Radio Signal Obstruction Plug-in for TinyViz

Jeff Rupp

CS526 Fall 2003

Introduction

The purpose of this project was to modify the TinyViz graphical simulator for motes within tinyos to allow the incorporation of obstructions to the radio signal. This modification was made remarkably easy by the plug-in structure of TinyViz. I was able to use the Radio Model plug-in written by Nelson Lee as a basis for my work. The obstructions are specified in a file, providing coordinates in mote space, which matches the coordinates used by TinyViz to save the mote layout. Also specified in the file is the amount of attenuation, in decibels, that each obstruction induces to the radio signal. This plug-in will allow a more realistic simulation of an environment, permitting researchers to accurately position their motes to ensure signal propagation.

This plug-in is a purely line-of-site two-dimensional implementation of an environment. No consideration was given to reflection or signal distortion, only to direct path signal attenuation.

Low Power Radio Transmission through Obstructions

Low power radio signals are generally blocked by any sort of solid obstruction. To allow for varying degrees of signal loss, I have used a scale of 0-60dB to represent no signal loss to 100% signal loss. This will allow us to study the layout of buildings to determine where to best position motes to achieve complete connectivity. There are other more complex signal interactions with materials that are not addressed by this plug-in. e.g. reflection and phase distortion associated with passing through a medium.

The intent of this plug-in is to provide researchers with a slightly more interesting environment to simulate mote communication in. Rather than using only proximity to affect the mote signals, objects simulating real-world entities can be added to our simulated world, allowing us to place sensors in a more realistic fashion to ensure 100% signal propagation.

So instead of simple straight path, we have to add a third mote to get the signal through.

[image: image1.png]

[image: image2.png]

[image: image3.png]

[image: image4.png]

[image: image5.png]

[image: image6.png]File Layout Plugins.

Selectal
Deselectai

] ADC Readings

— [setbresigoint

[Catamar

[centria

] Contour points

[Debug messages

[[] birected Graph

[Setocation

[Sent radio packets

[eighborhood graph

] Obstructed Radio mode!

] Radio s

] Radio mode!

5 AutoRun logger (4o not disable)

[image: image7.png]Fixed radius (100.0)

[Empirical
[Fixed radius (10.0)
[Fixed radius (100.0)
[Fixed radius (1000.0)

[image: image8.png]

[image: image9.png]£ Tinyviz

s Tine: ooses oy O————ome (11 |

e A
e L | A
| S e

B e —
% 7l outEdges | Fixed radius (100.0) ¥

Load Obstructins

Registring: Obstructed Radio model

Summary of functionality

· The plug-in is net.tinyos.sim.plugins.ObstructRadioModelPlugin
· The TinyViz GUI automatically incorporates plug-ins located in the net/tinyos/sim/plugins directory via the make file

· This could have been done by TinyViz more dynamically via a classpath search, to allow plug-ins to be built elsewhere

· The name displayed in the TinyViz GUI is the String returned by the plug-in’s toString method

· Specifying obstructions

· The obstructions are specified in a file that is loaded via the GUI

· File format

· Lines that begin with a # are comments, and are skipped in the parsing

· Each line specifies a single obstruction

· Lines are formatted as:

· <obstructionclass.full.class.name>,param1,param2,param3,…

· e.g. net.tinyos.sim.plugins.LineObstruction,10,15,10,85,50

· This format allows for new obstruction classes to be created and incorporated very easily

· Obstruction classes must implement the ObstructionIF interface

· This interface specifies three methods:

· public boolean Intersects(double x1,double y1,double x2,double y2);

· public void draw(java.awt.Graphics g);

· public double GetAttenuation();
· Intersects returns true if the line specified by the two end points intersects the obstruction

· In use the end points are the two motes that are trying to communicate

· draw is used to draw the obstruction to the GUI

· GetAttenuation returns the number of dB of attenuation of the radio signal the obstruction induces

· In addition to these methods, the reflection approach used requires that the ObstructionIF implementing classes have a constructor that has the following signature:

· public Obstruction(String params, net.tinyos.sim.CoordinateTransformer cT)

· This constructor is used to dynamically create an instance of the class based on the class name specified in the file

· The String params parameter is the complete line from the file that is used to create the instance of the obstruction

· This format allows for complete independence of parameters for the Obstruction classes, as the list of parameters is passed in as a comma separated String
· The constructor must then parse the comma separated String to extract the individual parameters for its own use

· The only obstruction I have implemented is the LineObstruction, which requires the two endpoints of the line and the attenuation as parameters

· Lines can be used to specify walls of a building

· I did not incorporate a tool to build this file, as it is equally easy to edit the file with the required endpoints

Implementation Details

[image: image10.png]

This screen shot shows TinyViz with the Obstructed Radio Model plug-in in action

While implementing my plug-in I also corrected the exit behavior of TinyViz, which is prone to leaving zombie simulator processes if the incorrect method is used to close it. To correct this I modified the stop method in TinyViz.java to join the autorun thread, to allow it to shutdown the processes correctly. I also added a windowClosing listener to execute stop when the window close X is clicked. I also noted some bad GUI behavior when running TinyViz. I think it is worth noting that this may very well be due to the insidious single thread GUI access that Sun has implemented. In general only the main AWT thread can access or modify GUI elements when they are visible. I did not attempt to correct this as it is a very painfully involved problem, and must be addressed when a GUI is created.

Plug-in

The plug-in itself is a modification of the Radio Model plug-in created by Nelson Lee. This existing plug-in already had the concept of a potentially lossy radio signal, and the ability to represent the connectivity between motes. I had to add to this the ability to show obstacles, and incorporate their attenuation to the signal path between motes. I accomplished this by adding a method adjustForObstructions that adjusts the scaledBitLossRate used by the Radio Model to represent poor signal transmission. I added calls to this new method in the updateModel and the publishModel methods.

The adjustForObstructions method iterates through a vector of ObstructionIF objects and queries to see if the path between the current two motes Intersects any of the objects. All intersected attenuations are added together for a final total attenuation in the signal path. To convert from the logarithmic nature of decibels, the total attenuation is processed by the equation: Math.pow(10, (totalAtten/20)) * 10. This equation causes 60 dB of attenuation to result in a scaledBitLossRate of 10,000 which equates to complete signal loss.

To load the obstructions file, I added a button to the tabbed plug-in portion of the GUI: Load Obstructions… This button opens a standard JFileChooser GUI allowing the user to pick an obstruction file. I did not create an extension for this file type, so the JFileChooser shows all files. Once a file is chosen, the main GUI is requested to repaint, which in turn calls the plug-in’s draw method which then iterates through the vector of obstructions, telling each of them to draw in turn.

I created the method: m_loadObstructionsButton_actionPerformed to open and read the obstructions file. This method first shows the JFileChooser then reads every line in the file, ignoring lines that begin with # as comments. Every valid obstruction line must begin with the full class path to the obstruction class itself. This approach allows new obstructions to be created without modifying this plug-in class. The String class name is used to create a concrete instance of the class via Reflection.

String className = line.substring(0, line.indexOf(','));

try

{

 Class obstacle = Class.forName(className);

 Object[] ctorParams = new Object[]{line, tv.getCoordTransformer()};

 java.lang.reflect.Constructor strCtor = obstacle.getConstructor(

new Class[]{String.class,

 CoordinateTransformer.class});

 Object obsInstance = strCtor.newInstance(ctorParams);

 m_obstructions.addElement(obsInstance);

}

catch(Exception refEx)

{

 refEx.printStackTrace();

}

The CoordinateTransformer is used by the obstruction to properly translate from mote coordinates to pixels when drawing. Note that even if the obstruction doesn’t require any parameters, the class name must have a comma after it. The entire line read from the file is passed in to the obstruction class as a single string parameter, to allow the generic passing of N parameters. The obstruction class must parse the comma-separated list, which includes the class name still, to get the parameters out of it.

I also felt it necessary to modify the draw method from the Radio Model to make the numbers displayed on the connectivity line more legible. I modified the line to draw the numbers always in black in a 12-point font.

Obstructions

I created a base interface for obstructions, to allow for different physical shapes easily. This base interface has three methods used to interact with the plug-in.

public boolean Intersects(double x1,double y1,double x2,double y2);

Returns true if the line specified by the two end points intersects the obstruction.

The end points are the two motes that are trying to communicate.

public void draw(java.awt.Graphics g);

Used to draw the obstruction to the GUI. The GUI passes in the Graphics object, which the obstruction then draws itself to.

public double GetAttenuation();
Returns the dB of attenuation of the radio signal the obstruction induces.

This base interface allows the main plug-in to interact with any type of obstruction in a generic fashion.

LineObstruction.java

The line is the only type of obstruction I created for this project. In total it is only about 100 lines of code. As you would guess, this means it is very simple to implement an obstruction for the plug-in. The main points to note are the required constructor that parses out the parameters from the comma-separated string:

 public LineObstruction(String params, net.tinyos.sim.CoordinateTransformer cT)

 {

 m_coordTx = cT;

 System.out.println("constructing a LineObstruction with params: " + params);

 // parse out the params, and construct ourselves

 StringTokenizer tok = new StringTokenizer(params, ",");

 // skip first string, since it is our class name

 String nextToken = tok.nextToken();

 try

 {

 m_x1 = Double.parseDouble(tok.nextToken());

 m_y1 = Double.parseDouble(tok.nextToken());

 m_x2 = Double.parseDouble(tok.nextToken());

 m_y2 = Double.parseDouble(tok.nextToken());

 m_atten = Double.parseDouble(tok.nextToken());

 m_asLine2d = new java.awt.geom.Line2D.Double(m_x1,m_y1,m_x2,m_y2);

 }

 catch(Exception ex)

 {

 ex.printStackTrace();

 System.out.println("x1: "+m_x1+" y1: "+m_y1+" x2: "+m_x2+" y2: "+m_y2+

 " atten: "+m_atten);

 }

 }

I used a StringTokenizer to automatically pull out the comma-separated values, then initialized the member variables as appropriate.

The Intersects method needed to answer the interesting Computer Science question of, ‘Do these two lines intersect?’ This was made extremely simple by using Sun’s Line2D class, which has a method that implements one of the intersecting algorithms built in.

The draw method was easily implemented, making use of the mote net.tinyos.sim.CoordinateTransformer class to translate from the mote coordinate system specified in the file to pixels on the screen. This allowed me to make use of the functionality built-in to TinyViz that allows saving the position of the motes to file (Layout menu->File Save). The coordinate system used for the mote location save is the same as that which is used to specify the obstruction locations. Beyond the location translation the draw just uses the java.awt.Graphics object passed in to draw the line.

Example

[image: image11.png]File Layout Plugins.

Selectal
Deselectai

] ADC Readings

— [setbresigoint

[Catamar

[centria

] Contour points

[Debug messages

[[] birected Graph

[Setocation

[Sent radio packets

[eighborhood graph

] Obstructed Radio mode!

] Radio s

] Radio mode!

5 AutoRun logger (4o not disable)

This screen shot was accomplished with the following obstruction file:

Jeff Rupp UCCS CS526, Fall 2003

put obstructions into the lossy radio model

comments are full line, begining with a

Line format is: obstruction full class name followed by parameters to send to

#
that class's constructor, separated by commas.

#
The first comma after the class name is required, even if no params

#
The params are sent via a single string parameter, that is the entire line

horizontal lines

net.tinyos.sim.plugins.LineObstruction,10,10,85,10,50

net.tinyos.sim.plugins.LineObstruction,10,15,45,15,20

net.tinyos.sim.plugins.LineObstruction,10,35,45,35,20

net.tinyos.sim.plugins.LineObstruction,10,60,45,60,20

net.tinyos.sim.plugins.LineObstruction,10,85,45,85,50

net.tinyos.sim.plugins.LineObstruction,50,15,85,15,20

net.tinyos.sim.plugins.LineObstruction,50,50,85,50,20

net.tinyos.sim.plugins.LineObstruction,50,85,85,85,50

vertical lines

net.tinyos.sim.plugins.LineObstruction,10,15,10,85,50

net.tinyos.sim.plugins.LineObstruction,45,15,45,20,20

net.tinyos.sim.plugins.LineObstruction,45,25,45,45,20

net.tinyos.sim.plugins.LineObstruction,45,50,45,70,20

net.tinyos.sim.plugins.LineObstruction,45,75,45,85,20

net.tinyos.sim.plugins.LineObstruction,50,15,50,30,20

net.tinyos.sim.plugins.LineObstruction,50,35,50,60,20

net.tinyos.sim.plugins.LineObstruction,50,65,50,85,20

net.tinyos.sim.plugins.LineObstruction,85,15,85,85,50

The mote positions were also manually entered into the TinyViz .mfs file:

0 45.0 8.0

1 49.0 12.0

2 25.0 25.0

3 25.0 45.0

4 25.0 70.0

5 70.0 30.0

6 70.0 65.0

The layout is meant to represent a generic section of a building, with a hallway at the top and down the center. There are doors at the ends of the top hallway, and into each of the rooms. The attenuation of the interior walls is set to 20 dB, while the exterior walls are 50dB. This allowed me to put a sensor outside of one wall, with one just on the inside to propagate signals outside the building. To create the layout I drew it on grid paper, then translated the points to mote coordinates.

Different types of walls will have different levels of attenuation. It is likely that any wall will present more attenuation than the common mote can transmit through, but the provided scale where 60dB equates to complete signal loss will allow for sufficient flexibility to permit some signal transmission if desired. If you wish the walls to be completely opaque to the motes, then set all the attenuations to at least 60 dB.

Conclusions

The plug-in format used by TinyViz made this project much easier to implement than it would have been if I had to delve into thousands of lines of code to find all the various controlling bits. The Radio Model by Nelson Lee provided a sufficient basis to add the obstructions to, making the creation of an entirely new plug-in unnecessary.

There is still more that would be useful to add to this plug-in. Among the interesting features would be signal reflection paths, account for phase distortion as the signal passes through a medium, and possibly most interesting would be taking the two dimensional aspect and translating to three dimensions.

Plug-in Use

1) From the Plugins menu choose Obstructed Radio Model

[image: image12.png]Fixed radius (100.0)

[Empirical
[Fixed radius (10.0)
[Fixed radius (100.0)
[Fixed radius (1000.0)

[image: image13.png]

2) For easy to see results, choose the Fixed Radius (100.0) from the combo box

3) Click the Load Obstructions… button

4) Select the file with the obstructions in it

5) Position your motes as desired (and save if you wish)

6) Click on a mote to see what other motes it can communicate with

Bibliography

http://www.educatorscorner.com/media/Exp94e.pdf (28 Nov. 03)

Research done at the University of Colorado, Boulder on the attenuation presented by walls, etc.

This research implies that the loss of signal affects motes much more dramatically than the values I provided. We will need to research exactly how much attenuation a mote can survive to still communicate to more precisely calibrate the 0-60dB approach I used.

http://www.tenet.res.in/commsphere/s6.2.pdf (28 Nov. 03)

http://www.wi-fiplanet.com/tutorials/article.php/1431101 (02Dec03)

http://www.swisswireless.org/wlan_calc_en.html (02Dec03)

http://www.dxing.com/frequenc.htm (02Dec03)

http://www.rfcafe.com/references/electrical/path_loss.htm (02Dec03)

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

_1131696873

_1131697596

_1131697711

_1131697764

_1131696954

_1131696862

_1131696869

_1131696859

