Expanding the

GNoteT Conduit

Adding Database and
Replacement Capabilities
by Mike Kirschman

for CS 522

Introduction
Handheld computers are becoming more commonplace with each passing day, and, while these palm-sized wonder are ever increasing in their processing power and peripheral variety, many programs written for these systems still require a full-blown PC or laptop computer (desktop.) Some programs simply back up the handheld data to the desktop, but others actually process the data into some other form, using Internet and database connectivity in the process. While there are two main competing dynasties of handhelds, the author owns a Palm OS® based unit, so he chose this as the topic for this semester project. Thus, a brief explanation of the Palm model for programming using handhelds and a high-level review of the conduit follows:
The Palm Model

Palm suggests that the handheld should be used for minimal text entry, perhaps small database queries, data subset viewing, and other actions that do not require fast processing, large memory, etc. The handheld programs should often be coupled with a PC/Laptop-side (desktop) program that does the heavy items: Large data entry, extensive processing, large database queries, large data exchange across the Internet, etc. This saves the Palm’s battery power and the user the frustration of having a slower processor handle large tasks and having to enter large amounts of text using a stylus (the pen-like drawing tool included with each handheld.) How is this coupling of the handheld program with the desktop program achieved? The answer is the Conduit and the Hotsync.

Conduits

A handheld performs a Hotsync when the user inserts the handheld into the cradle, which is attached to the desktop, and presses the Hotsync button (either on the screen of the handheld or on the cradle.) This triggers the Palm-side Hotsync program to run, which triggers the desktop-side Hotsync program to run. During the Hotsync the Hotsync Manager runs any Conduits that have been registered with it. A Conduit, as its name implies, is a mechanism for transferring data in some fashion between the handheld and desktop (and vice-versa.) The Conduit for a program often will translate this data between formats and may do additional processing like send out email, get data from the internet, or sync up data in a SQL database.

JDBC

To break away from the handheld topics for a moment, we discuss JDBC. Anyone who has worked with (or heard of) ODBC naturally assumes that JDBC stands for “Java DataBase Connectivity.” While Sun Microsystems (the inventor of Java, JDBC, and most everything else freely available about Java) denies this acronym, it does give a good idea of what JDBC is. It is the way that Java sends commands to a given database and gets the results back (to process, if appropriate.) A JDBC driver is required for JDBC to work with a given database.
Why Use It?

JDBC follows well with Java’s principles. First it is very portable. If a program is written using one database (perhaps Oracle) and then it is later decided that a different database is preferred (say, MySQL,) the only change required is that a new driver needs to be dropped into the code and the new URL needs to be used. Of course, the tables need to be the same…but the classes in the Java sql package even give you the flexibility to remove this constraint.
Second, it is often freely available. Most databases come with a JDBC driver, have free JDBC drivers downloadable off the Internet, or come with an ODBC driver. (Free JDBC-ODBC “bridges” are available, but are slow.) While some companies charge for their JDBC drivers, it is often a nominal fee to purchase.

Finally, JDBC is very simple to use. Since it follows Java’s programming style, anyone with a fair knowledge of Java can pick up the Java sql package API and learn it quickly.
How Do You Use It?

The following steps walk through the installation and use of JDBC. The first two steps involve the actual one-time setup of the additional software required. The rest involve the Java code required to use JDBC. First, set up the database. The author used MySQL
 for this semester project. The installation was painless: simply run the installer and enter the information as it was asked for.
Second, put the driver in the Java CLASSPATH or change the CLASSPATH to point to the driver. The author used the “mysql-connector-java-3.0.9-stable-bin.jar” driver downloadable from the MySQL website.
 The tricky part about using a jar is that the CLASSPATH must explicitly include the jar file. This means that, since the jar file was in the “C:\TomcatStuff\” directory, the CLASSPATH needed to include “C:\TomcatStuff\mysql-connector-java-3.0.9-stable-bin.jar”.

Third, load the driver in the code. This is accomplished by calling “Class.forName(“drivername”).newInstance();”. The drivername string must include the full package of the driver. For example, the MySQL driver mentioned above uses “com.mysql.jdbc.Driver” for the driver name. It is extremely important that this call only happens once, or else the results are undefined. (This usually means hanging connections, thrown Exceptions, or other nasty things.)

Fourth, the URL String must be created. This String largely depends upon the implementation of the driver as this String is used to pass arguments to the driver and to tell the DriverManager class (part of the Java sql API) that this is a JDBC driver being used. For the above-mentioned MySQL driver, the URL String is “jdbc:mysql://<machinename or ‘localhost’>:<port#>/<database>[other options]”. However, the documentation that came with the JDBC driver used should be referenced for more information.
Fifth, a Connection object should be created. This is accomplished using the DriverManager.getConnection() static method (i.e. it can be called as shown instead of requiring that an instance of the DriverManager class be created.) The method takes the URL String from the previous step as the first parameter, the username as the second parameter, and the password for the user as the third parameter.

Sixth, a Statement object is created using the simple call to con.createStatement() method, where con is the Connection instance from the previous step. Alternatively, a PreparedStatement could be used in place of the Statement object; however, the benefits and drawbacks of a PreparedStatement is beyond the scope of this paper.
Seventh, the SQL is executed with one of the Statement methods. For a simple query, stmt.executeQuery() can be used. This method takes a String that represents the SQL to be executed and returns a ResultSet. (See Code Listing 1 for an example.)

Finally, we operate on the data returned from the database (or simply verify the changes have been made if that was the SQL that was executed.) The ResultSet class is basically a mini-table with a pointer to the current row. Data is processed by calling rs.next() to move to a new row and rs.getXXX() to get data in a column in the current row. (XXX can be one of “String”, “Blob”, “Boolean”, and many others.)

[image: image1]
Code Listing 1
Project

This semester project was to extend the Conduit built for CS 522, which, in turn, was built to transport the data from the GNoteT Palm program that was built for CS 525.
Goals

The goals for the project were as follows:

1. Translate the text from each Palm file into HTML code.

2. Translate the graphics from each graphic in each Palm file into a desktop image format (.bmp, .jpg, etc) and insert an tag to link to it in the code from goal

3. Translate certain words (defined by a certain column in a certain table in the database) with its specified replacement.

a. An idea of allowing dynamic database queries to be used to replace words was a later thought.

4. Translate the output to XML code.
Design

Class and Method Design
Since this project is an extension of the GNoteT conduit, the reader is encouraged to first read “GNoteT Conduit: A Look into Conduit Development for the Palm OS® using Java” by Mike Kirschman, 2003. This will give important background information into the inner workings of the GNoteT conduit. Two new classes were added to the GNoteT conduit: GNTHTMLWriter and GNTConnection. Also, some additional methods were added to the Util class to aide in the new functionality.
GNTHTMLWriter is the class used to write HTML. This is a fairly simple class. It has one constructor that takes in a filename so it can get the directory that it should write the HTML files to and simply sets the class’ path variable to that path. The only method in the class is print, which takes a GNTRecord as the parameter. The files are extracted from the record and printed one by one to separate HTML files. The filename is preserved as entered into GNoteT and used as the HTML filename and the page title (i.e. it goes in the <title> tag.) The first line of each file is assumed to be the header that goes at the top of the HTML file unless there is only one line. Once the entire file has been computed, the GNTConnection object is instantiated.
GNTConnection is used to implement the JDBC connection; it also takes care of a lot of the menial tasks associated with Statements, ResultSets, and Conections. The init method checks if it has been called before; if not, it initializes the JDBC driver. Next, it sets up the URL and creates the Connection, which is stored for later use. The close method is the complement to this method as it simply closes the Connection. The closeRS method takes care of closing the ResultSet and its associated Connection. The final method is execSQL method, which creates the Statement and executes the passed-in query.

After the GNTRecord.print method finishes instantiating the GNTConnection object (including calling the init method,) it executes a query to get all the records from the replacement table. The replacement table consists of two columns: item and value. The table used for development is as follows:

	item
	value

	@NAME@
	John Doe

	@EMAIL@
	john.doe@yahoo.com

	@PRODUCT_PURCHASED@
	FooBar Creator, Prof

	@SHORTNAME@
	John

The results returned are equivalent to the rows of the table (minus the headers, though they are accessible via the ResultSetMetaData class.) Next, the rows are iterated through. For each row, each place (if any) that the item is found, it is replaced with the value. (This is accomplished with the help of the Util class for GNoteT.)
Running the New Classes
For this code to be run, something has to call it. Thus, the GNTWriter.writeData method is used to create the GNTHTMLWriter instance since it has the file name at the execution of this method. However, since the method is called twice, once for the regular file and once for the backup, it is only called if the file is not a backup file. At the time that GNTWriter.writeRecords is run, the Records have completed synchronization and the resulting records are known. Thus, this is the ideal time to call the GNTHTMLWriter.print method with each record. Since this method is also called twice, it is checked if the GNTHTMLWriter instance exists; if so, the print method is called, if not, it is not.
Results

With the initial goals for the project, it was quickly realized that the scope was too large. The HTML writing was feasible, but the graphics translation would take more time than was available to write. The database connectivity was a must (though impeded by a misconception that a web server was necessary,) but time ran out for the XML output.

Example
The following simple test for an email written on GNoteT

THANK YOU

To: @NAME@ <@EMAIL@>

@NAME@,

Thank you for your recent purchase of our @PRODUCT_PURCHASED@! We, at <i>Worthless Software</i> always strive to produce quality products that are useful to our customers.

@SHORTNAME@, if you have any questions, don't hesitate to call us at 555-1234.

Bob Smith,

PR Dude

produces the following result in HTML,

<HTML><HEAD><TITLE>Mass Email</TITLE></HEAD>

<BODY>

<H1 align="center"> </H1>

To: John Doe <john.doe@yahoo.com>

John Doe,

Thank you for your recent purchase of our FooBar Creator, Prof! We, at <i>Worthless Software</i> always strive to produce quality products that are useful to our customers.

John, if you have any questions, don't hesitate to call us at 555-1234.

Bob Smith,

PR Dude

</BODY></HTML>

which translates to the following in a web browser:
[image: image2.png]To: John Doe <john doe@yahoo.com>
Toha Doe,

Thank you for your recent purchase of our FooBar Creator, Profl We, at Worthiess Saftware
always strive to produce quality products that are usefil to our customers

Tohn, i you have any questions, don't hesitate to call us at 555-1234.

John Doe,
PR Dude

Conclusion

Thus, the Palm Model of programming works through Conduits executed during a HotSync. These Conduits can use JDBC to access databases as well as write to HTML. The GNoteT program accomplished these goals and can be used for form letters among many other things.

Bibliography and Endnotes
1. http://www.palmone.com/us/developers

2. http://ardiri.com

3. http://java.sun.com
4. http://www.palmos.com/dev/tech/conduits

5. http://www.metrowerks.com/MW/develop/Wireless/PalmOS/Professional
6. http://mysql.com

7. Core Servlets and JavaServer Pages by Marty Hall (© 2000, Prentice Hall, Upper Saddle River, NJ 07458.)

Palm OS and HotSync are the property (Copyright, Registered Trademark, or otherwise) of Palm Systems, Inc.

Java, Sun, JDBC, and possibly other Java-related words used in this report are the property of Sun Microsystems.
 try {

 Class.forName("com.mysql.jdbc.Driver").newInstance();

 String dbURL = "jdbc:mysql://localhost:3306/gnotet";

 java.sql.Connection con = java.sql.DriverManager.getConnection(dbURL,�"dummy", "gnotet");

 java.sql.Statement stmt = con.createStatement();

 java.sql.ResultSet rs = stmt.executeQuery("Select * from replacement");

 while (rs.next())

 System.out.println(rs.getString("item") + "|" + rs.getString("value"));

 } catch (ClassNotFoundException cnfe) {

 cnfe.printStackTrace();

 } catch (InstantiationException ie) {

 ie.printStackTrace();

 } catch (java.sql.SQLException sqle) {

 sqle.printStackTrace();

 } catch (IllegalAccessException iae) {

 iae.printStackTrace();

 }

� This paragraph is taken verbatim from “GNoteT Conduit: A Look into Conduit Development for the Palm OS® using Java” by Mike Kirschman, 2003.

� This paragraph is taken verbatim from “GNoteT Conduit: A Look into Conduit Development for the Palm OS® using Java” by Mike Kirschman, 2003.

� See � HYPERLINK "http://www.mysql.com" ��www.mysql.com� for more information on MySQL

� Again, see � HYPERLINK "http://www.mysql.com" ��www.mysql.com� for more information.

