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Introduction

Wireless Sensor Networks are on the brink of bringing true ubiquitous computing as we have never known it.  As the price of individual sensor nodes (called “motes”) approaches pennies on the dollar [8], sensor nodes will begin appearing in almost every consumer product imaginable.  Quickly, we will begin to take for granted that our lives and personal belonging all participate in a vast network of interproduct communication.  Our toasters will communicate to our microwave ovens and our microwave ovens will communicate to our refrigerators.  A vast host of our daily possessions will autonomously collect various types of sensor data and process and distribute this information to anywhere we wish to access it.  Lost your car keys?  No problem, your car keys contain an embedded mote capable of indicating its presence to any other motes within range of its radio transceiver.  Just ask any one of your other network-aware appliances where your keys are located.  They will relay the query using their neighbors until your keys are found and report precisely where they are located: right next to your wallet underneath your bed.

Wireless Sensor Networks are going to change the way we live and work much like the internet has already changed the way we learn and communicate.  With the ability to cheaply embed sensors into almost any conceivable product, we will be able to monitor, measure, and actuate almost anything we own or use.  Current suggested applications range from environmental control in office buildings, robot control and guidance in manufacturing, warehouse inventory, patient monitoring, smart homes, and interactive and collaborative toys and games to name a few [7].  Of course, it is impossible to conceive of all the possible applications of wireless sensor networks, but we can be sure that it will bring a new revolution in products and services.

What are Wireless Sensor Networks?

Wireless Sensor Networks are networks made up of tiny embedded devices.  Each device is capable of sensing, processing and communicating.  The networks can be made up of hundreds or thousands of devices that work together to communicate the information that they obtain.  

Each node is responsible for covering a particular area by sensing.  The node then sends the results to a sink node that collects the data.  Nodes are used to relay the information, allowing the message to use multiple hops to reach the sink node.  In order to process the information effectively, the network must have good coverage and the sink node must have good connectivity.

Wireless Sensor Networks are frequently ad hoc, meaning that nodes can be added at any time and configure themselves to be part of the existing network.  Any node can act as a relay to pass messages along in the network.  This works well for applications that add new sensors to replace those that have used up their battery life, or need to add more nodes for better coverage.

Why are they important?

Wireless Sensor Networks play a vital role in the following applications:

· Indoor/Outdoor Environmental Monitoring

· Security and Tracking 

· Health and Wellness Monitoring

· Power Monitoring

· Inventory Location Awareness

· Factory and Process Automation

· Seismic and Structural Monitoring

· Training and Systems Integration Available [19]

Characteristics of Wireless Sensors

Many sensors are designed for a specific purpose.  By doing so, the appropriate trade offs can be made between size and cost.  Some are designed for reuse, others are designed to be discarded once their purpose has been served.

Size

Sensors can be as small as the cubic-millimeter-size custom chips called Smart Dust to as large as a PDA integrated units.   The size of the sensor is determined by the application and the tasks it must perform.

Power consumption

Energy savings is a top concern for wireless sensor networks.   Sensors consume energy in their sensing, processing and communication tasks.  The lifetime of the node is determined by how quickly its power is consumed.  In most cases power is not a renewable resource.  The Berkeley Research Center is developing motes that are powered by solar, light, vibration, heat and other forms of renewable energy. [18]

Cost

Cost is an important factor for wireless sensors, since some applications use thousands of sensors.  Often the sensors are thought to be disposable.  As more manufacturers appear, the cost of sensors is likely to decrease.

Types of Wireless Sensors [5]

Specialized Sensor nodes

Specialized sensors are used in many applications, including asset tracking.  These sensors are very small and must operate for a long time on a battery supply.  Thousands of sensors are usually involved in this type of application.

Generic Sensor nodes

Generic sensors are used in many applications, including security applications such as motion detection in doors and windows.  These sensors are very small and must operate for a long time on a battery supply.  Not much data processing is required for this application, and low communication rates are required.  Hundreds of sensors are usually involved in this type of application.

High-bandwidth Sensor nodes

High-bandwidth sensors are used for video, acoustic and chemical applications that require more resources for communications and computations.  Battery power is often not enough for these applications.  In order to operate for the long term, they must be plugged in to electrical power.

Gateway nodes

Gateway sensors are used to link the wireless sensor network to the Internet.  They contain more memory and data logging capabilities.  The gateway node is intended to be capable of generic processing possessing the flexibility to connect to the network with a variety of interfaces.  The Stargate device is an example of a Gateway device developed by Intel.  It contains several megabytes of RAM and persistent storage measured in gigabytes.  The Stargate has USB, JTAG, RS232, Compactflash, Ethernet, and a PCI interface.

The following table taken from [5] shows the typical applications for the various types of sensors along with other characteristics of the sensor.
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Table 1.  Four Classes of Sensor-Network Nodes.

Makeup of a wireless sensor network application

It is common for applications to combine different types of sensors in their network.  A security system may use motion sensors, cameras and a gateway interface to collect and process the data collected by the wireless sensor network.

Duck Island is a habitat monitoring system that uses different types of wireless sensors.

Components

Wireless Sensor Networks are required to perform sensing, data processing and wireless communication tasks.  Several components are required to accomplish these tasks.   Because the components are separate, they can be managed separately, allowing better energy management.

Radio

The responsibility of the radio is to send out messages.  Transceivers send and receive messages.

Processor

The processor is sometimes used to check the validity of the data collected.  It can also be used to consolidate data to minimize the number of packets sent to the central node.  

Memory 

Sensors often contain different types of memory, such as Flash, EPROM, and ROM.  Flash is used to create messages.  ROM is used to store programs.

Software

Limited hardware in wireless sensor networks requires the use of a reduced operating system.  TinyOS is an event based operating system that is small in size and includes wireless connectivity.  It is one of the primary operating systems in use in wireless sensor networks.

Potential problems with wireless sensor networks

Path Obstructions

Objects often obstruct the path between wireless sensor nodes Buildings, walls, trees, mountains, and many other things can get in the way of communication between nodes.  Positioning algorithms play a key role in making sure the network is connected.  Specifications in research papers are typically given for unobstructed paths.

Reliability

Problems with batteries running out cause nodes to be lost, with the potential for uncovered areas in the network.  The possibility of data getting lost also exists if a sensor cannot connect to other nodes in the network to pass along information, highlighting the importance of robust positioning algorithms and adaptive network topology.

Environmental conditions can also make the network links unpredictable.  For example a rainstorm can affect the RF, making it necessary for the nodes to adapt.

Focus of our research

This research focuses specifically on Positioning Algorithms and Energy Management.  We chose these topics because most applications implicitly require positioning information and most research topics are focused on methods of saving energy.  This document is divided into two parts.  Part 1 covers our research on Positioning Algorithms.  Next, Part 2 covers our research on Energy Management.

Part 1  Positioning Algorithms

Introduction

Implicit in almost every application of Wireless Sensor Networks is the ability to associate both a time and a position to a sensor’s measurement.  Without knowing this basic information, sensor data has very little practical use [1].  Therefore, almost any architecture for wireless sensor networks assumes some sort of time synchronization and positioning system.  While time synchronization is outside of the scope of this paper, we will discuss a variety of algorithms for solving the positioning problem.  In particular, we will describe a number of proposed algorithms, evaluate their performance using simulation data, and finally compare each of their merits and weaknesses.  Last, we will draw some conclusions for future research.

Positioning Background

Positioning algorithms within wireless sensor networks strive to make as few assumptions as possible about the physical layout of the distributed network.  In fact, the network is assumed to be completely ad-hoc (reference).  Sensors are allowed to move within network (with some limitations) and potentially fail and recover.  Therefore, positioning algorithms are required to be extremely fault-tolerant and robust, accounting for all the variability within a distributed sensor node network.

Aside from the above design goals, there are two assumptions within an ad-hoc sensor network that are absolutely essential.  First, the network is assumed to be fairly connected.  That is, each sensor node is expected to have several sensor nodes around it within range of communication.  Second, there must be at least four anchor nodes within the system (assuming a 3-dimentional positioning system).  An anchor node is a special sensor node in the network that knows its position within the global coordinate system ahead of time.  This can be enabled by embedding GPS receivers within nodes or preprogrammed them with their precise location.  The anchor nodes are essential in helping the other nodes in the network discover their positions.

Triangulation
Because of their ad-hoc nature and low-power requirements, wireless sensor networks use distributed heuristic algorithms for determining their position rather than relying on traditional centralized algorithms.  Centralized algorithms are shown to dissipate too much energy within a sensor network due to the additional communication required to gather sensor information to a single node in the network [7].

Almost all sensor positioning algorithms are based on the radiolocation technique of triangulation [9].  Triangulation uses distance measurements between a node and its neighbors in order to derive a node’s coordinate position relative to its neighbors.  Distance measurements can be made using a variety of techniques including angle of arrival (AOA), time of arrival (TOA), time-distance of arrival (TDOA), or received signal strength indication (RSSI), though RSSI is typically used [9].  Regardless of which method is used, triangulation uses the measured distances between a node and three/four or more known reference points to compute the 2D/3D position of the unknown node.  Graphically, triangulation can be demonstrated as Figure 1.
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Figure 1.  Geometric Explanation of Triangulation

Consider the two-dimensional picture of Figure 1.  The point m is a point of unknown position surrounded by three points of references with known positions: a1, a2, and a3.  Once the distance, r, between a1 and m is determined (say using RSSI), we can conclude that m is located somewhere on the perimeter of the circle surrounding a1.  Similarly, determining the distance between m and a2 gives another circle surrounding a2 and intersecting a1’s circle.  Given this much information, we know that m is precisely located at either one of the two intersection points of these two circles.  Finally, adding a third point of reference resolves the ambiguity between the two possible locations resulting in a precise location for m.  Note, that this same technique can be adapted to three dimensions by adding a fourth reference point.  In this case, the first distance measurement would result in a sphere.  The second distance measurement would result in the intersection of two spheres, namely a circle.  At this point, the problem is reduced to the two-dimensional case.  This method is similar to the technique used by Global Positioning System (GPS) [8].

Localization Challenges

The accuracy derived from triangulation depends primarily upon the geometry of the reference points and the accuracy of the range measurements [9].  Unfortunately, range measurement errors can be as large as +-50% of the measurements due to factors such as whether any obstacles are present within the network, fading, and other sources of interference.  Furthermore, poor triangulation results can compound as bad position information is spread and reused by additional nodes in the network.  This is known as the range-error problem and can render the results of triangulation useless.  In order to overcome this problems, Jan Beutel has presented a solution using the least squares algorithm that uses additional points of reference in order to better estimate the overall position of a node [8].  By adding additional points of reference, errors in the range measurements can be overcome leading to a much better estimate of the overall position.  Jan Beutel found that, “On average an increase from 3 to 10 nodes used in the solution results in a decrease of the position estimate error by a factor of 4” [1].  Implied in this solution is that a network having a higher density of nodes will result in much better overall position information compared to a sparse network.

Another problem with positioning algorithms comes from the need to have at least four points of reference with known locations in a three-dimensional space in order to determine the unique location of an unknown node.  Given our assumptions above, there may only be four anchor nodes within a given network.  It is very unlikely that every node within the network will be in direct communication with all four anchor nodes since the anchor nodes may be randomly located.  Therefore, without some method of passing anchor positions between nodes, some nodes will not be able to determine their position within the network.  This is known as the sparse anchor node problem.  Solutions to this problem will discussed with each of the position algorithms below.

 Positioning Algorithms

Each of the proposed algorithms below are instances of a methodology proposed by Jan Beutel known as Cooperative Ranging [9].  Cooperative Ranging is a divide and conquer approach to the problem of determining a global position of all the nodes in a network.  It distributes the global positioning problem by assigning each node the task of determining its local position using iterative approximations and then combining these local approximations into a global solution.  As defined by Beutel, “every single node plays the same role, and repeatedly and concurrently executes the following functions:

· Receive ranging and location information from neighboring nodes

· Solve a local localization problem

· Transmit the obtained results to the neighboring nodes” [9]

The following sections look at a variety of positioning algorithms that address the sparse anchor node problem.  In particular, we evaluate the algorithms TERRAIN, Hop-TERRAIN, and Two-Phase.  The Hop-TERRAIN and Two-Phase algorithms attempt to partially solve the range error problem as well.

TERRAIN Algorithm


The first algorithm we will consider for solving the positioning problem was proposed by Savarese, Rabaey, and Beutel and is known as TERRAIN [9].  TERRAIN stands for Triangulation via Extended Range and Redundant Association of Intermediate Nodes.  TERRAIN is an algorithm that solves the sparse anchor node problem described above by forwarding anchor node positions between neighboring nodes.  Once a node has collected at least four anchor node positions relative to its own position from its neighbors, it can compute a standard triangulation and compute its location within the global coordinate system.


The TERRAIN algorithm is based upon the Assumption Based Coordinates (ABC) algorithm [9].  The ABC algorithm is an algorithm that allows a collection of nodes to locate themselves relative to each other, but not relative to any global coordinate system.  In other words, nodes determine their position within an internal coordinate system but this internal coordinate system has no orientation to an external global coordinate system.

TERRAIN begins by each anchor node initiating the ABC algorithm.  For a particular anchor node, the ABC algorithm will propagate throughout the network causing each node to acquire its relative position to that particular anchor node.  This is the Extended Range of TERRAIN and is used to solve the sparse anchor node problem.  This will form one particular map or internal coordinate system centered upon that initiating anchor node.  From this map, a node can compute its distance or range to that anchor node.  This process then repeats itself for each anchor node in the system until each node has a local map and range to each of the anchor nodes.  When a node acquires its range to at least four anchor nodes, it can then perform a standard triangulation and determine its position within the global coordinate space.  As additional anchor node positions arrive, nodes can use the least squares algorithm proposed by Beutel to improve their estimation of their global position.  The TERRAIN algorithm is summarized below in Figure 2.
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Figure 2.  TERRAIN Algorithm Pseudo Code [8]

Hop-TERRAIN


The next algorithm under consideration is called Hop-TERRAIN and was proposed by Chris Savarese [8].  Hop-TERRAIN is an extension of the TERRAIN algorithm that similarly extends the range of anchor nodes by propagating anchor node positions throughout the network.  Unlike the TERRAIN algorithm though, Hop-TERRAIN forwards the number of routing hops to each of the anchor nodes instead of absolute range measurements.  The number of routing hops are then multiplied by an average hop distance metric to compute the distance between a node and an anchor.  Once the distance to at least four anchor nodes are available to a node, it can then determine its global position within the network using triangulation.


Hop-TERRAIN begins by each anchor node broadcasting its known location and a hop count of 0.  All of the immediate neighbors of an anchor then record the anchor’s position and a hop count of 1.  They, in turn, rebroadcast the anchor’s position with a hop count of 2.  This process repeats itself until each anchor’s position and hop count has been spread throughout the network.  In order to prevent an infinite number of broadcasts, nodes only rebroadcast an anchor’s position if they receive a broadcast with a shorter hop count than their current hop count to that anchor.  The Hop-TERRAIN algorithm is summarized below in Figure 3.
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Figure 3.  Hop-TERRAIN Algorithm Pseudo Code [8]

Two-Phase Algorithm


Finally, Savarese proposes a two-phase approach to solving the positioning problem within an ad-hoc sensor network.  His algorithm begins with the first phase known as the Start-up phase [8].  In this phase, the sparse anchor node problem is solved by executing the Hop-TERRAIN algorithm as discussed above.  This phase is only intended to give a rough approximation of positioning information and is used as the starting point for the next phase, Refinement.


The objective of the Refinement phase is to improve the initial position estimates by iteratively estimating the ranges between nodes.  This will, in turn, solve the range error problem by successively approximating the true ranges between nodes in the presence of range errors.


Once the Hop-TERRAIN algorithms completes, each node begins performing the Refinement phase in the following iterative and distributed manner.  First, a node broadcasts its position estimate and receives position and range estimates from all of its immediate one-hop neighbors.  Next, the node triangulates its position using the received information and compares the result with its previous estimate.  If the difference is larger than some threshold, the node repeats the process until the position estimates converge.  Once this occurs, the node considers its position estimate to be fairly accurate and stops the Refinement process.  It then broadcasts its final position to its neighbors.


A large assumption within the Refinement algorithm is that a node’s position estimate will actually converge to a more accurate final position.  Savarese has shown that the following factors influence whether a node’s position will converge in iterative refinement [8]:

· The accuracy of the initial position estimates

· The magnitude of errors in the range estimates

· The average number of neighbors

· The fraction of anchor nodes

He notes that when a node has more than the minimum number of neighbors required for triangulation, that the over-defined system of linear equations in the least-squared algorithm will result in a more accurate estimation over time [8].  However, he also admits that there still exists a number of “reasonable” cases where convergence does not occur due to anomalies in network topology and fast error propagation [8].

In order to fix the fast error propagation problem, Savarese assigns a confidence metric to each node’s position.  These confidence metrics are then used to weigh the over-defined system of linear equations in order to produce a more accurate estimation of a node’s position.  This weighting helps nodes converge to a more accurate position by reducing the impact of erroneous range information [8].

In order to fix the anomaly in network topology problem, Savarese modifies the Hop-TERRAIN algorithm to make sure that none of the paths to anchor nodes share any common edges.  By detecting edge-independence of multi-hop routes to anchor nodes, anomalies such as ill-connected groups of nodes can be detected and prevented from entering the Refinement phase [8].  Finally, the Refinement algorithm is summarized below in Figure 4.
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Figure 4.  Refinement Algorithm Pseudo Code

Simulation Results


Savarese simulated the TERRAIN, Hop-TERRAIN and Refinement algorithms using the following configuration.  First of all, 400 nodes were randomly placed with a uniform distribution over a 200x200 square.  Next, the percentage of anchor nodes, the range between nodes, and the connectivity between nodes were randomized in order to simulate the results over a broad spectrum of conditions [8].  The following is a summary of the results Savarese acquired with each data point representing an average value over 100 trials.  Below each figure we take a brief look at the key findings.  Conclusions from the results will be drawn in the analysis sections that follow.

TERRAIN vs. Hop-TERRAIN


TERRAIN and Hop-TERRAIN were tested for their sensitivity to the range error problem described above.  Figure 5 below shows the results of testing the two algorithms with increasing variance in the range error across 2200 trials.
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Figure 5.  Range Error Sensitivity of Hop-TERRAIN and TERRAIN [8]

(nodes = 40, anchors = 4, range = 10, grid = 30x30)

Figure 5 demonstrates the average position error magnitude as the range error variance increases.  Errors are normalized to a percentage of a node’s maximum radio range.  Hop-TERRAIN shows very consistent results.  Its average position error only varies from 133% to 309% (see upper table in figure).  On the other hand, TERRAIN varies wildly as the range error variance increases.  It demonstrates extremely high sensitivity to range errors with an average position error of 41% to 2.9E16%!

Hop-TERRAIN Performance

[image: image7.png]250 T T T T
20 anchors —o—
S Snchors <+
10 oo -
wl  anchors |
s ¢ 4
s,
) N i
X
=
s0 x
o L n L n
H 0 [ 0 B

connecivity




Figure 6.  Average Position Error After Hop-TERRAIN [8]

(5% Range Errors)

Figure 6 shows the average performance of the Hop-TERRAIN algorithm as a function of connectivity and anchor population.  Figure 6 demonstrates that the Hop-TERRAIN algorithm has an average performance of under 100% error when there is at least a 5% anchor population and connectivity level of 7 nodes or greater.  Error levels can reach as high as 250% when connectivity and anchor percentages are very low.

Refinement Performance
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Figure 7.  Average Position Error After Refinement  [8]

(5% Range Errors)

Figure 7 shows the improvement of adding the Refinement phase after the Hop-TERRAIN algorithm.  For the same 5% anchor population and connectivity of 7 nodes as we looked at before in Figure 6, Refinement improves the error level from 100% down to 33%.  This is a 3x improvement.  Maximum error levels are also improved with only a 54% maximum error level when connectivity and anchor percentages are low.
Hop-TERRAIN vs. Refinement
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Figure 8.  Range Error Sensitivity between Hop-TERRAIN and Refinement  [8]

(10% Anchors, 12 Nodes Connectivity)

Figure 8 shows the result of comparing Hop-TERRAIN and Refinement as the level of range error increased while using a 10% anchor population and a node connectivity of 12 nodes.  As we saw in Figure 5, Hop-Terrain is almost completely insensitive to changes in range accuracy.  It has a consistent position error level of around 46% of range which is consistent with Figure 6.  Refinement, on the other hand, offers better position estimates until the range error level reaches around 40%.  At this point, it actually becomes worse than strict Hop-TERRAIN exceeding 50% position errors.  Finally, the lower bound line shows the “best-case” position measurement using the true position of a node’s neighbors and the same amount of range error.  It demonstrates that the Refinement algorithm has some room for improvement [8].

Geographic Errors

[image: image10.png]



Figure 9.  Geographic Error Distribution  [8]

(5% Anchors, 12 Nodes Connectivity, 5% Range Errors)

Figure 9 demonstrates the position error level as a function of a node’s position within the 200x200 map.  The experiment used a 5% anchor population, an average connectivity of 12 nodes and a 5% error in ranges.  Interestingly, the error levels are highest around the perimeter of the map due to the lack of surrounding anchor nodes.  This error distribution is fairly typical [8]. 

Algorithm Analysis

TERRAIN Analysis


TERRAIN solves the sparse anchor node problem by propagating anchor positions throughout the network allowing every node to compute its relative position to each anchor node.  If range measurements were perfect, TERRAIN would be a suitable and complete solution to the sparse anchor node problem.  However, TERRAIN breaks down in the presence of the range error problem.  Since TERRAIN iteratively reuses the results of previously computed ranges and positions, errors compound and propagate throughout the network rendering the final answers utterly meaningless [8].  We can see the result of this compounding of errors in Figure 5 above.  Because of this problem, TERRAIN is only a viable solution if range measurements are extremely accurate or if the network is extremely small.  Unfortunately, neither of these two scenarios are usually the case. 

Hop-TERRAIN Analysis


Hop-TERRAIN solves the sparse anchor node problem by propagating anchor positions like the TERRAIN algorithm.  However, it has some additional advantages over TERRAIN.  First of all, Hop-TERRAIN is able to scale to very large networks while TERRAIN cannot.  Because TERRAIN compounds errors at every hop, TERRAIN could not even be simulated beyond a network size of 40 nodes [8].  On the other hand, Hop-TERRAIN could be tested with network sizes up to 1600 nodes.  Because Hop-TERRAIN only propagates hop-counts to anchor nodes instead of range measurements, errors are not compounded at every hop.  This property coupled with Hop-TERRAIN’s distributed nature allow Hop-TERRAIN to scale to much larger networks.  Another advantage of Hop-TERRAIN is that it provides very consistent results.  Since hop counts are discrete, variations within range measurements are ignored by the Hop-TERRAIN algorithm.  Figure 5 above demonstrates that Hop-TERRAIN is very consistent across a wide variation in range errors.


Hop-TERRAIN does suffer from a few important disadvantages as well.  First, since the distance between a node and an anchor is determined by multiplying the hop count against an average hop distance metric, resulting range measurements, though fairly consistent, are not very accurate.  Simulations show that Hop-TERRAIN can have error levels as high as 250% as the number of anchors in the network decrease and the average connectivity between nodes drops below 5 neighbors [8].  Another disadvantage is that Hop-TERRAIN is shown to use a significant amount of communication between nodes.  This results in a large amount of energy expended  [8].  Some of this energy can be saved by reducing the frequency of executing the Hop-TERRAIN algorithm.  Finally, another difficulty is that because Hop-TERRAIN only uses hop-counts between nodes, obstacles within the network topology can result in inflated distances between nodes.  For example, if a wall is between two close nodes, the hop-count would lead the nodes to believe they are very far apart due to the large number of hops required to hop around the perimeter of the wall.

Two-Phase Analysis

Since the Two-Phase algorithm begins with Hop-TERRAIN, it shares the same set of advantages and disadvantages mentioned above with one exception: position accuracy.  Since Two-Phase adds the Refinement phase, it dramatically increases the accuracy of its position estimates by 3 to 5 times as demonstrated in Figure 7 above.  However, as Figure 8 shows, this improvement only occurs when range measurements have less than a 40% level in error.  If range measurement errors are higher, Refinement can actually make the position measurements worse than strict Hop-TERRAIN!  Last, Refinement requires a significant amount of computational overhead since it is an iterative algorithm.  Furthermore, each iteration of the algorithm requires a considerable amount of communication with each node’s neighbors.  This computational overhead results in a lot of additional energy expenditure.  Overall, Refinement can provide significant improvement in positioning estimates if range measurements are not grossly inaccurate and the additional computational and energy requirements can be compensated for by scheduling only infrequent execution of the algorithm.

Other Problems


Savarese summarizes three general types of problems that reduce the accuracy in all three of the above algorithms: obstacles, poor topology, and excess node movement [8].  In general, the above algorithms work best when each of the nodes are free from obstacles blocking their line of sight to other nodes.  For example, earlier we explained that Hop-TERRAIN would exaggerate distances between two nodes separated by a barrier since the hop-count would be the number of hops required to hop around the intervening object.  Obstacles could also have an impact on TERRAIN and Refinement since they depend on accurate range measurements.  If an obstacle attenuated the radio signals between two nodes, they could actually seem farther apart and exaggerate their distance calculations.  The surroundings between two nodes can also have various channel effects on the radio signals by introducing reflections and multi-path effects.  These problems lead to increased errors in the range measurements.  The above algorithms will exhibit the best accuracy when they are free from as many obstacles as possible.  If obstacles cannot be removed, additional anchor nodes can be placed in key locations around the obstacle in order to reduce the distortion [8].


Poor topology can also be a limiting factor.  If a node does not have a sufficient number of neighbors within its range, it will not be able to acquire enough information in order to triangulate its position.  For example, the Two-Phase’s Hop-TERRAIN algorithm requires that each anchor’s hop-count arrive from independent paths.  If a node is poorly connected, the anchor paths will overlap causing them to be eliminated from the Refinement algorithm.  Likewise, the TERRAIN algorithm requires a node to have a minimum number of neighbors in order to determine its relative position to an anchor.  If a node cannot acquire enough relative anchor positions, it will be unable to triangulate its position within the global coordinate space.  Therefore, a high node density and uniform node distribution should be ensured in order to prevent nodes from being isolated due to ill-connected networks.  Placing anchor nodes around the edges of a network can also help with some of the geographic problems demonstrated in Figure 9 above [8].

Last, excess node mobility can have various strange and corrupting effects on node positions.  All of the positioning algorithms require a finite amount of settling time in order to determine and publish node’s positions throughout the network.  If nodes are moving while the positioning algorithms are busy computing range measurements and hop-counts to neighbors, the results will be skewed and inconsistent leading to abnormalities in the resulting position estimates.  Furthermore, as nodes are moved in the network, they risk contaminating other nodes by publishing their position and hop-count information from their old positions.  The speed at which the positioning algorithms settle versus the speed of node movement needs to be compared in order to determine how fast a node can be moved through the network.  If a node’s movement is faster than the positioning algorithm’s settling time, then a moving node can have its confidence weight adjusted in order to mitigate its effect on the rest of the network [8].

Future Research


As indicated from the above problems, positioning algorithms still require some additional research.  Savarese proposes a couple of research areas for improving both Hop-TERRAIN and Refinement.  First of all, since both Hop-TERRAIN and Refinement use the least squares algorithm as a primary vehicle for computing a node’s position, this algorithm becomes a primary candidate for improvement.  Currently, the least squares algorithm assumes that only the range measurements contain errors.  The reference positions are assumed to be without errors.  This is a simplifying assumption.  Savarese suggests a new algorithm called total least squares that assumes errors in both the range measurements and the reference points in order to better approximate node positions [8].


Finally, due to the sensitivity Refinement has on range measurements and the consistency demonstrated in the Hop-TERRAIN algorithm, Savarese suggests a similar approach for Refinement called Hop-Refinement.  This new algorithm would remove Refinement’s sensitivity to range measurement accuracy by only using hop-counts between neighboring nodes instead of range measurements.  In particular, Hop-Refinement would use a local collection of multiple-hop neighbors in order to triangulate its position similar to Hop-TERRAIN.  Since more than one-hop neighbors would be used, it would result in additional communication overhead which could again be mitigated by reducing the frequency of running the algorithm.  The algorithm has not been tested but is proposed as a solution to the existing problems of the current Refinement algorithm.

Conclusion

Wireless Sensor Networks are going to bring a revolution to the computing environment.  Computers will become so ubiquitous and embedded, that we will soon take for granted their presence.  Important to almost every application of these networks is the ability to associate time and position information with the sensor data these computers collect.  We have looked at a variety of positioning algorithms that will solve the need to determine a sensor’s global position within a distributed wireless sensor network.  The algorithms we have looked at in detail are TERRAIN, Hop-TERRAIN, and Two-Phase.  We have seen that TERRAIN is a simple algorithm that solves the sparse anchor node problem but fails in the presence of the range error problem.  For this reason, TERRAIN is only useful in very small networks with highly reliable range measurements.

Next we considered the Hop-TERRAIN positioning algorithm.  This algorithm is an adaptation of the TERRAIN algorithm that uses hop-counts instead of range measurements in order to solve the sparse anchor node problem.  We saw that the Hop-TERRAIN algorithm scaled well to large networks and provided very consistent results.  However, because Hop-TERRAIN doesn’t provide very accurate results, Hop-TERRAIN is more suitable for environments where precise positioning information is not required.

Finally, we looked at the Two-Phase algorithm which uses Hop-TERRAIN in the first phase and adds a second phase called Refinement.  Refinement solves the range error problem by iteratively improving nodes positions using successive triangulations.  Refinement demonstrated a significant improvement in node positioning when range measurement errors were less than 40%.  However, when range errors were greater, Refinement’s improvements disappeared.  This motivated a new algorithm called Hop-Refinement that builds off the Hop-TERRAIN algorithm by using hop-counts instead of range measurements to determine a node’s position relative to its neighbors.

Last, we considered a number of additional challenges to positioning algorithms.  Namely interference of obstacles, poor topologies, and excessive node movement.  We then named a few suggestions for mitigating these problems. 

Part 2  Energy Management

Importance of Energy Management

Energy management is important to the reliability of the network.  The nature of the application may make it infeasible for interaction with the sensor once it has been deployed.  Frequently the sensors are located in remote areas making it impossible to access them.  In military applications, it is unrealistic to think maintenance could be done on sensors.  Sensors spread in a building damaged by an earthquake are also not reachable.  An application that monitors the ecosystem must not disturb the habitat and wildlife.   

Economics is also a factor, when there are thousands of sensors; it is also unrealistic to have to be concerned with the power of a given sensor.   Smart dust nodes are designed to be disposable, making it more cost effective to deploy additional new nodes rather than replace batteries in existing nodes.

Many wireless sensor applications require the sensors to be operational for many years.   It is thus essential that the sensors are reliable and work on their own for the duration of the application.  If the sensor loses power, it is gone and so is the reliability of the network.

Methods of Energy Management

Communication is the primary consumer of energy in wireless networks. [2] It has been observed that a node requires almost as much energy to listen as it does to transmit data in short-range RF communications.

Energy management techniques include those that reduce communication and increase computation, power down certain components of the node or the entire node, nodes that cover smaller areas, and renewable sources of energy.  

The desire to save energy has also affected routing algorithms, scheduling, data collection and aggregation and MAC (Medium Access Control) protocol research.  The tradeoff between energy savings and latency are of major concern.  Some time critical applications cannot tolerate delay in packet delivery.

Data reduction techniques

It is desirable to reduce the amount of data that needs to be transmitted between nodes because the cost of transmission is high.  Data aggregation methods are used to minimize the amount of redundancy in the data that needs to be transmitted.  Although the processor consumes power during this process, it is much less than that consumed by the transmitting and receiving tasks.

LEACH (Low-Energy Adaptive Clustering Hierarchy) is a cluster based protocol that uses hierarchy to reduce the data collected by the sensors before sending it on to a central base node.  The energy load is evenly distributed among the sensors in the network.  Simulations show energy dissipation can be reduced by much as a factor of 8 compared to conventional routing protocols. [12] The lifetime of the individual sensors is also increased because the energy is dissipated evenly among the sensors in the network.

Algorithms to choose the cluster that a node joins

Some algorithms are designed to conserve energy by having a node join the most appropriate cluster.    Information is collected by the cluster leader and passed along in the network.

Nodes switch between active (on) and sleeping (off) mode [4]

Many different studies have been done that involve nodes switching between an active and sleep mode.  The variables include how to determine the active/sleep schedule, the duration of the active/sleep period, and whether or not the nodes are aware of the schedules of the other nodes in the network.  In order for the network to be reliable, events must not be missed.  The nodes need to be able to sleep, but still respond to the events of interest.  TinyOS supports this capability.

Nodes are independent

In research [4] the nodes switched between active and sleeping mode independently of each other.  The sensors are distributed based on a Poisson process.  Nodes are responsible for sensing a particular area and sending data to the sink node in multiple hops, using other nodes to relay the message.  The sink node is always connected.  The network is always disconnected because the number of nodes active at any given time is very low.  Nodes spend more time sleeping than awake. 

Once a node senses an event, it stays active and sends the information to all of the nodes that are reachable in 1 hop.  The node keeps transmitting the information until all of its immediate neighbors have received the information, since they can only receive the message if they are awake.  Once all of the neighbors have gotten the message, the node can go back to its schedule of active and sleep time.  All of the neighbor nodes repeat this process until all of their immediate neighbors get the message.  The process continues until the message reaches the sink node.

One obvious problem is the delay (latency) introduced by a message trying to reach a sleeping node.  Latency is acceptable in some applications such as those that gather statistical information.  Time critical applications such as those that send an alarm when an unexpected event occurs are much less tolerant of latency.  

Latency is affected by random placement of the nodes, random radio range, sensing distance and random sleeping and active periods of the nodes.  Even applications that can tolerate latency would not tolerate a high degree of variability in the amount of latency.  The latency will be larger as the node gets farther away from the sink node.

The study showed that the latency was linearly proportional to the distance from the sink node.  Some time critical applications can use this method by adjusting the dependent variables to make the latency in message delivery tolerable.

Physical Layer aware protocol

In the study [12] the uAMPS (micro-Adaptive Multi-domain Power-aware Sensors) wireless node exposes all of the underlying parameters of the physical hardware to the system designer.  All layers of the system, including algorithms, operating systems, and network protocols can use this flexibility to adapt and conserve energy.  
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Figure 10.  uAMPS Microsensor Node [12]

The system they measured consisted of separate components: a StrongArm SA-1110 microprocessor, a sensor connected to and A/D converter, RAM and flash ROM for data and program storage, and a radio subsystem. 
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Figure 11. Sleep States for the Sensor Node [12]

One observation is the “deeper” the sleep state, the greater the energy savings, and the longer the wakeup time.  The research points out that care must be taken to make sure that more energy isn’t consumed by putting the node to sleep and waking it up than leaving it awake constantly.

Since current commercial radio transceivers have a high overhead to turn on and off, it is essential that wireless sensor networks allow the upper layers to adapt the hardware based on changes in the system in order to conserve energy at the node level. [12]

Event based communication 

In this event based communication model, nodes subscribe only to event types they are interested in.  Each node is scheduled to receive data, transmit data and power its radio down to a low-power standby mode.  An event scheduler dynamically schedules time slots for each type of event.  There is a root node that acts as the base station with greater computational, transmission and storage capability.  Nodes save power by powering down their radio during those time slots that do not match the events they are interested in.  

The Topology-Divided Dynamic Event Scheduling (TD-DES) protocol organizes the wireless network into a multi-hop network tree [2].  The result of the study indicated that TD-DES was efficient for conserving power, but has the disadvantage of introducing latency in the form of more multi-hop events.

Reduce the power consumed by the sensing task

The less area a sensor covers, the lower the amount of energy it consumes.  The application determines the frequency of the sensing activity, but there is still an opportunity to reduce power consumption by the sensing task by decreasing the coverage area of a particular sensor.  In order to cover the area completely, the number of sensors used by the application needs to be increased.  This method can greatly increase the life expectancy of a particular sensor.

Shorter Higher Quality Links vs. Longer Lossy Links

Many network routing schemes try to send packets to the neighbor node that is closest to the sink node.  This seems efficient because fewer hops are required to deliver the packet.  The problem arises when the links to these nodes are lossy, meaning they have a high amount of data loss.  Unreliability in wireless links can cause energy loss, because packets need to be retransmitted.  

Research [3] involves a forwarding scheme that relies on shorter more reliable links for a packet to reach its destination.  The scheme blacklists neighbors that have been shown to have weak links. 

[image: image13.emf]
Figure 12. Ad-hoc Multi-Hop Networks [18]

“If the geographic forwarding scheme attempts to minimize the number of hops by maximizing the geographic distance covered at each hop (as in greedy forwarding), it is likely to incur significant energy expenditure due to retransmission on the unreliable long weak links.  On the other hand, if the forwarding mechanism attempts to maximize per-hop reliability by forwarding only to close neighbors with good links, it may cover only a small geographic distance at each hop, which would also result in greater energy expenditure due to the for more transmission hops for reach packet to reach the destination.” [10].  The study shows that the optimal choice is nodes located somewhere in between the farthest and closest neighbor to the node transmitting the data.

Scavenging Energy

The amount of power consumed by the processing and communications tasks is also dependent on the hardware.  The Berkeley Wireless Research Center PicoRadio project is trying to reduce energy consumption in Wireless Sensor Networks by concentrating on the hardware.  One method they are exploring is using custom RF integrated circuitry to scavenge energy from other resources such as solar and vibration sources.   A study by [19] indicates that 100% of the necessary power can come from the sun, while vibration can contribute about 2.6% of the needed power.

PicoRadio uses the simplest processor, with hardware accelerators, and clocks with the lowest frequency, with a maximum operational voltage of 1 Volt.  They have also found that increasing the data rate reduces the overall power consumption of the PicoNode.

The following figure taken from [18] shows sources of energy.
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Figure 13. Energy Scavenging [18]


Media Access Control (MAC) Protocols.

The protocol used by the wireless network is very important for successful operation of the network.  Many Medium Access Control (MAC) protocols have been designed for wireless voice and data networks.  Nodes of the network work together to share a broadcast channel at the data link level.  A disadvantage of this method is that nodes are required to constantly monitor the broadcast channel, consuming a significant amount of power.

 Some examples of MAC protocols are time division multiple access (TDMA), code division multiple access (CDMA), and contention-based protocols like IEEE 802.11.  One of the goals of these protocols is to avoid collisions between nodes transmitting packets at the same time.   Traditional networks are concerned with fairness, latency, throughput and bandwidth utilization.  These attributes are less important in Wireless Sensor networks where energy consumption and scalability to change in network size, node density and topology are the major concerns.  

S-MAC (Sensor Media Access Control)

The S-MAC protocol for Wireless Sensor Networks was proposed by [14] [15].  The primary goal of S-MAC is to reduce energy consumption.  

The study identified collision, overhearing, control packet overhead, and idle listening as sources of energy waste.  When packets collide, they have to be resent, thus they consume more energy.  Collisions also increase latency.  Overhearing occurs when nodes receive packets that are intended for other nodes.  A common occurrence in wireless sensor networks is idle listening, which occurs when nodes are waiting to receive packets that are not being sent.  Protocols such as IEEE 802.11 and CDMA must listen to the channel to receive possible data.  Many measurements have shown that idle listening consumes 50–100% of the energy required for receiving.  For example, Stemm and Katz measure that the idle:receive:send ratios are 1:1.05:1.4 [13], while the Digitan 2 Mbps Wireless LAN module (IEEE 802.11/2Mbps) specification shows idle:receive:send ratios is 1:2:2.5 [15].   S-MAC has good collision avoidance capability, and tries to reduce energy waste caused by the above-mentioned occurrences.   The tradeoff is an increase in latency and per-hop fairness.  

The concept of message passing is used to divide long messages into small fragments and transmit them in a burst, resulting in the node having a longer a time to access the medium.   Nodes that have small packets have to wait a long time to for the long packets to finish.  The study indicates that control overhead is reduced and overhearing is avoided by using this method.  

S-MAC allows nodes to sleep periodically if they are in an idle listening mode.  Normally little data is flowing in the network when there is no sensing activity, so it is a good opportunity to conserve energy lost due to idle listening.  The trade off is increased latency incurred while the sender waits for the receiver to wake up before the data can be sent.

 
Virtual clusters of nodes were formed and put on the nodes on the same sleep schedule in order to minimize the latency introduced by sleeping nodes.  Additionally nodes were put to sleep when their neighbor was transmitting to another node.

Another way to save energy is for the nodes to do in-network processing.  It costs less energy to process the data at then node than to transmit all of the data to the end node.  In-network processing of messages requires that messages be stored and forwarded.  Long messages are broken into small fragments.  Message passing introduces less message level latency than those protocols that use fragment-level-fairness.

S-MAC uses the collision avoidance scheme based on the scheme used in the 802.11 protocols.  The mechanism uses both virtual and physical carrier sense and Request to Send (RTS)/Clear to Send (CTS) message exchange.  The first node to send out the RTS gets control of the medium when the receiver replies with CTS.  The sender keeps control until it has finished sending.

S-MAC is a network and organizational protocol in addition to a data link protocol.  The application is unaware of the adjustments made by S-MACs internal policies to adapt to the changes in network conditions.

B-MAC (Berkeley Media Access Control)

The B-MAC protocol uses an adaptive preamble-sampling scheme to reduce the duty cycle and minimize idle listening.  The research [6] shows that B-MAC results in better packet delivery rates, throughput, latency and energy consumption than S-MAC. 

B-MAC is a link protocol only.  Network services like organization, synchronization and routing are built above the B-MAC implementation.  B-MAC uses clear channel assessment (CCA) and packet backoffs for channel arbitration, link layer acknowledgements for reliability and low-power listening (LPL) for low power communication.  

B-MAC provides a set of interfaces that allow local policy decisions to optimize power consumption, latency, throughput, fairness or reliability.  When an acknowledgement fails, the services can decide on a packet-by-packet basis whether to retransmit the packet, change the destination of the packet, or reconfigure the LPL parameters.

In order to make sure packets are not lost, the length LPL check interval must be less than the time it takes to transmit the preamble.  In order to get the most benefit from this method, it is a good idea to use a long preamble.  This allows the sleeping mote to have time to wake up and still see the preamble.  “For example, if preamble is ~200msec then the mote can wake up every 100msec for 10msec to sample the preamble (10% duty cycle).”[17]

One of the key qualities of B-MAC is that it can reconfigure the network based on the current workload.  The adaptive nature of the protocol is very important since over time, nodes disappear when they lose battery power.  In [11]  they were able to show that they network life could be extended by 50% by using reconfiguration and optimizations.

Hardware Developments
The development of sensor network hardware is showing the trend for more capability for the same amount of power consumption.  “For all platform classes except special-purpose sensor nodes, Moore’s Law promises an increase in performance for a given power budget.” [5]  Special purpose sensors use advances derived from Moore’s Law to reduce the power consumption and maintain the same level of performance.

The following table, also taken from [5], shows the that the Mica2 node, developed in 2001, has about eight times as much memory and communication bandwidth as its predecessor, the Rene node, developed in 1999.  The cost and power consumption is the same for both.

[image: image15.emf]
Table 2. Comparison of Wireless Sensor Nodes [5]

Mica2 Sensor Power Consumption

The following table from ©Crossbow Technology, Inc. shows the power consumption by the various components of the Mica2 Sensor [16].  Full operation of the sensor requires an average of ~ 15ma of current.  AA batteries are about 1800 ma, which means they would last about 120 hours or 5 days.  Lithium batteries may also be used, but they are more expensive and decay more rapidly than AA batteries. 
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Currents
value _units

Micro Processor (Atmegal 26L)

current (full operation) 6 ma

current sleep 6ua

Radio (Chipconn 1000)

current in receive 6 ma

current xmit 12 ma

curret sleep 2us

Flach Serial Memory (AT45DB041)

wiite 15 ma

read 4ma

sleep 2us

Sensor Board
current (full operation) 5 ma




Table 3. Mica2 System Specifications [16]

Conclusion

Many factors can influence the energy consumption in wireless sensor networks.  A lot of research is being done in this area.  It is apparent that focusing on any one of these things and ignoring all others may result in consuming energy unnecessarily. 

Much of the research addresses special Media Access Control protocols (MAC) that are adapted to the needs of Wireless Sensor Networks to conserve power and adapt to a changing network topology.  These protocols that are also concerned with energy efficient algorithms.

The concept of scheduling nodes to be active/sleeping seems to be very common and effective.  Care must be taken to make sure more energy is not consumed by the process of putting a node to sleep and waking it up than would be consumed by leaving the node awake during the time period.  The observation is that nodes must sleep most of the time in order to achieve multi-year battery life. [17] The latency introduced by such a scheme is an important consideration in deciding whether the scheme is suitable for a given application.
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