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Abstract:  In order to better measure Internet Bottlenecks, changes need to be made to the way messages are communicated between nodal links.  It is difficult to maintain consistency in system paths.
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Introduction:  What is bandwidth and why should we measure it?


Since the early nineties when MOSAIC made the Internet a widely used tool and the ‘Information Superhighway’ was born, frequent use has increased exponentially.  Most of the standards for web protocols and systems (TCP/IP, etc) were not designed to handle the volumes of traffic on the web today.  With the increase in e-commerce and web-based enterprise systems user access continues to clog the system.


For our purposes, we are concerned primarily with measuring bandwidth.  There are really two ways we seek to measure bandwidth.  The first is to estimate the actual capability of given components of a network system.  This is often referred to as capacity.  Another way to measure bandwidth is more critical for large systems: throughput.  Throughput is the actual rate at which data can be transmitted along a given path.  Many things dictate throughput, but the critical points create bottlenecks in the system.  The aspect of throughput analysis we are interested in concerns bottleneck analysis.  That can be surmised as anywhere that queuing and propagation cause a significant enough delay that throughput is affected.  Any system can only be as fast as its weakest link.


It is conceded that we can really perform two types of analysis on any network system.  We can monitor existing traffic to determine what our bandwidth is or we can generate our own data packets and base our measurements on that.  The tools we will focus on fall into the latter category of measurement analysis or the active methods of measurement.  


The question still remains, why measure bandwidth?  From an academic point of view the only way to improve existing systems is to study their weaknesses.  To that end, measuring bandwidth enables us to say something about delay.  We can study the effects of queuing delay, propagation delay, latency, and packet loss.  So for the future of networking and the Internet as a whole, bandwidth measurement provides us with some metric for describing and comparing improvements.

This is especially important to Internet Service Providers (ISPs) as network congestion increases.  In the business world, many ISPs are seeking to bill not by the hour, but by the volume of the data that a given business transmits.  If the ISP has some weak point in their own network that delays a customer’s client side response, both the ISP and the customer are suffering.  Similarly, ISPs may also provide the customer with diagnostic tools, one of which should be the measurement of a given system.


Basically, the short answer is that bandwidth measurement enables us to find what has been broken and repair it.  The long answer entails many different aspects of this idea.  At the end of the day we must understand how we are measuring bandwidth in order to say anything meaningful about it.

Tools of the Trade

Network measurement analysis tools have evolved and been used in different software packages all over the world by many hands.  Yet, the essential components of network analysis often remain unchanged.  For our purposes let us examine the three basic tools that have evolved over the years to suit these needs.  In reality there are far too many choices to actually be able to say something about them all, so we look at the most common.
Internet Connection Message Protocol


Many modern measurement tools depend on the Internet Connection Message Protocol (ICMP) as described in RFC 792.  ICMP is designed to provide meaningful communication between software layers and hardware.  Using ICMP many diagnostic measurements can be generated including, destination unreachable, source quench, redirect, timestamp, timestamp reply, information request, information reply, and the last two of most important significance, echo and time exceeded.  These messages general have a simple format.

Echo consists of a UDP datagram that looks like such:

0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |     Type      |     Code      |          Checksum             |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |           Identifier          |        Sequence Number        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |     Data ...

   +-+-+-+-+-

Where type can be either 8 for an echo message or 0 for an echo reply message.  Everything else is typical of such data. But, ICMP messages do not look alike.  Time exceeded messages return a header that looks more like this:

0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |     Type      |     Code      |          Checksum             |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                             unused                            |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |      Internet Header + 64 bits of Original Data Datagram      |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The idea behind the time exceeded message is that as a router (this can be a simple hardware router, a computer routing, a LVS director, etc) should discard UDP data that has an expired Time To Live field (TTL).  Once the datagram has been discarded a message to the datagrams source should be sent using ICMP.  This makes the time exceeded message an ideal diagnostic tool.

Sadly, ICMP is an old standard.  RFC 792 was established in 1981 and is not always a design consideration for modern hardware and software engineers.  It is always possible to have problems with any measurement analysis for the simple reason that a particular node may not support ICMP.  This is a problem for some of the tools that we have chosen to use.
Ping

Ping is a simple diagnostic utility first included on UNIX systems in the early eighties.  Ping is not a robust tool and is limited in what it can tell the end user of a system, but it is essential none the less.  So essential for networking diagnostic on the administrative side that it has been included with almost every Windows based operating system in the last ten years.


A simple ping request on a Windows or UNIX machine can indicate whether a component is up or not.  


 Ping works as such: after DNS information is obtained about the target of a ping, we send out a data packet.  That packet contains an ICMP echo request.  When that reaches its destination an echo response is generated by[image: image1.jpg]Ping
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 the router at that point and the message is sent back.  Ping does this again.  On a UNIX system the user can specify the number of times to send the packet and even the algorithms for sending patterns.  
Ping is useful if we are trying to come up with a quick estimate of throughput.  We can take the average response time of a ping request calling this time r.  If we calculate our packet size, p and then divide that by r we come up with a rate or rate factor.  This can be used in conjunction with the link capacity to determine throughput.  In order to do so we must use several runs with different packet sizes and at different times of the day (peak time, etc).  
But because we are only looking at data end to end, we are not really obtaining a good picture of what throughput actually is.  In the following example we use 1024 bit sized packets to estimate throughput:
	1 (in ms)
	2
	3
	4

	63
	64
	94
	62

	64
	73
	66
	69

	65
	61
	62
	72

	62
	65
	67
	80

	63.5
	65.75
	72.25
	70.75

	Transmission Rate For Each Run

	1612.598
	1557.414
	1417.301
	1447.35


We end up with figures hovering around 1.5Mbps.  But, what happens if we increase packet size dramatically?  At some point, our destination will stop responding to packets larger than 1024 bits.  Because of this, large data transfer bandwidth may or may not be consistent with these findings.  Do remember that large files are still broken up in some cases.

Ping is a very limited tool.  It can be used to estimate bandwidth, but is not a precise tool for measuring throughput because we cannot see the bottlenecks in the system.  This brings us to the next tool: Traceroute.

Traceroute

Traceroute was written by Van Jacobsen in 1988 to solve persistent network problems.  The idea behind Traceroute is to send out data that makes each node in a path identify itself.  In this way we can see where a system is slowest.  Traceroute is the most common tool used for network analysis.  It to is included in most modern operating systems and is also encapsulated into more advanced network tools (such as NetTools). 


Traceroute depends on the ICMP time exceeded message.  Traceroute sends out a series of packets with incredibly short TTL field values.  As the packet reaches the routing node, it has already expired, so the node sends an ICMP message back to the source.  Then traceroute increments the TTL and sends the packet out again.  The slightly longer TTL enables the packet to bypass the last routing node.  This continues until we exceed a limit that the user can specify (default is 40 on most systems) or until we get a destination host unreachable message which indicates that we have reached our destination.  We call these steps hops.[image: image2.png]Traceroute
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In practice many difficulties arise with using Traceroute.  For one, not all packets are sent on the same path.  The routers at each stage determine where the packets are sent.  So each packet may not be going to the same place even if the end destination is the same.  Another problem occurs in buggy TCP/IP implementations in theses systems.  Because TTL values are not always respected and ICMP is a little used format it is possible to miss entire nodes because a value timed out.  We do see this in the output.  Due to IP tunneling and ATM we can also miss entire sections if the system was designed to due so.  So even though Traceroute is an excellent bottleneck measurement tool, we can be misled by insufficient data.


Here is a sample run done from my home network using a maximum of 30 hops:

Tracing route to blanca.uccs.edu [128.198.162.60]

over a maximum of 30 hops:

  1    11 ms    10 ms    10 ms  10.53.108.1

  2    10 ms     9 ms    36 ms  24.53.86.1

  3     *        *        *     Request timed out.

  4     *        *        *     Request timed out.

  5     *        *        *     Request timed out.

  6     *        *        *     Request timed out.

  7     *        *        *     Request timed out.

  8     *        *        *     Request timed out.

  9     *        *        *     Request timed out.

 10     *        *        *     Request timed out.

 11     *        *        *     Request timed out.

 12     *        *        *     Request timed out.

 13     *        *        *     Request timed out.

 14     *        *        *     Request timed out.

 15     *        *        *     Request timed out.

 16     *        *        *     Request timed out.

 17     *        *        *     Request timed out.

 18     *        *        *     Request timed out.

 19     *        *        *     Request timed out.

 20     *        *        *     Request timed out.

 21     *        *        *     Request timed out.

 22     *        *        *     Request timed out.

 23     *        *        *     Request timed out.

 24     *        *        *     Request timed out.

 25     *        *        *     Request timed out.

 26     *        *        *     Request timed out.

 27     *        *        *     Request timed out.

 28     *        *        *     Request timed out.

 29     *        *        *     Request timed out.

 30     *        *        *     Request timed out.

Trace complete.
Notice that we time out through several nodes!  This makes analysis difficult.  I ran into this problem routinely in my testing, which is why it became difficult to obtain sufficient successful testing runs.  Here is a very short successful run I did on my home network (internally).
Tracing route to 192.168.1.100 over a maximum of 30 hops

  1    <1 ms    <1 ms    <1 ms  192.168.1.100

Trace complete.
Here is an example taken from the Traceroute man page at lava.net.

traceroute to allspice.lcs.mit.edu (18.26.0.115), 40 hops max

   

1  helios.ee.lbl.gov (128.3.112.1)  0 ms  0 ms  0 ms

               2  lilac-dmc.Berkeley.EDU (128.32.216.1)  19 ms  19 ms  19 ms

               3  lilac-dmc.Berkeley.EDU (128.32.216.1)  39 ms  19 ms  19 ms

               4  ccngw-ner-cc.Berkeley.EDU (128.32.136.23)  19 ms  39 ms  39 ms

               5  ccn-nerif22.Berkeley.EDU (128.32.168.22)  20 ms  39 ms  39 ms

               6  128.32.197.4 (128.32.197.4)  59 ms  119 ms  39 ms

               7  131.119.2.5 (131.119.2.5)  59 ms  59 ms  39 ms

               8  129.140.70.13 (129.140.70.13)  80 ms  79 ms  99 ms

               9  129.140.71.6 (129.140.71.6)  139 ms  139 ms  159 ms

              10  129.140.81.7 (129.140.81.7)  199 ms  180 ms  300 ms

              11  129.140.72.17 (129.140.72.17)  300 ms  239 ms  239 ms

              12  * * *

              13  128.121.54.72 (128.121.54.72)  259 ms  499 ms  279 ms

              14  * * *

              15  * * *

              16  * * *

              17  * * *

              18  ALLSPICE.LCS.MIT.EDU (18.26.0.115)  339 ms  279 ms  279 ms

Note the gaps in the hops.  This indicates nodes that either threw out the packet, sent a response with a TTL that was too short to reach our machine, or that the node did not respond for some unknown reason.  But, we can see that the node at hop 9 seems to be something of a bottleneck.  After we reach that and assuming that our paths are straight (the same) some kind of delay is caused in all further nodes that could be accounted for at that node.  In a similar manner the nodes that did not respond could also cause a delay if the reason for lack of response was due to a request time out and this does happen.


At its heart, Traceroute is a simple idea in execution.  It attempts to fool the system into revealing each component.  What in essence we are doing is removing the transparency of the layers of systems on the Internet.  This is a little broad of a statement, so let me clarify.  We are not removing the transparency in layers such as IP, UDP, and Voice over IP, etc.  What we are doing is attempting to remove the transparency between source and destination.  


While Traceroute is a very complete tool, it is also limited in the content of its diagnostic.  Van Jacobsen recognized this and in 1997 formulated an improved version that is meant to give us more meaningful feedback as to what the we can say about each hop.  He called this Pathchar.

Pathchar

Pathchar tries to infer something meaningful from information garnered about the hops in a path.  It does this by measuring the round trip time of a group of packets sent from any given host.  Pathchar is available for download at ftp://ftp.ee.lbl.gov/pathchar/.

Pathchar works the same essential way that traceroute does, but with some notable differences.  Let us imagine that we are trying to reach the nth node in a system.  Let us then say that Pathchar will generate packets with TTLs set to n to reach that node.  Pathchar will generate several transmission groups of packets with various TTLs.  By comparing the statistics of these two groups until the ICMP message shows up, Pathchar attempts to discern something about the latency and bandwidth of that length as well as propagation delay and such.

Let us imagine that a packet that wants to leave some node (n-1) must wait in queue before transmission.  We can describe the time it waits to leave and notice that it relates directly to the packet size.  The two primary factors of this are bandwidth and latency.  So we can describe the relationship thusly, latency + size/bandwidth = time.  Now when this packet reaches node n it must wait in queue again until the error message is generated.  After that it will be sent back to the last node where it’s transit time can be described as latency + error_size/bandwidth.  This means that we can describe the round trip time (rtt) as:

rtt = q1 + (latency + size/bandwidth) +q2 + forward +q3 +(latency + error_size/bandwidth) + q4
Where qi refers to time in each queue and forward is the time it takes to forward the packet.  But, PathChar makes a few assumptions to simplify this process.  

1. The error message is small enough to ignore (toss error_size/bandwidth out)

2. The forward time is not big enough to worry about.

3. If enough transmission groups are sent at least one will not have any queuing delays.

Taking all of this into account, we can rewrite Van Jacobsen’s formula as:


rtt = (latency +size/bandwidth) + latency
This is how Pathchar calculates rtt. (Surmised from Downey, page 2).

In practice pathchar is not the easiest tool to use.  It can be difficult to implement and its output is often chaotic: 

pathchar to ka9q.ampr.org (129.46.90.35)

 mtu limitted to 1500 bytes at local host

 doing 32 probes at each of 64 to 1500 by 44

 0 192.172.226.24 (192.172.226.24)

 |   9.3 Mb/s,   269 us (1.83 ms)

 1 pinot (192.172.226.1)

 |    85 Mb/s,   245 us (2.46 ms),  1% dropped

 2 sdscdmz-fddi.cerf.net (198.17.46.153)

 |    45 Mb/s,   -13 us (2.70 ms)

 3 qualcomm-sdsc-ds3.cerf.net (134.24.47.200)

 |   8.8 Mb/s,   1 us (4.07 ms)

 4 krypton-e2.qualcomm.com (192.35.156.2)

 |   5.2 Mb/s,   1.02 ms (8.42 ms)

 5 ascend-max.qualcomm.com (129.46.54.31)

 |   53.2 Kb/s,   4.20 ms (243 ms)

 6 karnp50.qualcomm.com (129.46.90.33)

 |    12 Mb/s,   -172 us (243 ms),  +q 8.96 ms (13.0 KB) *3,  6% dropped

 7 unix.ka9q.ampr.org (129.46.90.35)

7 hops, rtt 11.1 ms (243 ms), bottleneck 53.2 Kb/s, pipe 4627 bytes

riesling ~ 80% 15:30: 



(example Van Jacobson, see references)
But this still tells us something about the capabilities of Pathchar and the nature of its output.  As an aside this is far better than the output I generated using my home Linux box.  But because of the obfuscated nature of this, another group has designed Pchar, an implementation of Van Jacobson’s idea that generates clearer output.  Here is an example:
pchar to online05.lbl.gov (128.3.5.14) using UDP/IPv4

Packet size increments by 32 to 1500

46 test(s) per repetition

128 repetition(s) per hop

 0:  (TERSK02.SLAC.Stanford.EDU)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 0.329849 ms, (b = 0.000085 ms/B), r2 = 0.966926

                       stddev rtt = 0.001778, stddev b = 0.000002

    Partial queuing:  avg = 0.000218 ms (2573 bytes)

    Hop char:          rtt = 0.329849 ms, bw = 94354.684730 Kbps

    Hop queuing:      avg = 0.000218 ms (2573 bytes)






(From Stanford’s IEPM site)

I have attached the entirety of this run in the resources section of this document.  But notice how this output gives us a better idea of the nature of Pathchar.

We can see from this data how a link could go bad.  If packet loss had occurred we may suspect damaged nodes creating traffic excess delays.  We can see that the queuing estimates generated are still negligible at this stage.  We also get some idea of bandwidth capabilities.  This makes Pathchar and Pchar much better tools at critical analysis than Traceroute.  But this paper does not illustrate the time differences between the two (Traceroute and Pathchar).  Pathchar is a lot slower than Traceroute.  Where Traceroute might take ten minutes on a difficult run, Pathchar could take upwards of an hour.  So in some cases, Traceroute may still be a better choice.

Conclusion

Bandwidth measurement is a difficult undertaking.  Due to the inconsistent nature of network standards over the Internet, analysis is harder on large public systems.  It is much simpler to use these tools on small private systems, such as the backend of an Enterprise Application.  So in some regards, measuring bandwidth only tells us that a problem exists in a system.  It may be possible to fix that problem if we are a large ISP (Adelphia!), but chances are that the problem does not lie in any system we can control.  Where bandwidth measurement will make a difference is the analysis of current Internet standards.  

Pathchar and Traceroute share weaknesses.  We already know that ICMP implementation are often spotty and buggy TCP/IP can foul our data, but the problem of following the same route becomes more of a concern in systems that are measuring hops.  To that end, Pathchar attempts to handle things better by averaging several packet transmissions to give us a decent estimate of our systems capability.  But an average is only as good as it’s data.  So one factor to consider in designing a new measurement tool, would be some way to verify that at least our responding nodes for each run are consistent.  We may not be getting a straight path or even the same path in our run, but without reworking ICMP programming procedures on every system we must deal with these inevitabilities.  So we could at least verify that our nodal data is consistent.  

It would be advantageous to take a simple program (Traceroute or Ping) and add this verification to them.  So where Pathchar uses redundant testing to generate enough data, we are more concerned with the consistency of the data.  Now it is true that Pathchar does some of this now, otherwise it would not be designed use several sets of data.  What is more pertinent is that these systems weaknesses can’t really be fixed without fixing the existing protocols.

The perfect hop tool would only send out one packet and simply collect information at each point along the way.  The only problem with this is that packet data is not executable code.  So it seems that in order to accurately and consistently map out path data and analyze bottlenecks, some type of resident code would have to exist on each system.  So perhaps what would work instead is a rewrite of RFC 792 adding a feature we might call “append signature.”  This might be a request for the router to add it’s MAC and IP addresses as well as current timestamp to a UDP datagram and then send it on, repeating the request.


This is indeed a tall order.  Changes to RFCs rarely see implementation anymore.  In many regards we are fortunate to be able to use Van Jacobson’s tools at all.  At any rate, Bandwidth Analysis is very tricky business.
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Appendix A: Pchar output

I had difficulties even running Pchar at home, so I attached this as an example of a complete run from Stanford’s IEPM website.

pchar to online05.lbl.gov (128.3.5.14) using UDP/IPv4

Packet size increments by 32 to 1500

46 test(s) per repetition

128 repetition(s) per hop

 0:  (TERSK02.SLAC.Stanford.EDU)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 0.329849 ms, (b = 0.000085 ms/B), r2 = 0.966926

                       stddev rtt = 0.001778, stddev b = 0.000002

    Partial queuing:  avg = 0.000218 ms (2573 bytes)

    Hop char:          rtt = 0.329849 ms, bw = 94354.684730 Kbps

    Hop queuing:      avg = 0.000218 ms (2573 bytes)

 1:  (RTR-MSFC-SCS-IR2A.SLAC.Stanford.EDU)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 0.511617 ms, (b = 0.000118 ms/B), r2 = 0.909888

                       stddev rtt = 0.004202, stddev b = 0.000006

    Partial queuing:  avg = 0.000566 ms (13110 bytes)

    Hop char:          rtt = 0.181768 ms, bw = 242396.496350 Kbps

    Hop queuing:      avg = 0.000348 ms (10537 bytes)

 2:  (RTR-MSFC-DMZ.SLAC.Stanford.EDU)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 0.475072 ms, (b = 0.000158 ms/B), r2 = 0.956573

                       stddev rtt = 0.003817, stddev b = 0.000005

    Partial queuing:  avg = 0.003337 ms (81966 bytes)

    Hop char:          rtt = -0.036545 ms, bw = 198795.076864 Kbps

    Hop queuing:      avg = 0.002771 ms (68856 bytes)

 3: 192.68.191.66 (ESNET-A-GATEWAY.SLAC.Stanford.EDU)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 1.237774 ms, (b = 0.000291 ms/B), r2 = 0.989668

                       stddev rtt = 0.003371, stddev b = 0.000004

    Partial queuing:  avg = 0.000360 ms (81966 bytes)

    Hop char:          rtt = 0.762701 ms, bw = 60176.570360 Kbps

    Hop queuing:      avg = -0.002977 ms (0 bytes)

 4: 134.55.208.30 (snv-slac.es.net)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 69.891449 ms, (b = 0.000370 ms/B), r2 = 0.967304

                       stddev rtt = 0.007714, stddev b = 0.000010

    Partial queuing:  avg = 0.001157 ms (92041 bytes)

    Hop char:          rtt = 68.653675 ms, bw = 101111.706533 Kbps

    Hop queuing:      avg = 0.000797 ms (10075 bytes)

 5: 134.55.205.2 (chi-snv.es.net)

    Partial loss:      4 / 5888 (0%)

    Partial char:      rtt = 71.486075 ms, (b = 0.000462 ms/B), r2 = 0.866484

                       stddev rtt = 0.020582, stddev b = 0.000027

    Partial queuing:  avg = 0.007213 ms (157583 bytes)

    Hop char:          rtt = 1.594626 ms, bw = 86582.817095 Kbps

    Hop queuing:      avg = 0.006056 ms (65542 bytes)

 6: 134.55.208.18 (fnal-chi.es.net)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 127.240617 ms, (b = 0.000479 ms/B), r2 = 0.864271

                       stddev rtt = 0.021537, stddev b = 0.000029

    Partial queuing:  avg = 0.001893 ms (157583 bytes)

    Hop char:          rtt = 55.754542 ms, bw = 473808.925924 Kbps

    Hop queuing:      avg = -0.005320 ms (0 bytes)

 7: 134.55.24.22 (lbl2-atms.es.net)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 127.745786 ms, (b = 0.000754 ms/B), r2 = 0.912444

                       stddev rtt = 0.026475, stddev b = 0.000035

    Partial queuing:  avg = 0.002279 ms (158989 bytes)

    Hop char:          rtt = 0.505168 ms, bw = 29144.626445 Kbps

    Hop queuing:      avg = 0.000386 ms (1406 bytes)

 8: 198.129.224.1 (lbnl-gig-e.es.net)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 127.605667 ms, (b = 0.000746 ms/B), r2 = 0.918124

                       stddev rtt = 0.025242, stddev b = 0.000034

    Partial queuing:  avg = 0.001308 ms (158989 bytes)

    Hop char:          rtt = -0.140119 ms, bw = -965807.352281 Kbps

    Hop queuing:      avg = -0.000971 ms (0 bytes)

 9: 131.243.128.40 (ir40gw.lbl.gov)

    Partial loss:      0 / 5888 (0%)

    Partial char:      rtt = 126.429948 ms, (b = -0.001397 ms/B), r2 = 0.000832

                       stddev rtt = 5.487602, stddev b = 0.007297

    Partial queuing:  avg = 0.004379 ms (158989 bytes)

    Hop char:          rtt = 0.000000 ms, bw = 0.000000 Kbps

    Hop queuing:      avg = 0.003071 ms (0 bytes)

10: 128.3.5.14 (online05.lbl.gov)

    Path length:       10 hops

    Path char:         rtt = 126.429948 ms, r2 = 0.000832

    Path bottleneck:   29144.626445 Kbps

    Path pipe:         460594 bytes

    Path queuing:     average = 0.004379 ms (158989 bytes)

2cottrell@tersk02:~>

