Transferring Large Data File

And configuring application pre or post install

Chirag Gandhi

Spring 2006
Abstract
As networks speeds have increased a user’s appetites for data has increased exponentially with them. When the internet was making inroads in to America’s homes the typicaly download size typically no more than 1Mb today user’s are downloading entire movies which exceed gigabytes of data. Aside form the public space corporations and government entities are facing issues keeping computers up to date. As applications become more complex corporations are finding they have to install patches and updates on a regular basis. However corporate IT infrastructures are not setup to individually install and configure tens of thousands of computers distributed across geographic regions. Software programmers and Companies have come up with innovative way to distribute and configure computers across massive networks.
Introduction

As network speeds have increased users demand for data has increased exponentially, so much so that there are networks today which are transferring in excess of 8 Gb/sec. I would like discuss specifically transferring of large data files as it applies to Person to Person (P2P), Business to Business (B2B), and Business to Consumer (B2C) networks .

P2P networks are the most simple networks in terms of configuration and distribution . In a typical P2P networks there are thousands of computers sharing files. Users simply point and transfer they desire to their box. However the challenge to this environment is how do you transfer content to users in an efficient manner.

B2B and B2C networks are typically much more complex because they need another level abstraction to handle to complexity. In a B2B/B2C environment files are not simply transferred in many cases they must be customized to user needs. Customization of content can occur before or after the transfer of the content, however there must be a lot of work done to identify, distribute, and customize.
Transferring Files in a P2P environment

One of the earliest and most efficient ways to transfer large files to multiple users was to stream the data. Pod-casting for example, is a version of streaming data. Streaming can be conceptualized like a TV signal. Typically a server will begin to broadcast a content from the beginning to the end of the file to a line. Multiple users can connect to the line at the same time which allows for a very efficient broadcast because the server only has to send out the content ounce. Even though the transfer of the file is very efficient it is not very convenient for users because they have to get data in a synchronize fashion, where users typically demand data asynchronously. For example, if a server was streaming a video file, a user who came to stream half way through could not see what they had missed until the file was rebroadcast.

Due to this limitation P2P networks typically don’t stream data, rather they rely on a different method altogether. It’s important to understand that P2P networks function generally into distinct architectures. Napster popularized the centralized architecture. You can imagine a centralized architecture kind of like a LAN. Users connect to a central location which indexes the contents users wish to share. After Napster was shut down for sharing copyrighted materials decentralized architectures became very popular.

In a decentralized architecture users instead of connecting to central server connect to a temporary server. A temporary server indexes the users connected to it and then shares that information with the other temporary servers. In both architectures file transfers can happen in many different ways depending on the protocol the network has chosen . Older protocol worked very much like a client server model where a user would make a request for content from a server which would be sent back a packet at a time. Even though this methodology works the problem with this approach if a 4 users want the same content, the entire content has to sent back 3 times, so if the file is large there are several users who want the same content it can cause congestion in the network.

There are several new protocols that have developed to address this issue however, I want to talk about one specifically called Bit Torrent. Bit Torrent is a relatively new protocol that has become very popular in P2P networks. Bit Torrent has a completely different philosophical approach to distributing files. Bit torrent tries not to get a file from a single source instead the idea is the break file into pieces and get pieces from many different places. For example, if 4 users wanted to get a file from a server they would each get a different piece of the file, so if the file was broken into four pieces they would each have a different piece. Now that the users collectively have the entire file, they will stop downloading the content form the central server and instead get the missing pieces from the other users. What makes this so efficient is that as soon as a piece of file has been downloaded the user’s box can began to send it to other users. The figure below will give a good graphical representation of the process.

http://cs.uccs.edu/~csgandhi/cs526/studentproj/projS2006/csgandhi/Torrentcomp_small.gif INCLUDEPICTURE "http://cs.uccs.edu/~csgandhi/cs526/studentproj/projS2006/csgandhi/Torrentcomp_small.gif" * MERGEFORMATINET

For an animated version please click this link …

Bit torrent which was created by Bram Cohen in 2002 has become so popular there are some internet research firms who claim that as much as 1/3 of the internet traffic is due to bit torrent. The protocol has become so popular that Hollywood studios and apple computers are considering it to distribute the content the serve.
Transferring Files in B2B & B2C Environments
Today many corporate environments are struggling to find ways to keep their systems up to date, and also to bring new systems up to production in an efficient manner. In corporate Its typically in the medium and large corporations there are so many different computer systems with so many different software’s and configuration it becomes a night to keep this system secure and update with the latest software. Business needs are much more complex than in a typical P2P environment because they must go through a much larger set of requirements that I want it.

One of the first challenges that must be addressed is that the content which is going to be distributed to a group of computers must be stored in a central location. Therefore a central server has to be setup which will store the distribution package. The reason for having a central distribution is so that content is sent out from a trusted source and it can be insured that no one has tampered with it. The other advantage of storing content centrally is it becomes much easier to automate the distribution which should be the goal of an IT department.

[image: image1.png]

Figure 2: Medium-size Company Environment Example

The next challenge which must be addressed is distribution targeting. This is one of the most difficult task because as companies grow they invariable distribute different kinds of computer systems to their users to tailor to their needs. So there must be some kind of mechanism for identifying which computers on the network will receive the content. This kind of selection is very important because if companies are spread out across countries there are legal issues as to which software is allowed to leave certain regions. Therefore the system of interest must be able handle such a scenario. The system must also be able to send out updates based on content. For example, you wouldn’t want to send a XP update to a Win 98 machine, so the system must have a way of identifying important software configurations.
[image: image2.png]

Figure 3: Large Company Environment Example

The next challenge that must be addressed is Impersonation/Scheduling. Today’s computers systems are so loaded with security it is very difficult to install a program on a users computer easily. With this problem there are two possible solutions. The first is create a privileged account which has the ability to install software when a user is not logged in. The other option that is available is to allow users to choose when they are going to install updates. Therefore updates are installed only when the users allows them to happen which also solves the impersonation.

Bandwidth is another parameter which needs to be considered in a B2B environment. If for example there is a large update, which is 10Mb +, then it is probably a good idea to install the update when a users is connected to a high speed connection versus a dial up.

The last and most important thing to consider is Result/Failure analysis. After content has been installed there needs to be some mechanism to log what happened. If an update has installed successful it is worth tracking that it has installed successfully so a user’s computer isn’t bombarded with the same update over and over. In the event something does go wrong it becomes very valuable to get a log of the failure was and possibly what caused it so it can be debugged at a later time.

Software companies are having to tackle with these types of issues on a daily basis. On of the first examples I wanted to present was the windows update system which most users are familiar with today. Windows, just like many other software systems, have become so large that they are many uncaught bugs which are found after the product has been released. Windows has gotten so bad it seems they release an update or a patch on a daily basis.

Microsoft had to consider all the condition above when they setup their update system. For the first requirement, Microsoft distributes all their patches and updates via their servers so they can ensure their customers that they are getting a good update. Next the windows update systems has mechanism which communicates with the users box via windows API to figure out the what the software configuration and identify which group a box belongs to. Users must manually update their boxes so Microsoft does not need to create a special account or provide a scheduling mechanism for end users.

Another system that is available form Microsoft is SMS 2003 which a product geared specifically for corporate environments. However the major difference between this system and their update system is it allows software to be customized per users. It is also worth mentioning that this systems doesn’t work exactly as advertised.

SMS in order to allow for central point of distribution can be installed on a single server or cluster which will hold the files of distribution. At the heart of SMS is a database which for the most part controls the operation of the system. The first thing the DB keeps track of is what contents it has available for distribution.

The next piece of information the SMS must gather is about the different systems that exist on the network. This application is geared for a large corporation so it stores a lot of information about every system. For example, not only will it gather which OS the system has, but it creates a catalogs of all software that is on the users system. The db will actually track all the software updates that exist on every system, and does so by a periodic visit. The system will on a scheduled basis communicate with all the boxes on the list and audit the software to keep its records up to date. In addition the system will track every systems hardware capability.

After this massive catalogue has been created content can be loaded into SMS to be distributed. In order to find the distribution list simply SQL queries must be generated by the IT department to identify the groups of computers which will receive the update. SMS can be setup to distribute the file with many different protocols, however the most efficient seams to be streaming. Users can be configured to synchronize downloads of updates as long as the computer is connected to the network. Otherwise a standard point to point protocol can be used.

Another nice built in feature that SMS is its built in test features. Before an update is installed on a client machine it will check bandwidth available and based on Administrator preferences it will decide to continue or not. In addition to the bandwidth check the system will also test to see if there is enough hard disk space available.

SMS gets around the security issues by only sending updates if the is privileged account on the box or the user is logged in. This is a switch which must be set by the administrator of this app.

SMS’ most powerful feature is its ability to customize an app or content to a group or to a single computer. SMS has a limited ability to customize apps per computer. Most applications can be customized very simply by modifying a configuration file or selecting the appropriate content to deliver on a computer. In the case where only select files are deployed to a computer, SMS leaves that for the user to manage. When deploying files a limited number of files SMS expects the user to be able to filter out the content to the individual user based on the user’s selection.

Customizations scripts can be a bit tricky to manage in SMS. It is worth mentioning all content that must be modified, like configuration files, must be done before they are deployed to the box. SMS can change systems setting on users boxes as long as they are on a windows environment, which as you can imagine is a very big limiting factor, but the system is not perfect so it is my advice to stay away from changing settings on a users box. SMS does have the ability to run scripts which either create or modifying configuration on the server before they are deployed to the users. Depending on the content that is being distributed configuration files must be generated pre or post install, which SMS is able to handle WELL.
Future Research
 There is the potential for a lot of future research in this area. The areas of research which I believe will have the Highest ROI will be creating a truly platform independent deployment system. Research needs to be conducted on how to create a software that works truly independent of platform. Specifically if apps were wrapped by virtual machines could be a possible solution to this type of work.

With respect to deploying and distributing files there is research being conducted by many research by big companies such as apple, hp, etc. on using a bit torrent type system as an advanced caching mechanism. For example, if movies or large music files were going to sent millions of users it would be very advantageous to be able to use user’s computer’s to help distribute a file. Hollywood is going to begin to distribute its movies via the internet, and one of the ideas is to allow a bit torrent type system which would get the content to users in the most efficient way possible. However, some of the issues which need to still be addressed is how to authenticate valid users who have rights to the contents and then to distribute files in a secure way so they can’t be shared illegally.

Conclusions
As bandwidths increase and programs become more complex software companies are going to be need to address a way of keeping these systems up to date in an efficient manner. Today the corporate world is desperately looking for an efficient solution which will help them manage their computers systems in a automated and secure way. Today’s technologies are nearing the goals of automation and reliability however, further research still needs to be conducted to get this systems to be more robust and feature rich.

References

[1]
Distributing Software Using Microsoft Management Technologies, Rod Trent.

http://www.microsoft.com/technet/prodtechnol/sms/sms2/dsumgmt.mspx

[2]
Bit Torrent FAQ. http://www.unto.net/unto/breakdown/000058/

[3]
Optimizing Distribution of large files with in CDNs, Ludmila CherKasova. http://www.hpl.hp.com/personal/Lucy_Cherkasova/projects/papers/alm-fr-iscc.pdf

[4]
The Bit Torrent Effect. Clive Thompson, January 2005
http://www.wired.com/wired/archive/13.01/bittorrent.html

