songs together to form one song.  In this case it refers to mashing up multiple web services to produce one rendered web page.


� Enterprise Service Bus





[image: image1][image: image8.png]Disinfects




[image: image9.jpg]


