Dalmatian: A Wireless Sensor Network to Assist Firefighters

Prepared by Jim Holland & Tim Biles

For Professor C. Edward Chow

Department of Computer Science

University of Colorado at Colorado Springs

Abstract

The men and women of the fire department risk their lives daily trying to put out fires. One of the biggest problems the Fire Chief and Captains face is keeping up with where the firefighters are. For large fires, just knowing which firefighters are still in the building can be a challenge. In many fire departments each firefighter has a card which they put on a board when they exit the structure. What we are proposing is a wireless sensor network system that will do much more than tell which firefighters are still in the building. The Dalmatian system, which will consist of a wireless sensors called Firemotes, a sensor/position unit call Firewalker, and a base station call Watchdog. Together these components will acquire a variety of data about conditions within the building and firefighters locations, transmit the data out of the structure, and display it graphically. In addition the network will be able to assist firefighters by guiding them out of smoke filled areas or to fall comrades.

Keywords

Mote, Sensor Network, Ad Hoc, Temperature Sense, Infrared, Accelerometer, Sounder, Strobe light, Analog to Digital Converter (ADC), Packet

41.
Introduction

42.
Firemote

42.1
Sensor Data Acquisition

52.1.1
Temperature Sensor

52.1.2
Infrared Sensor

72.1.3
Motion Sensor

82.1.4
Sounder

82.1.5
Strobe Light

93.
Firewalker

103.1
Path calculation

103.1.1
Basic Algorithm

113.1.2
Analysis

123.1.3
Algorithm improvements

133.2
Path calibration

133.2.1
Basic Algorithm

143.3
Firemote Dispatch

143.4
Communications

143.5
Firefighter Activity Monitoring

144.
Watchdog

154.1
Communications

154.2
Graphical User Interface

154.3
Control System

155.
Dalmatian

155.1
Alarm Mode

165.2
Assist Mode

165.2.1
Guide Dog

165.2.2
Rescue Dog

165.3
Data Packet Delivery

165.3.1
Data Diffusion

175.3.2
Alarm Mode

175.3.3
Data Delivery Algorithm

186.
Conclusions

187.
References

19Appendix: A Informational Sites

1. Introduction

Dalmatian is an idea that would use tiny wireless sensors to assist firefighters. The system would have four primary components:

Firemotes: The Firemote is a wireless sensors based on the Mote technology developed by Crossbow Technologies. The sensor package that will be used for the Firemote will consist of a temperature sensor, infrared sensors, and a motion sensor. The Firemotes will also have sounders and strobe lights to assist firefighters in low visibility environments. Firemotes would be encapsulated in a rugged egg shape design to ensure strength and a constant upright position for accurate sensing.

Firewalker: A mobile computing device the firefighters would carry in a back mounted pack. The Firewalker would have motion sensors, an electronic compass, and GPS receiver, as well as an appliance for dispensing Firemotes as the firefighter moves through a structure. Using data from the motion sensors and electronic compass the firewalker will plot the firefighters path through a structure. The Firewalker would deploy the Firemotes at strategic point along the path. It would also communicate with Firemotes and a base station, WatchDog, outside of the structure.

WatchDog: A PC or laptop computer that would receive data from the Firemotes and Firewalkers. The data received will be displayed graphically, giving the Watchdog operator a unprecedented view of conditions within the structure. The watchdog will also have the ability to control various function of the Firewalker and Firemotes.

Dalmatian: The Firemotes, Firewalkers, and Watchdog will be integrated into a system we call Dalmatian. As described above, the system will give Firefighters outside a structure a powerful view of conditions within the structure. Dalmatian will also be able to assist firefighters inside the structure. In Assist Mode, the sounders and strobe on the Firemotes could be use to lead a firefighter out of a smoke filled structure or lead firefighters to an injured comrade.

2. Firemote

Firemote is a component of the Dalmatian Project. Using a mica 2 dot and sensor board, the Firemote will have an onboard temperature, infrared, and motion sensors as well as a strobe light and sounder. Once in place, the Firemotes will setup a sensor network using the Ad Hoc network software already developed and begin acquiring and transmitting data to the Watchdog. The strobe light and sounder will be used in the Firefighter Assist Modes that will be describes as part of the Dalmatian System.

2.1 Sensor Data Acquisition
To get data from the sensor boards, we will use the ADC interface. The ADC interface allows us to get data at a specific state or continuously. There are three functions we can use in the ADC interface.

· dataReady(uint16_t data) – dataReady is used with getData(). dataReady indicates a sample has been recorded by the ADC from getData() and states that the ADC is ready for more conversions.

· getData() – When dataReady() is true, a series of ADC conversions occur.

· getContinuousData() – Data is continuously converted by the ADC in 2 byte unsigned data samples from the ADC.

The temperature, infrared, and accelerometer will use the ADC interface.

2.1.1 Temperature Sensor

The temperature sense determines the ambient temperature of the sensor unit. If the temperature reaches a defined critical limit, the mote will broadcast an alarm packet to the watchdog. We assume that the mote is about to fail from the heat so all data will be transmitted. The temperature will be retrieved from the ADC through the temperature interface that was created by Jason Hill, David Gay, and Philip Levis. The data will then be compiled into the packet that will be sent to the watchdog. Code used to interface the temperature ADC will be as follo:

· TempStdControl = PhotoTempM.TempStdControl;

· ExternalTempADC = PhotoTempM.ExternalTempADC;

· PhotoTempM.InternalTempADC -> ADCC.ADC[TOS_ADC_TEMP_PORT];

· PhotoTempM.ADCControl -> ADCC;

2.1.2 Infrared Sensor

The infrared sensor enables us to receive data as to what is happening beyond the visual or any other sensual perception. Using a six axis infrared sensor unit, we can determine the temperature spectrum from all directions including above and below. We can determine the temperature in another room, floor above, floor below, behind a door, or across the room. Since the mote will be encapsulated in a bottom heavy egg shell, we are ensured that the mote will always be upright. All data from the infrared sensor will be interpreted by the watchdog. To decipher which data belongs to its respective axis, the each infrared sensor will be coded. The data will be compiled into the packet and sent to the Watchdog. Since the infrared is an add-on to the board, no interface code is currently available. I have created hypothetic code for an axis1 module. Six modules will most likely be created since a six axis infrared is nothing more than six infrared sensors mounted to the board. Axis1 module is listed below…

includes sensorboard;

module IRAxis1M {

 provides interface StdControl as IRStdControl;

 provides interface ADC1 as IRAxis1ADC;

 uses {

 interface ADCControl;

 interface IRAxisADC;

 }

}

//ADC States

implementation {

 enum{

 IDLE = 1,

 BUSY = 2,

 CONTINUOUS = 3

 };

 int state1;

 command result_t IRAxisControl.init() {

 call ADCControl.bindPort(TOS_ADC_IR1_PORT, TOSH_ACTUAL_IR1_PORT);

 atomic {

 state1 = IDLE; //init state to idle

 }

 dbg(DBG_BOOT, "IR1 initialized.\n");

 return call ADCControl.init();

 }

 command result_t IRAxisControl.start() {

 atomic {

 TOSH_SET_IR1_CTL_PIN();

 TOSH_MAKE_IR1_CTL_OUTPUT();

 }

 return SUCCESS;

 }

 command result_t IRAxisControl.stop() {

 atomic {

 TOSH_CLR_IR1_CTL_PIN();

 TOSH_MAKE_IR1_CTL_INPUT();

 }

 return SUCCESS;

 }

 async command result_t ExternalIRAxis1ADC.getData(){

 uint8_t oldState;

 atomic {

 oldState = state1;

 if (state1== IDLE) {

state1= BUSY;

 }

 }

 if (oldState == IDLE){

 TOSH_CLR_IR1_CTL_PIN();

 TOSH_MAKE_IR1_CTL_INPUT();

 TOSH_SET_TEMP_CTL_PIN();

 TOSH_MAKE_TEMP_CTL_OUTPUT();

 return call InternalIRAxisADC.getData();

 }

 return FAIL;

 }

 async command result_t ExternalIRAxis1ADC.getContinuousData(){

 uint8_t oldState;

 atomic {

 oldState = state1;

 if (state1 == IDLE) {

state1 = CONTINUOUS;

 }

 }

 if (oldState == IDLE){

 TOSH_CLR_IR1_CTL_PIN();

 TOSH_MAKE_IR1_CTL_INPUT();

 TOSH_SET_TEMP_CTL_PIN();

 TOSH_MAKE_TEMP_CTL_OUTPUT();

 return call InternalIRAxis1ADC.getContinuousData();

 }

 return FAIL;

 }

 async event result_t InternalIRAxis1ADC.dataReady(uint16_t data){

 uint8_t oldState;

 atomic {

 oldState = state1;

 if (state == BUSY) {

state = IDLE;

 }

 }

 if (oldState == BUSY){

 return signal ExternalIRAxis1.dataReady(data);

 }else if (oldState == CONTINUOUS){

 int ret;

 ret = signal ExternalIRAxis1ADC.dataReady(data);

 if (ret == FAIL){

atomic {

 state1 = IDLE;

}

 }

 return ret;

 }

 return FAIL;

 }

}

2.1.3 Motion Sensor

The accelerometer is used to detect movement in the mote. In the Dalmation System, the accelerometer would allow us to detect the floor dropping or a wall falling. Data from the accelerometer will be compiled into the packet and sent to the Watchdog. Implementation module provided in the TinyOS package has the following heade:

· command result_t StdControl.init()

· command result_t StdControl.start()

· command result_t StdControl.stop()

The accelerometer must be initialized before starting. The data can be acquired continuously through the ADC interface.

2.1.4 Sounder

The sounder emits a loud audible signal that will act as a guide to and from the Firemote. The sounder will be activated from a packet sent by the.

When a packet is received, the packet parser is called. If the packet parser finds SOUNDER = TRUE, then sounder.start() is called. Sounder.start() is provided in the sounder interface included in the TinyOS package. If the packet finds SOUNDER = FALSE, then sounder.stop() is called.

2.1.5 Strobe Light

The strobe light emits a pulse of bright light that will allows the mote to become a visual guide. The sounder will be activated from a packet sent by the.

When a packet is received, the packet parser is called. If the packet parser finds STROBE = TRUE, then strobe.start() is called. If the packet finds STROBE = FALSE, then strobe.stop() is called. Since the strobe light is an add-on, an interface will be created. We will give an example how the strobe would work using the LED code.

//init LED

command result_t StdControl.init() {

 call Leds.init();

 //set clock variable

 timesPerSecond = 1;

 timeComplete = 0;

 time = 1000; //time in milliseconds

 return SUCCESS;

 }

//Start things up. This just sets the rate for the clock //component.

 command result_t StdControl.start() {

 // Start a repeating timer that fires every t ms

 return call Timer.start(TIMER_REPEAT, time);

 }

 //Halt execution of the application.

 //This just disables the clock component.

 command result_t StdControl.stop() {

 return call Timer.stop();

 }

 event result_t Timer.fired()

 {

 call Leds.redToggle();

}

3. Firewalker

Firewalker design is still in the conceptual phase and consequently the prototype we will discuss will be based upon commercially available products. It will consist of five hardware components:

· Main processor

· Sensor module

· Sounder/Strobe Module

· Firemote dispatch module.

· Communications module

Main Processor: The main processor will be a Crossbow, Stargate Single Board Computer and Wireless Networking Platform. This single board computer, designed to work with the Crossbow Motes, shall contain the application required to acquire data form the sensor module, activate the sounder/strobe module, operate the Firemote dispatcher, and maintain communications with the Firemotes and Watchdog.

Sensor Module: The firewalker will have three sensors, a GPS receiver, a motion sensor, and an electronic compass. The motion sensor and the compass data will be used to calculate the path taken by the fireman carrying the firewalker. The GPS module will be used for calibration, initialization and tracking when signal is available.

There are several options available for the motion sensor. Analog Devices make an IMEMS accelerometer, the ADXL202, that has the sensitivity required to measure body movement. NECTokins makes a 3D Motion Sensor that include 3 axis rotational angle measurement and acceleration. It is also equipped with a USB 1.1 interface.

Sounder/Strobe Module: The will be used to help firefighter’s locate an injured or incapacitated firefighter. It will consist of a high intensity strobe light and sounder.

Dispatch Module: The dispatch module is still in the conceptual phase. The idea is a devise that will store some number of Firemotes and dispense them when directed by the Firewalker processor.

Communications Module: The communications module shall allow communications with the Firemotes, Watchdog, as well as other Firewalkers. Communications with he Firemotes will be via the existing mote radio communications. Communication with the Watchdog and other Firewalkers will be via one of the standard wireless models currently in use such as 802.11a/b.

The primary functions of the Firewalker are to plot the firefighters path, dispatch the Firemotes, transmit data to and from the Watchdog and Firemotes, and monitor the firefighters activity. It also play a key role in the Firefighter Assist Mode.

3.1 Path calculation

3.1.1 Basic Algorithm

Firewalker will calculate the path taken by the firefighters based upon Motion Sensor, Electronic Compass, and when possible GPS data. The path will be plotted onto a grid common to all firewalkers in use.

Displacement can be calculated using the accumulated accelerometer data:

dx = (Ax * t2) / 2

Displacement can be calculated for both X and Y axis and actual displacement can be calculated:

D = √ (dx)2 + (dy)2
Once displacement is known then the direction of displacement, from the electronic compass, can be applied to convert the displacement form the firewalker’s perspective to the common grid.

((Direction from the Electronic Compass

((Angle of displacement relative to the Common grid.

dx’ (X displacement relative to the Common Grid

dy’ (Y displacement relative to the Common Grid

(= tan-1(dy/dx) - (
dx’ = D cos (
dy’ = D sin (
xi+1 = xi + dx’

yi+1 = yi + dy’

While (Firewalker Active)

{

If (Compass Data Acquired)

{

Get theta;

Get dx;

Get dy;

D = sqrt(dx*dx + dy*dy);

phi = atan(dy/dx) - theta;

dxCommonGrid = D cos(phi);

dyCommonGrid = D sin(phi);

newX = prevX + dxCommonGrid;

newY = prevY + dyCommonGrid;

save newX and newY;

prevX = newX;

prevY = newY;

}

}

[image: image1.jpg]Common Grid
Firewalker perspective

dy
(Xies, Yier)
dy"
-
i,y dx'

dx

3.1.2 Analysis

There are several issue with using an IMEMS accelerometers to calculate displacement, that will require further research. As a stand alone system, the accumulated DC errors make the accelerometer impractical for distances over a few hundred meters[1]. Also, IMEMS accelerometers are sensitive to temperature. The Analog Devices ADXL202, has an 0g offset versus temperature specification of 2mg/(C.

There are other products available that have been used to calculate position. A group at the Nara Institute of Science and Technology, Japan used the NECTokin 3D motion sensor to estimate user position. Their system also used a combination of an RF and infrared positioning infrastructure and the NEC motion sensors. The motion sensors were primarily used when the infrastructure was not available. The 3D motion sensor errors that accumulated, were corrected once the user’s position could be determined from the RF and IR infrastructure[2].

For both the Analog Devices IMEMS accelerometer and the NECTokin 3D sensor, accumulated errors will be relatively small over short distances. They should be sufficient for use on residential or small commercial building fires, where the firefighter’s total distance traversed inside the structure is less the a few hundred meters. For larger structures the algorithm will need to be augmented with other data.

3.1.3 Algorithm improvements

The position algorithm could be improved by including structural plan data in the calculations. In a method that would be similar to that used by the Nara Institute of Science and Technology group, structural data could be used to adjust or correct the path calculations. The basic concept would be to compare the calculated path with the possible path and make corrections. For example, if the calculated path showed a firefighter walking through a wall, the algorithm would search for valid alternative paths, such as entering a room through a door or turning down a hallway. If a valid path is found then the algorithm will adjust the path accordingly. The corrections would cascade back through the path calculation points until the last know valid point was reached.

The cascading corrections would be calculated for each axis based on the ratio of the distance from the last valid point to a given plot point (offset) and total distance from the last valid point to the new valid point. This ratio would be multiplied by the total offset from the last calculate point to the new valid point and summed with the original plot point.

Total distance from the last valid point to the new valid point: (12, 22)

Correction value: (-1, -5)

Correction Factor (CF) = (-1/12, -5/22)

Points:

Offset

Corrected Points

P1
(10, 23)

Last Valid Point
P1’
(10, 23)

P2
(10, 28)

(0, 5)
* CF (
P2’
(10, 26.8)

P3
(12, 35)

(2, 12)
* CF (
P3’
(11.8, 32.3)

P4
(15, 45)

(5, 22)
* CF (
P4’
(14.6,40)

P5
(22 ,45)

Alternative Point
P5’
(21, 40)

3.2 [image: image2.jpg]

Path calibration

3.2.1 Basic Algorithm

Calibration of the path calculation sensors will be a three step process. First the motion sensors will be calibrated, then the electronic compass will be calibrated, and finally the system will be verified.

The motion sensor calibration consist of a firefighter traversing a standard path and comparing the calculated path with the known path, and calculating calibration factors. The firefighter will traverse the standard path using forward and backward steps as well as left and right steps. The result will be X and Y axis calibration factors for both positive and negative directions.

The electronic compass could be calibrated by simple having the firefighter face in a known direction and calculating an offset.

To verify the calibration, the firefighter would again traverse the standard path and the calculated path, with calibration factors applied, would be compared to the known values.

3.3 Firemote Dispatch

The hardware for the Firemote dispatcher has not been considered at this point in the design process, however the primary function of the dispatcher is to drop firemotes as the firefighter moves through a structure. The criteria for dropping intervals will be distance and signal strength fro previously dropped Firemotes. The goal will be to position the Firemotes so that the data they acquire will be complete but not redundant and at the same time ensuring that if one Firemote is disabled the network will not be compromised.

3.4 Communications

The Firewalker will need to communicate with the Firemotes, WatchDog, and other Firewalkers. Communication with the Firemotes will be via the 433/916 MHz radio links already standard on the motes. Firewalker to Watchdog and Firewalker to Firewalker communication will be through one of the commonly use protocols such as 802.11a/b. This will give the Firewalkers and Watchdogs a much faster communications channel. They will be configured into an Ad Hoc network similar to the motes.

3.5 Firefighter Activity Monitoring

As a firefighter move through as structure, the data from the Firewalker will be continuously changing. Firefighter monitoring will be accomplished by observing the time since the last change in sensor data. If the time exceeds a predetermined limit, then an alarm mode will be triggered. Once in alarm mode the, the firewalker will transmit alarm data packets to all possible receivers.

4. Watchdog

Watchdog design is still in the conceptual phase and consequently the prototype we will discuss will be based upon commercially available products. It will consist of three parts:

· Main processor (PC or Laptop)

· GPS module

· Communications module

Main Processor: The main processor for Watchdog will be a standard PC or Laptop.

GPS Module: The GPS module will be an off the shelf GPS sensor. Its primary function is to provide reference location data when the Firewalker is outside of a structure.

Communications Module: The communications module will allow communications with the Firemotes, Firewalkers, as well as other Watchdogs. Communications with the Firemotes will be via the existing mote radio communications. Communication with the Firewalkers and other Watchdog will be via one of the standard wireless models currently in use such as 802.11a/b.

4.1 Communications

The Watchdog will need to communicate with the Firemotes, Firewalkers, and other Watchdogs. Communication with the Firemotes will be via the 433/916 MHz radio links already standard on the motes. Firewalker to Watchdog and Watchdog to Watchdog communication will be through one of the commonly use protocols such as 802.11a/b. This will give the Firewalkers and Watchdogs a much faster communications channel. They will be configured into an Ad Hoc network similar to the motes.

4.2 Graphical User Interface

Watchdog will need to display a variety of data received from the Firemotes and Firewalkers as well as supply the interface for command and query functions. The following data will be displayed in real time.

· Firewalker Position

· Firewalker Path

· Firemote Position

· Firemote Data

· Network Links

4.3 Control System

The watchdog will also act as the central control for the system. It will provide the ability to send commands and queries to the Firewalker as well as the deployed Firemotes. This will some of these functions, such as enabling and disabling the Firewalker dispatch units will be an automated function. Other functions, such as enabling sounder and strobe lights to assist firefighters will be manual.

5. Dalmatian

We have described the components of Dalmatian, and what each is capable of doing separately. As a system these capabilities can be combined to assist the firefighters in even more dramatic ways.

5.1 Alarm Mode

The alarm mode is an event that provides the Watchdog with rapid, uninterrupted data. Once a Firemote or Firewalker enters this mode it will transmit its sensor data at an accelerated rate. The data packets will be flagged as alarm packets and will be relayed immediately to the Watchdog. There are several conditions that could trigger an alarm mode.

Firemotes will have thresholds defined for each of their sensors. Exceeding one of these threshold will trigger an alarm mode. There are two reasons for entering alarm mode at this point, first the data could be critical for making decisions concerning safe path through the structure. Second, the condition that triggers the event could threaten the operation of the Firemote.

The trigger for the Firewalker will a lack of data. Since an injured firefighter will be inactive, the Firewalker alarm mode will be trigger if the motion and directional sensors do not detect any change for a preset period of time.

In either situation the data need to transmitted and relayed to the Watchdog immediately.

5.2 Assist Mode

In the assist modes, the Watchdog operator will use the Firemotes to guide Firefighters and occupant out of burning structure to safety. It can also be used to lead rescuers to a fallen comrade.

5.2.1 Guide Dog

In the Guide Dog mode, the Watchdog operator will activate the sounders and strobe lights on the Firemotes in succession to guide the firefighters and occupants through the structure. The operator will monitor the current location of the firefighters through the path data transmitted by the Firewalker. He/she will be able to choose the safest path based upon the data displayed by the Watchdog.

5.2.2 Rescue Dog

In the Rescue Dog mode, the Firemotes will be used to guide rescuers to the location of an incapacitated or injured firefighter. The process will be the same as in the Guide Dog mode.

5.3 Data Packet Delivery

There are two modes in which data packets will be transmitted, data compilation and alarm mode.

5.3.1 Data Diffusion

Because the bandwidth of the wireless network is very low, it will be necessary to limit the number of packets sent through the network. By compiling data from several motes into one packet the number of packets that traverse the network can be greatly reduced. In general, each Firemote will acquire data at set intervals. When it receives a data packet, it will firs check the hop count for the packet. If the hop count exceeds a set number then the packet will be immediately relayed to the next node. If the hop count is les than the threshold, the Firemote will hold the data until its next acquisition, then add its data to the packet and send the packet to the next node.

5.3.2 Alarm Mode

Alarm mode packets are given priority handling as they pass through the network. These packets are relayed to the next node immediately.

5.3.3 Data Delivery Algorithm

Setting up the pack:

Function buildPacket ()

{

packet.hop_count++; //track the number of hops

packet.source = TOS_LOCAL_ADDRESS;

//set priority to high if max hops

if (packet.hop_count >= MAX_HOPS)

{

packet->priority = HIGH;

}

packet.nodeID = getNodeID();

packet.IR = getIR();

packet.Accel = getAccel();

packet.Temp = getTemp();

//Alarm Mode Trigger

if (getAccel() >= MAX_MOVEMENT || getTemp() >= MAX_TEMP)

{

packet.priority = HIGH;

alarmMode(TRUE); //Activate Alarm Mode

}

}

Processing incoming packets:

Function processIncomingPacket()

{

if (recPacket.hop_count >= MAX_HOPS ||

 recPacket->priority == HIGH)

{

transmitPacket(NOW); //Transmit with high priority

}

else

{

buildPacket();

packet = packet + recPacket; //concatenate packets

transmitPacket(NORMAL);

}

}

Transmitting the packet:

Function transmitPacket(Priority)

{

If (Priority == HIGH)

{

//send packet now with no delay

Transmit(packet);

}

Else

}

//Transmit after normal data acquisition cycle

EventTimer (Transmit(packet), NORMAL_TIME)

}

6. Conclusions

This paper has described an augmented wireless sensor network system that will allow fire departments to monitor the conditions within a structural fire and to track the location of there firefighters. Extensive research is still required to prove the validity of the concepts we have describe. If the concept proves to be viable, Dalmatian could help save many lives in the future.

7. References

1. Weinberg, Harvey, “Using The ADXL202 in Pedometer and Personal Navigation Applications”, Technical Note, http://www.analog.com/UploadedFiles/Technical_Notes/362995564627754925611661378ADXL202ped.pdf
2. R.Tenmoku, M. Kanbara, N. Yokoya, “A Wearable Augmented Reality System Using an IrDA Device and a Passometer”, Graduate School of Information Science, Nara Institute of Science and Technology, Nara, Japan, http://yokoya.aist-nara.ac.jp/paper/datas/640/spie.pdf
Appendix: A Informational Sites

· Stargate

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/6020-0049-01_A_STARGATE.pdf

· Mica 2 Dot

http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/6020-0043-03_A_MICA2DOT.pdf
· Mica 2
http://www.xbow.com/Products/Product_pdf_files/Wireless_pdf/6020-0042-04_A_MICA2.pdf
· TinyOS Naming Conventions http://cs.uccs.edu/%7Ecs526/mote/tinyos/tutorial/naming.html
· TinyOS Reference Page
 http://today.cs.berkeley.edu/tos/index.html
· Ad Hoc Sensor Networks and On Demand Distance Vector Routing http://gunther.smeal.psu.edu/context/76462/0
Figure 1:

Path Calculation Diagram

Figure 2:

Path Correction Algorithm

PAGE
iii

