

University of Colorado, Colorado Springs

Maria Lizarraga

CS526
Web Services
Advanced Internet and Web Systems
Table of Contents
3Introduction

3Basics of Web Services

3What is it?

4Benefits

4Drawbacks

5Web Services Architecture

5UDDI Registry

7Software Application

8Interface

8SOAP

9URI

9How it Works

10Software Development Tools

10Web Services Platforms

11Implementation

11WebSphere Web Service Platform

11Creating a Web Service Using WebSphere

11Java Web Services Development Platform

11JWSDP Software Requirements

12Summary

13References

WEB SERVICES
Advanced internet and Web Systems
Introduction
We have all heard of the typical scenario of the stock quote when we talk about web services. What a neat tool! Other useful web services are also becoming popular on many portals, web services like news services, maps, and search engines. How convenient that we no longer have to worry about how to program these tools for our applications. This makes the web programmers’ job a lot easier.
It doesn’t stop there. Web services are language and platform independent. This makes it a great way to share data between two entities. Businesses are starting to use them more to communicate amongst themselves.
We all probably have a general idea of what a web service is. As computer scientists and software engineers, we need to become more familiar with the architecture of web services. We may be involved in making project decisions that require our knowledge of web services. At a minimum, we may be involved in a discussion of web services. For this reason, this paper is focused more on the high level overview of web services. It gets a little deeper on the more important topics like the interface between the web service and the client. The XML document used to describe the web service is also discussed in greater detail. Lastly, I will present some of the tools available for developing web services.
Basics of Web Services
I found web services to be a simple, yet very complex topic. The main idea behind web services is simple. Try to understand the details, and it quickly becomes complicated.
What is it?
A web service is a web software application available on the network that provides an interface for exchanging information with a client. Given this definition, a web service consists of the following:

· the software application
· a method to interface to the application
· URI associated with the application
· a published document that gives visibility to the world
A web service can be analogized a procedure call, a remote procedure call. It is a service (operation) that can be accessed over the network by providing the proper interface to it. A client can provide data to the web service or obtain data from it via the interface. The service resides on the web server.
The interface starts with a XML document. The information in the XML document must be put into an agreed upon format in order to communicate over HTTP to a web service. This format is described in the standard called Simple Object Access Protocol, SOAP. It provides a method of sending messages between the client and server. The web server compiles the data into a SOAP message. The SOAP message is sent via HTTP.
The web service is registered, giving visibility of the web service to those who have access to the registry. The registry keeps a name, location, and description of the service. The standard for the registry is the Universal Description, Discovery, and Integration (UDDI) standard. The registry is known as an UDDI registry. The web service description is put into a file, whose format is covered by the Web Services Description Language (WSDL) standard.

I will discuss each of these elements in greater detail later in this paper.
Benefits
There are several benefits to using web services. Listed below are some of the most important benefits of web services:

· Platform and language independent

· Use of industry standards

· Low cost internet communication

· Reduces development effort
Web services enable distributed applications that are language and platform independent. Business applications can communicate amongst themselves without having to worry about the implementation or the operating system of the web service.
Communication between the client and the server is through a XML SOAP message via HTTP. The syntax and semantics of the message is the only thing they need to agree on and this is provided through the SOAP standard. I will describe in more detail the construction of a SOAP message in the following section.
Using HTTP means communication occurs over the internet. There is no need for a private network. HTTP and XML is the language of the web browser. Using the internet and web browser means there is no need to invest in a virtual private network or to develop the interface application.

Web services can save development time if a service has already been written for a specific need. Most tools have a way to search for the services that have been published with a UDDI registry. Web services can be found dynamically. Applications can be created dynamically that utilize the web service.
Drawbacks
Web services do have their drawbacks. Listed below are a few of the drawbacks.

· Less efficient, slow

· Hard to locate

· Requires learning a different set of development tools and technology

Web services are usually made to be generic. They don’t have a sole application they are designed to go into. Therefore, there is most likely overhead in the code that wouldn’t be there if the tool was made application specific. Also, the XML interface document has to be transformed into a SOAP message. Each message, back and forth, has to be converted to or from the SOAP message format. This slows down things significantly. If the application was written specifically for two entities to communicate to each other, a more efficient communication method can be developed.

Required web services may be hard to find. The name or the description may not give the right information to make a decision whether a web service can be used.
It may require more tools and learning a new technology.
Web Services Architecture
There are three entities that play a part in deploying a web service. These entities are depicted in figure 1. The service server contains the web service. It publishes the web service to a registry. The registry contains a description of the web service. Clients can “shop” for a web service by contacting a registry. When a client discovers the web service they need, they download the description. From the description, an application can be developed that will access the web service from the service server.
 [image: image1.jpg]

· Figure 1. Web Service Architecture
UDDI Registry
Web Services Description Language (WSDL) is the standard used by the UDDI registry to describe the web service. The WSDL is an XML document created by the web service provider (server). The web server client uses the WSDL to create the client proxy that binds the client application to the web service server-side application. The following elements are used to describe a web service:

· name of the service

· address location of the service

· the operations available from the service

· the type of data provided to or from the web service

The WSDL provides all the information needed for a client to implement the service. Look at the typical WSDL below.
	<?xml version="1.0" encoding="UTF-8"?>

<wsdl:definitions targetNamespace="http://grades"

 xmlns:impl="http://grades"

 xmlns:intf="http://grades"

 xmlns:tns2="http://xml.apache.org/xml-soap"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

	1

	<wsdl:types>

 <schema elementFormDefault="qualified"

 targetNamespace="http://grades"

 xmlns="http://www.w3.org/2001/XMLSchema"

 xmlns:impl="http://grades"

 xmlns:intf="http://grades"

 xmlns:tns2="http://xml.apache.org/xml-soap"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <import namespace="http://xml.apache.org/xml-soap"/>

 <element name="getStudent">

 <complexType>

 <sequence>

 <element name="studentID" type="xsd:int"/>

 </sequence>

 </complexType>

 </element>

 . . .

 </schema>

 </wsdl:types>

	2

	 <wsdl:message name="getStudentsResponse">

 <wsdl:part element="intf:getStudentsResponse"

 name="parameters"/>

 </wsdl:message>

. . .

 <wsdl:message name="getStudentGradeResponse">

 <wsdl:part element="intf:getStudentGradeResponse"

 name="parameters"/>

 </wsdl:message>

	3

	 <wsdl:portType name="GradesService">

 <wsdl:operation name="getStudent">

 <wsdl:input message="intf:getStudentRequest"

 name="getStudentRequest"/>

 <wsdl:output message="intf:getStudentResponse"

 name="getStudentResponse"/>

 </wsdl:operation>

 . . .

 <wsdl:operation name="getStudents">

 <wsdl:input message="intf:getStudentsRequest"

 name="getStudentsRequest"/>

 <wsdl:output message="intf:getStudentsResponse"

 name="getStudentsResponse"/>

 </wsdl:operation>

 </wsdl:portType>

	4

	 <wsdl:binding name="GradesServiceSoapBinding"

 type="intf:GradesService">

 <wsdlsoap:binding style="document"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <wsdl:operation name="getStudent">

 <wsdlsoap:operation soapAction=""/>

 <wsdl:input name="getStudentRequest">

 <wsdlsoap:body use="literal"/>

 </wsdl:input>

 <wsdl:output name="getStudentResponse">

 <wsdlsoap:body use="literal"/>

 </wsdl:output>

 </wsdl:operation>

 . . .

 </wsdl:binding>

	5

	 <wsdl:service name="GradesServiceService">

 <wsdl:port binding="intf:GradesServiceSoapBinding"

 name="GradesService">

 <wsdlsoap:address location=

 "http://localhost:9080/GradesService/

 services/GradesService"/>

 </wsdl:port>

 </wsdl:service>

</wsdl:definitions>

	6

Section 1 has the root definitions tag. It lists the namespaces used. Namespaces contains the list of names used as element types and attributes. This document utilizes the names provide in the SOAP, WSDL, and XSD namespaces. It also uses a proprietary namespace. Section 2 defines the data types used in the web service. Section 3 contains operations provided by the web service. The operations are put together with the type of response to define the port types in section 4. Section 5 lists how the operations and element are bound to the web service. It lists the operations along with the input and output data types. The last section provides the URI of the operation. This provides you with a glimpse at how the information is provided.
Software Application
The web service is nothing more than a software operation being accessed by another application. It is two web applications talking to each other through an interface. The two applications can exchange data and execute programs based on the data. There need not be any human intervention at all.
The server side operation or application can be written in any language. It does have to be the same language as the client side application. There server and the client side are completely independent. The server side can be written in C and the client side can be written in Java. The server side can be on a UNIX platform and the client side on a Windows platform. There is no need for one side to worry about the language or platform the other side is using.
So far, I’ve limited the discussion to a simple client/server relationship. However, services can be linked together to offer a package of different services offered from a various web sites but made to look like a family of products.
Interface

The interface is the key that makes web services language and platform independent. The interface acts as the translator for the server side language to the client side language. The interface points to the appropriate server side file and operations. Data formats are translated to the appropriate types.
The interface begins with a XML document. The appropriate information is extracted and put into a SOAP message with HTTP. The receiver then extracts the information to make the necessary connections into application. The client side interface serves as a proxy between the client side application and the transport mechanism. The server side has an access point which act as the interface between the application and the transport mechanism.
SOAP

SOAP is the standard used to format a message with the information that is to be transported back and forth to the web service. The SOAP message contains three parts—an envelope, a header, and the body. The header is optional. The header and the body go into the envelope. The message can also have attachments. These attachments are attached to the message using the SOAP standard. It is a way to send video or image files. Let’s take a look at the first three elements a little closer.
Envelope
The envelope must contain the opening and closing envelope tags. These tags make it a SOAP message. The attribute xmlns: defines what namespace to use. The envelope must contain a soap envelope namespace. In this case, it is:

http://schemas.xmlsoap.org/soap/envelope

This is what a typical soap envelope looks like:
<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope

 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 ...
</soapenv:Envelope>

Header

The header is an optional element. There can be more than one header element. If used, it is the first child element. It can be used provide security information. For basic operation this element is not used.
Body

The SOAP tag is soap:Body. Inside the body is the message. The setStudents is the web service operation that will be performed. It asks for a list of students.
 <soapenv:Body>

 <getStudents xmlns="http://grades"/>

 </soapenv:Body>

SOAP Message

Put all the parts together along with the HTTP you get:

POST /GradesService/services/GradesService HTTP/1.0

Content-Type: text/xml; charset=utf-8

Accept: application/soap+xml, application/dime, multipart/related, text/*

User-Agent: IBM WebServices/1.0

Host: localhost:9080

Cache-Control: no-cache

Pragma: no-cache

SOAPAction: ""

Content-Length: 356

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <soapenv:Body>

 <getStudents xmlns="http://grades"/>

 </soapenv:Body>

</soapenv:Envelope>

URI
A unique URL provides the address to the web service.
How it Works
Creating all the files necessary to make everything work can be cumbersome. Below is a list of documents I’ve mentioned so far.
· WSDL document

· client stub and proxies

· service access point, ties
 [image: image2.jpg]Client Application

-

Runtime HTTP Runtime

Web Services Server SOAP Messages Web Services Server

Figure 2. Web Services Process
The client application interfaces with the stub. The runtime environment then takes information in the stub and composes a SOAP message. It transmits it over HTTP to the server side. The server runtime environment takes the incoming message, extracts the information, and ties it to the server application. The service sends the information back. The server runtime environment takes the data and composes a SOAP message to the client. The client runtime environment extracts the data and sends it to the client application. This process is depicted in figure 2.
Software Development Tools
This communication process is made to sound simple. It all actuality, there is a lot of behind the scene activity happening. This is where the complexity comes in. If a developer was responsible for all this activity, it would take a long time to learn and to generate the appropriate code. Software development tools simplify this job. A web service platform can:

· Create WSDL document

· Create the client stubs

· Create the server ties
· Register a web service

· Discover a web service

· Provides a runtime environment that processes SOAP messages.

· Provide tools to manage your web services, such as deploy, undeploy, start, and stop.
Web Services Platforms
The following are examples of web service platforms that are available.
· Java Web Services Development Pack (JWSDP)
· IBM WebSphere
· Systinet Web Applications and Services Platform (WASP)
· Microsoft.NET

· HP Web Services Platform

Implementation
WebSphere Web Service Platform

 I implemented a web service on the IBM WebSphere web service platform. WebSphere is GUI driven, making web service development easy. Everything is done automatically upon selecting the appropriate options. It can generate a web service for you and register it within a matter of minutes. One doesn’t need to understand the underlying technology. WebSphere is a purchasable product.
Creating a Web Service Using WebSphere
1. First create the java application that will be used as a service. I created an application (JavaBean) called GradesServices.java. In it there were three methods:
· String[] getStudents ()

· char getStudentGrade (String student)

· String getStudent (int studentID)

2. Next step is to create a server to run the application

I selected WebSphere version 5.1 -> Test Environment
3. Next create a project.

I created a Web -> Dynamic Web Project

4. Create a package for the JavaBean created in step 1.

5. Import the file you created in step one into the package.

6. Create a web service from the JavaBean.

· I create a File -> Other …> Web Services > Web Services.

· From there, select to register the service. This registers it with the test UDDI.

Now I can use the service to obtain student grades from a remote site. I created a JavaBean, made it into a service and registered it.
Java Web Services Development Platform (JWSDP)
JWSDP, on the other hand, is more difficult to use. Several software components must be installed. This is a chore in itself. JWSDP is command line driven. It requires some understanding of the underlying technology. JWSDP is free. This is the following software you would need to install for JWSDP.
JWSDP Software Requirements
JWSDP required downloading the following software:
· Java[image: image3.png]

 2 Platform, Standard Edition (J2SE[image: image4.png]

) SDK 1.5.

· Java Web Services Developer Pack v1.5, JWSDP

· Tomcat 5.0 for Java WSDP 1.5 (based upon Tomcat 5.0.19), Container
· Java WebServices Tutorial, v1.5_01
· JDBC RowSet Co-Bundle (if using a database)
· MySQL ODBC driver (if using MySQL database)
The following tasks need to be completed before getting started.
· Create a build.properties file in the C:\Documents and Settings\yourProfile directory. This file contains your user name and password. Make it unreadable by anyone besides yourself.

· Add the bin directories of the JWSDP and J2SE SDK to the path environment variable. Make sure they are defined before everything else.
Summary
 Web services continue to become even more popular. This means web service security will continue to become more important as well. Some web services platforms may contains wizards that make implementing web service security easy. However, it is difficult to design a wizard that will handle all security requirements. Implementing web service security without a wizard requires an understanding of how web services are implemented with a SOAP message. This paper gave three examples implementing XML digital signatures, XML encryption, and basic authentication. IBM’s WebSphere is one web service platform that makes implementing these services easy.
References

· The Java Web Services Tutorial 1.0, August 7, 2002, http://java.sun.com/webservices/docs/1.0/tutorial/
· Web Services Overview, Sang Shin, http://www.javapassion.com/webservices/WebServicesOverview_speakernoted.pdf
· ROI - The Costs and Benefits of Web Services and Service Oriented Architecture, Lawrence Wilkes, http://roadmapf.cbdiorum.com/reports/roi/
· Deploying Web services with WSDL: Part 1, Bilal Siddiqui, http://www-106.ibm.com/developerworks/library/ws-intwsdl/
· Deploying Web services with WSDL, Part 2: Simple Object Access Protocol (SOAP), Bilal Siddiqui, http://www-106.ibm.com/developerworks/library/ws-intwsdl2/
· Web Services: A Practical Introduction, Copyright 2003, http://www.webservices.org/index.php/ws/content/view/full/1390
· Web Services Architecture, http://www.webservices.org/index.php/ws/content/view/full/1392
· UDDI web site, http://www.uddi.org
· Web Services Description Language (WSDL) 1.1 (specification), http://www.w3.org/TR/wsdl
· SOAP Tutorial, http://www.w3schools.com/soap
· Java Web Services Development Pack, http://java.sun.com/webservices/jwsdp
· IBM WebBench, http://www-306.ibm.com/software/websphere/
· Microsoft .NET, http://www.microsoft.com/net/
· Systinet Web Applications and Services Platform (WASP), http://www.systinet.com/products/overview
· Hewlett-Packard Web Services Platform, http://www.hpmiddleware.com/HPISAPI.dll/hpmiddleware/products/hp_web_services/default.jsp
· MySQL ODBC drivers, http://dev.mysql.com/downloads/connector/odbc/3.51.html[image: image5][image: image6][image: image7]

12
7

