CS 526 – Resource container, an operating system abstraction

University of Colorado at Colorado Springs

Resource Containers: Is a process the correct unit for scheduling and management machine resources on modern server applications?

CS 526

Instructor: Dr. Edward Chow
Student: Francisco Torres
Spring 2005

Table of Contents

	Title
	Page

	
	

	Introduction
	3

	Typical Models for High-Performance Servers
	5

	Current resource management models
	8

	An attempt to solve the problem, using the process abstraction
	11

	Consequences of misidentified resource principals
	12

	Resource Containers
	13

	Containers, Processes, and Threads
	14

	Resource Containers and CPU Scheduling and other resources
	15

	The Resource Container Hierarchy
	17

	Operations on Resource Containers
	18

	Kernel execution model
	20

	The use of resource containers
	21

	Conclusion
	24

Introduction

The model for resource management in current general-purpose operating systems is as follows: the explicit management mechanisms are tied to the assumption that a process is what constitutes an independent activity. Then, processes are the resource principals, those entities between which the resources of the system are to be shared.

On the other hand, networked servers have become one of the most important applications of large computer systems. A lot of attention has been devoted to improve the performance of Web servers, by operating systems researchers and system vendors. Some of these improvements over operating systems are: reducing data movement costs, developing better kernel algorithms for protocol control block (PCB) lookup, and file description allocation.

While the work mentioned above has been fruitful, it has generally treated the operating system’s application programming interface (API), and therefore its core abstraction, as a constant. This has frustrated efforts to solve problems of server scaling and effective control over resource consumption. In particular, servers may still be vulnerable to Denial of Service (DoS) attacks, in which a malicious client manages to consume all of the server’s resources. Also, service providers want to exert explicit control over resource consumption policies, in order to provide differentiated Quality of Service (QoS) to clients or to control resource usage by guest servers in a Rent-A-Server host. Existing APIs do not allow applications to directly control resource consumption throughout the host system.

The root problem of the above is the model for resource management in current general-purpose operating systems, as mentioned in the first paragraph.

A new operating system abstraction has been proposed to solve this problem. It is called a resource container, which separates the notion of a protection domain from that of a resource principal. Resource containers enable fine-grained resource management in server systems and allow the development of robust servers, with simple and firm control over priority policies.

Modern high-performance servers often use a single process to perform many independent activities, for example, a Web server may manage hundreds of simultaneous network connections, all within the same process. Much of the resource consumption associated with these connections occurs in kernel mode, making it impossible for the application to control which connections are given priority.

In the paper where this document is based, a new model for fine-grained resource management is proposed, and the model is based on the resource container abstraction. A resource container encompasses all system resources that the server uses to perform a particular independent activity, such as servicing a particular client connection. All user and kernel level processing for an activity is charged to the appropriate resource container, and scheduled at the priority of the container. This model allows fairly arbitrary interrelationships between protection domains, threads and resource containers, and can therefore support a wide range of resource management scenarios.

Typical Models for High-Performance Servers

They describe typical execution models for high-performance Internet server applications, like HTTP servers and proxy servers, but this can work also on mail, file and directory servers.

An HTTP server receives requests from its clients via TCP connections. The server listens to a well-known port for new connection requests. When a new connection request arrives, the system delivers the connection to a system call, like accept (). The server then waits for the client to send a request for data on this connection, parses the request, and then returns the response on the same connection. Web servers typically obtain the response from the local file system, while proxies obtain responses from other servers; however, both kinds of servers may use a cache to speed retrieval.

[image: image1.jpg]HTTP Master HTTP Slave Processes

Process §\

| \
i
Listen ||

Socket
/E TCP/IP

Pending HTTP L—————==7 HTTP
Connections Connections

User level

|
!
t

Kernel

Fig. 1: A process-per connection HTTP server with a
master process.

The architecture of HTTP servers has undergone radical changes. Early servers forked a new process to handle each HTTP connection, following the classical UNIX model. The forking overhead quickly became a problem, and subsequent servers (such as the NCSA httpd), used a set of pre-forked processes. In this model, shown in Fig. 1, a master process accepts new connections and passes them to the pre-forked worker processes.

[image: image2.jpg]HTTP Server HTTP

Process Thread
select() ,~

(W Userlevel

Tisten Remel

/E TCP/IP

Pending HTTP L—————==7 HTTP
Connections Connections

Fig. 2: A single-process event-driven server.

Multi-process servers can suffer from context switching and Inter Process Communication (IPC) overheads; so many recent servers use single process architecture. In the Event-Driven Model (Fig. 2) the server uses a single thread to manage all connections at the server. (Event-driven servers designed for multiprocessors use one thread per processor.) The server uses a system call, as select () or poll (), to simultaneously wait for events on all connections it is handling. When the system call delivers one or more events, the server’s main loop invokes handlers for each ready connection. Squid and Zeus are examples of this type of servers.

[image: image3.jpg]HTTP Server HTTP Threads
Process

I\ Userlevel
1] Kemel

T
Cisten o

Socket
F TCPIP

HTTP
Pending HTTP |——g——==27 110

Connections

Fig. 3: A single-process multi-threaded server.

In the Single-Process, Multi-Thread Model, each connection is assigned to a unique thread. These can either be user-level threads or kernel threads. The thread scheduler is responsible for time-sharing the CPU between the various server threads. Idle threads accept new connections from the listening socket (e.g., Alta Vista front end uses this model).

So far, the use of static documents (or “resources” in HTTP terms) has been assumed. HTTP also supports requests for dynamic resources, for which responses are created on demand. These responses are typically created by auxiliary third-party programs, which run on separate processes to provide fault isolation and modularity. To simplify the construction of these programs, standard interfaces (as CGI and FastCGI) support communication between Web servers and these programs. CGI creates a new process for each request to a dynamic resource; FastCGI allows persistent CGI processes.

In summary, modern high-performance HTTP servers are implemented as a small set of processes. One main server process services requests for static documents; dynamic responses are created either by library code within the main server process, or, if fault isolation is desired, by auxiliary processes communicating via a standard interface.

This is ideal, in theory, because the overhead of switching context between protection domains is incurred only if absolutely necessary. However, structuring a server as a small set of processes poses numerous important problems

Current resource management models

An operating system’s scheduling and memory allocation policies attempt to provide fairness among resource principals, as well as graceful behavior of the system under various load conditions. Most operating systems treat a process, or a thread within a process, as the schedulable entity. The process is also the “chargeable” entity for the allocation of resources, such as CPU time and memory.

A basic design premise of such process-centric system is that a process is the unit that constitutes an independent entity. This gives the process abstraction a dual function: it serves both as a protection domain and as a resource principal. As protection domains, processes provide isolation between applications; as resource principals, processes provide the operation system’s resource management subsystem with accountable entities, between which the system’s resources are shared.

[image: image4.jpg]Application Threads
Single Independent
Activity

Application Process

(Protection Domain
+ Resource Principal)

User level

Kernel

: A classical application.

A classical application uses a single process to perform an independent activity. For such applications, the desired units of isolation and resource consumption are identical, and the process abstraction suffices. Fig. 4 shows a mostly user-mode application, using one process to perform a single independent activity.

In a network-intensive application, however, much of the processing is done in the kernel. The process is the correct unit for protection isolation, but it does not encompass all of the associated resource consumption; in most operating systems, the kernel generally does not control or properly account for resources consumed during the processing of network traffic.

[image: image5.jpg]Application Threads

Single Independent
Activity

Application Process
(Protection Domain
+ Resource Principal)

User level

Kernel

Application domain
"really” extends into
the kernel, but this

activity is Uncontrolled

Fig. 5: A classical network-intensive application.

Most systems do control processing in the context of software interrupts, whose execution is either charged to the unlucky process running at the time of the interrupt, or to no process at all. Fig. 5 shows the relationship between the application, process, resource principal, and independent activity entities for a network intensive application.

[image: image6.jpg]Application Threads Single

Independent
Activity

h ;z User level

] Rermel

Application Process
(Protection Domain
+ Resource Principal)

Application Process
(Protection Domain
+ Resource Principal)

Fig. 6: A multi-process application.

Some applications are split into multiple protection domains (for example, to provide fault isolation between different components of the application). Such applications may still perform a single independent activity, so the desired unit of protection (the process) is different from the desired unit of resource management (all the processes of the application). A mostly user-mode multi-process application trying to perform a single independent activity is shown in Fig. 6.

[image: image7.jpg]Application Process
(Protection Domain Independent
+ Resource Principal) Activities

Application
hreads

User level

Application domain
extends into the
kernel, but is
uncontrolled

A
HTTP Connections

Fig. 7: A single-process multi-threaded server.

In yet another scenario, an application consists of a single process performing multiple independent activities. Such applications use a single protection domain, to reduce context switching and IPC overheads. For these applications, the correct unit of resource management is smaller than a process: it is the set of all resources being used by the application to accomplish a single independent activity. Fig. 7 shows, as an example, a single-process multi-threaded Internet server.

Real-world single-process Internet servers typically combine the last two scenarios: a single process usually manages all of server’s connections, but additional processes are employed when modularity or fault isolation is necessary. In this case, the desired unit of resource management includes part of the activity of the main server process, and also the entire activity of, for example, a CGI process.

In some operating systems (Solaris), threads assume some of the role of a resource principal. In these systems, CPU usage is charged to individual threads rather to their parent processes. This allows threads to be scheduled either independently, or based on the combined CPU usage of the parent process’ threads. The process is still the resource principal for the allocation of memory and other kernel resources, such as sockets and protocol buffers. The authors of the paper stress that it is not sufficient to simply treat threads as the resource principals. For example, the processing for a particular connection (activity) may involve multiple threads, not always in the same protection domain. Or, a single thread may be multiplexed between several connections.

An attempt to solve the problem, using the process abstraction

Much of the network processing is done as the result of interrupt arrivals, and interrupt have strictly higher priority than any user-level code; this can lead to starvation or livelock. These issues are particularly important for large-scale Internet servers.

Lazy Receiver Processing (LRP) partially solves this problem, by more closely following the process-centric model. In LRP, network processing is integrated into the system’s global resource management. Resources spent in processing network traffic are associated with and charged to the application process that caused the traffic. Incoming network traffic is processed at the scheduling priority of the process that received the traffic, and excess traffic is discarded early. LRP systems exhibit increased fairness and stable overload behavior.

[image: image8.jpg]Resource Application Threads
Principal

Single Independent
Activity

Application Process
(Protection Domain)

User level

Kernel

Application’s Resource
Principal extends into
the kenel

: A network-intensive application in a LRP system.

LRP extends a process-centered resource principal into the kernel, leading to the situation shown in Fig. 8. However, LRP maintains the equivalence between resource principal and process; it simply makes it more accurate. LRP, by itself, does not solve all of the problems that arise when the process is not the correct unit of resource management.

Consequences of misidentified resource principals

The fundamental concern is to allow an application to explicitly allocate resource consumption among the independent activities that it manages. This is infeasible if the operating system’s view of activity differs from that of the application, or if the system fails to account for large chunks of consumption. Yet it is crucial for a server to support accurately differentiated QoS among its clients, or to prevent overload from DoS attacks, or to give its existing connections priority over new ones.

With a single-process server, for example, traditional operating systems see only one resource principal: the process. This prevents the application from controlling consumption of CPU time, by various network connections within this resource principal. The application cannot control the order in which the kernel delivers its network events; nor, in most systems, can it control whether it receives network events before other processes do.

It is this lack of a carefully defined concept of resource principal, independent from other abstractions such as process or threads that precludes the application control we desire.

Resource Containers

A resource container is an abstract operating system entity that logically contains all the system resources being used by an application to achieve a particular independent activity. For a given HTTP connection managed by a Web server, for example, these resources include CPU time devoted to the connection, and kernel objects such as sockets, protocol control blocks, and network buffers used by the connection.

Containers have attributes; these are used to provide scheduling parameters, resource limits, and network QoS values. A practical implementation would require an access control model for containers and their attributes.

The kernel carefully accounts for the system resources, such as CPU time and memory, consumed by a resource container. The system scheduler can access this usage information and use it to control how it schedules threads associated with the container. The application process can also access this usage information, and might use it, for example, to adjust the container’s numeric priority.

Current operating systems implicitly treat processes as the resource principals, while ignoring many of the kernel resources they consume. By introducing an explicit abstraction for resource containers, a clear distinction is made between protection domains and resource principals, and provide for fuller accounting of kernel resource consumption. This provides the flexibility necessary for servers to handle complex resource management problems.

Containers, Processes, and Threads

In classical systems, there is a fixed association between threads and resource principals (which are either the threads themselves, or the processes containing the threads). The resource consumption of a thread is charged to the associated resource principal, and this information is used by the system when scheduling threads.

With resource containers, the binding between a thread and a resource principal is dynamic, and under the explicit control of the application; we call this the thread’s resource binding. The kernel charges the thread’s resource consumption to this container. Multiple threads, perhaps from multiple processes, may simultaneously have their resource bindings set to a given container.

A thread starts with a default resource container binding (inherited from its creator). The application can rebind the thread to another container as the need arises.

For example, a thread time-multiplexed between several connections changes its resource binding as it switches from handling one connection to another, to ensure correct accounting of resource consumption.

Resource Containers and CPU Scheduling and other resources

CPU schedulers make their decisions using information about both the desired allocation of CPU time, and the recent history of actual usage. For example, the traditional UNIX scheduler uses numeric process priorities (which indicate desired behavior) modified by time-decayed measures of recent CPU usage; lottery scheduling uses lottery tickets to represent the allocations.

In systems that support threads, the allocation for a thread may be with respect only to the other threads of the same process (“process contention scope”), or it may be with respect to all of the threads in the system (“system contention scope”).

Resource containers allow an application to associate scheduling information with an activity, rather than with a thread or process. This allows the system’s scheduler to provide resources directly to an activity, no matter how it might be mapped onto threads.

The container mechanism supports a large variety of scheduling models, including numeric priorities, guaranteed CPU shares, or CPU usage limits. The allocation attributes appropriate to the scheduling model are associated with each resource container in the system.

A thread is normally scheduled according to the scheduling attributes of the container to which it is bound. However, if a thread is multiplexed between several containers, it may cost too much to reschedule it (recompute its numeric priority and decide whether to preempt it) every time its resource binding changes.

Also, with a feedback-based scheduler, using only the current container’s resource usage to calculate a multiplexed thread’s numeric priority may not accurately reflect its recent usage. Instead, the thread should be scheduled based on the combined resource allocations and usage of all the containers it is currently handling.

To support this, author’s model defines a binding, called a scheduler binding, between each thread and the set of containers over which it is currently multiplexed. A priority-based scheduler, for example, would construct a thread’s scheduling priority from the combined numeric priorities of the resource containers in its scheduler binding, possibly taking into account the recent resource consumption of this set of containers.

Other resources, like CPU cycles, the use of other system resources such as physical memory, disk bandwidth and socket buffers can be conveniently controlled by resource containers.

Resource usage is charged to the correct activity, and the various resource allocation algorithms can balance consumption between principals depending on specific policy goals.

Authors stress here that resource containers are just a mechanism, and can be used in conjunction with a large variety of resource management policies. The container mechanism causes resource consumption to be charged to the correct principal, but does not change what these charges are. Unfortunately, policies currently deployed in most general-purpose systems are able to control consumption of resources other than CPU cycles only in a very coarse manner, which is typically based on static limits on total consumption.

The Resource Container Hierarchy

Resource containers form a hierarchy. The resource usage of a child container is constrained by the scheduling parameters of its parent container. For example, if a parent container is guaranteed at least 70% of the system’s resources, then it and its child containers are collectively guaranteed 70% of the system’s resources.

Hierarchical resource containers make it possible to control the resource consumption of an entire subsystem without constraining (or even understanding) how the subsystem allocates and schedules resources among its various independent activities. For example, a system administrator may wish to restrict the total resource usage of a Web server by creating a parent container for all the server’s resource containers. The Web server can create an arbitrary number of child containers to manage and distribute the resources allocated to its parent container among its various independent activities, e.g. different client requests.

The hierarchical structure of resource containers makes it easy to implement fixed-share scheduling classes, and to enforce a rich set of priority policies.

Operations on Resource Containers

The resource container mechanism includes these operations on containers:

Creating a new container: A process can create a new resource container at any time (and may have multiple containers available for its use). A default resource container is created for a new process as part of a fork (), and the first thread of the new process is bound to this container. Containers are visible to the application as file descriptors (and so are inherited by a new process after a fork ()).

Set a container’s parent: A process can change a container’s parent container (or set it to “no parent”).

Container release: Processes release their references to containers using close (); once there are no such descriptors, and no threads with resource bindings, to the container, it is destroyed. If the parent P of a container C is destroyed, C’s parent is set to “no parent.”

Sharing containers between processes: Resource containers can be passed between processes, analogous to the transfer of descriptors between UNIX processes (the sending process retains access to the container). When a process receives a reference to a resource container, it can use this container as a resource context for its own threads. This allows an application to move or share a computation between multiple protection domains, regardless of the container inheritance sequence.

Container attributes: An application can set and read the attributes of a container. Attributes include scheduling parameters, memory allocation limits, and network QoS values.

Container usage information: An application can obtain the resource usage information charged to a particular container. This allows a thread that serves multiple containers to timeshare its execution between these containers based on its particular scheduling policy. These operations control the relationship between containers, threads, sockets, and files:

Binding a thread to a container: A process can set the resource binding of a thread to a container at any time. Subsequent resource usage by the thread is charged to this resource container. A process can also obtain the current resource binding of a thread.

Reset the scheduler binding: An application can reset a thread’s scheduler binding to include only its current resource binding.

Binding a socket or file to a container: A process can bind the descriptor for a socket or file to a container; subsequent kernel resource consumption on behalf of this descriptor is charged to the container. A descriptor may be bound to at most one container, but many descriptors may be bound to one container.

Kernel execution model

Resource containers are effective only if kernel processing on behalf of a process is performed in the resource context of the appropriate container. As discussed above, most current systems do protocol processing in the context of a software interrupt, and may fail to charge the costs to the proper resource principal.

LRP addresses this problem by associating arriving packets with the receiving process as early as possible, which allows the kernel to charge the cost of received-packet processing to the correct process.

Authors extend the LRP approach, by associating a received packet with the correct resource container, instead of with a process. If the kernel uses threads for network processing, the thread handling a network event can set its resource binding to the resource container; a non-threaded kernel might use a more ad-hoc mechanism to perform this accounting.

When there is pending protocol processing for multiple containers, the priority (or other scheduling parameters) of these containers determines the order in which they are serviced by the kernel’s network implementation.

The use of resource containers

Let’s now describe how a server application can use resource containers to provide robust and controlled behavior. We consider several example server designs.

[image: image9.jpg]Application Process
(Protection Domain) Resource Containers

Application

Independent
Activities

HTTP Connections

9: Containers in a multi-threaded server.

First, consider a single-process multi-threaded Web server, which uses a dedicated kernel thread to handle each HTTP connection. The server creates a new resource container for each new connection, and assigns one of a pool of free threads to service the connection. The application sets the thread’s resource binding to the container.

Any subsequent kernel processing for this connection is charged to the connection’s resource container. This situation is shown in Fig. 9. If a particular connection (for example, a long file transfer) consumes a lot of system resources, this consumption is charged to the resource container. As a result, the scheduling priority of the associated thread will decay, leading to the preferential scheduling of threads handling other connections.

[image: image10.jpg]‘Application Process
(Protection Domainy Resource Containers

Application
Thread

User level

Kernel

S

Independent
Activities

HTTP Connections

Fig. 10: Containers in an event-driven server.

Next, consider an event-driven server, on a uniprocessor, using a single kernel thread to handle all of its connections.

Again, the server creates a new resource container for each new connection. When the server does processing for a given connection, it sets the thread’s resource binding to that container. The operating system adds each such container to the thread’s scheduler binding. Figure 10 depicts this situation.

If a connection consumes a lot of resources, this usage is charged to the corresponding container. The server application can obtain this usage information, and use it both to adjust the container’s numeric priority, and to control how it subsequently expends its resources for the connection.

Both kinds of servers, when handling a request for a dynamic (CGI) document, pass the connection’s container to the CGI process. This may either be done by inheritance, for traditional CGI using a child process, or explicitly, when persistent CGI server processes are used. (If the dynamic processing is done in a module within the server process itself, the application simply binds its thread to the appropriate container.)

A server may wish to assign different priorities to requests from different sources, even for processing that occur in the kernel before the application sees the connection. This could be used to defend against some DoS attacks, and could also be used by an ISP to provide an enhanced class of service to users who have paid a premium.

To support this prioritization, we define a new sockaddr namespace that includes a “filter” specifying a set of foreign addresses, in addition to the usual Internet address and port number. Filters are specified as tuples consisting of a template address and a CIDR network mask. The application uses the bind () system call to bind multiple server sockets, each with the same <local-address, local-port> tuple but with a different <template-address, CIDR-mask> filter. The system uses these filters to assign requests from a particular client, or set of clients, to the socket with a matching filter. By associating a different resource container with each socket, the server application can assign different priorities to different sets of clients, prior to listening for and accepting new connections on these sockets. (One might also want to be able to specify complement filters, to accept connections except from certain clients.)

The server can use the resource container associated with a listening socket to set the priority of accepting new connections relative to servicing the existing ones. In particular, to defend against a DoS attack from a specific set of clients, the server can create a socket whose filter matches this set, and then bind it to a resource container with a numeric priority of zero. (This requires the network infrastructure to reject spoofed source addresses, a problem currently being addressed)

A server administrator may wish to restrict the total CPU consumption of certain classes of requests, such as CGI requests, requests from certain hosts, or requests for certain resources. The application can do this by creating a container for each such class, setting its attributes appropriately (e.g., limiting the total CPU usage of the class), and then creating the resource container for each individual request as the child of the corresponding class-specific container. Because resource containers enable precise accounting for the costs of an activity, they may be useful to administrators simply for sending accurate bills to customers, and for use in capacity planning.

Resource containers are in some ways similar to many resource management mechanisms that have been developed in the context of multimedia and real-time operating systems. Resource containers are distinguished from these other mechanism by their generality, and their direct applicability to existing general-purpose operating systems.

Conclusion

As we can see, this relatively new operating system abstraction allows us to explicitly identify a resource principal. Also, they allow explicit and fine control over resource consumption.

The potential fields of research include DoS, QoS and even Multimedia and real-time systems. I believe that being able to study and implement this concept will give us a strong tool to implement, compare and analyze the different works already done or in plan to do in our Computer Science community, here at UCCS.

After some research at Internet, I found that this abstraction has not been implemented on any of the Windows Operating Systems flavors. If we take advantage of the availability of the Windows’ Source Code, on Dr. Edward Chow’s hands, we could have two environments where to do the research. And as a side effect, we could compare the performance of those environments.

Spring 2005

Page 2 of 24

