A SURVEY OF
WIRELESS SENSOR NETWORK DATA COLLECTION SCHEMES
A CS526 Project

by

Brett Wilson

University of Colorado – Colorado Springs

8 Dec 2003

A Survey of Wireless Sensor Network Data Collection Schemes
Table of Contents

3Introduction

3Basic Application Architecture

3TinyDiffusion

4Cougar

5TinyDB

5General Usability

6Network Routing

7Data Request Optimization Techniques

8Conclusion

Introduction

The potential applications of wireless sensor networks are numerous and wide-ranging: environmental monitoring, building security and control, hazardous material monitoring, environmental studies, and military sensing/targeting to name a few. The unique problems associated with these networks have prompted many university and corporate researchers to focus considerable effort towards developing solutions. A basic challenge is how to reliably and efficiently retrieve the sensor data. This is not an easily solved problem given the limited processing and data storage capabilities of the nodes, their greatly limited power capacity, the fact that their inter-node communications are typically low bandwidth and lossy, and the uncertainty of the operational status of sensors, nodes, and their communication links at any given instant. This paper takes a critical look into three solutions to the problem of data collection and evaluates how these solutions address the most critical issues. The solutions evaluated are the TinyDiffusion
 application developed at UCLA, the Cougar
,
 project currently underway at Cornell University, and the TinyDB
 application developed at UC Berkeley. TinyDiffusion and TinyDB were developed for a network of sensor motes running on TinyOS, whereas the concepts developed for Cougar have only been tested in simulation.
Basic Application Architecture
TinyDiffusion
TinyDiffusion is a scaled down implementation of Diffusion
, which bases low-level communications entirely on sets of attributes and values defined by the application and that are unrelated to the network topography. Each node is therefore identified by what kind of data it can provide or by what data it is interested in, not by a unique network identifier. An application would request data from the network by identifying the data through attributes and values, and then broadcasting these attributes and values as an “interest” message by flooding the network. Sensor nodes receive and process these interest messages and attempt to match collected sensor data with the known interest. The nodes record information about the request and the direction from which the request arrived as a “gradient”. Should collected data at a node match the interest, a data message is returned to the requesting node hop by hop along these gradients. TinyDiffusion is therefore unique in that decisions about how to route data requests and data packets are made at each node based on the data being requested or delivered, and that node’s knowledge of the capabilities and interests of neighboring nodes. In other words, routing is based on the actual message data, not on some pre-specified end destination. For example, a request for light sensor data would be routed in the direction from which previous light sensor data had been received and a data packet containing light sensor data would be routed in the direction from which an interest in light sensor data was previously received. An integral part of this scheme is positive and negative “reinforcement” of these request/delivery paths which serves to consolidate multiple paths into a preferred path and suppresses possible loops. In addition, as the data is moved through the network, each node is capable of selectively processing, or “filtering”, the data packets as they arrive in order to perform such tasks as data aggregation and duplicate elimination.

The developers of Diffusion focused their efforts on enabling efficient communications through routing based on named data and through in-network processing for data aggregation. TinyDiffusion implements a limited feature set of Diffusion on the TinyOS platform with a focus on reducing the memory footprint and keeping power consumption to an absolute minimum.
Cougar

The Cougar project is currently under development at Cornell University. Its purpose is to advance research into sensor data collection through means of declarative SQL-like database requests. In the Cougar approach, each user request for data (in SQL-like format) is extensively processed into a “query plan” before being injected into the network in order to develop the most efficient data collection scheme. Specifically, the query plan is developed as two separate components: the communication component and the computation component. The communication component will define the order of data collection and transmittal while the computation component will specify how nodes will compute partial and final aggregations. Once the “query plan” has been developed, it is injected into the network for execution. Sensors then collect the data and forward it toward a defined “leader node” using the communication component. Intermediate nodes along the path may perform partial aggregation or selection based on the computation component of the query plan. At the leader node, final aggregation and selection will be performed before routing the data to the gateway node for delivery to the user.
Routing can be implemented in many different ways to meet the requirements of the Cougar concept. The Cougar architecture envisions a “query proxy layer” that resides between the routing and application layers, communicating with both. The routing layer therefore must provide an interface to Cougar which can be used to send and/or retrieve messages flowing through the node. An initial outline of modifications necessary to the routing layer is discussed in their work.
Filtering of data in the network is also part of the Cougar concept. These filters would act in much the same way as those implemented in TinyDiffusion.

TinyDB

The developers of TinyDB focused on abstracting the data collection process as a familiar SQL query-able database in much the same way as that proposed by the Cougar team. Users request data through a gateway node using syntax very much like standard SQL. Each user query is processed into a detailed query plan, and then distributed into the network tree. The concept of a separate leader node (different from the gateway node) has not been implemented in TinyDB, although data is aggregated by intermediate nodes as it flows back to the gateway node. Routing in TinyDB has been implemented according to the Cougar concept, and the necessary interfaces that the routing layer must provide to be usable by TinyDB have been defined4.
Since TinyDB and the concepts of the Cougar project are so similar, the remainder of this paper will concentrate on comparing only TinyDiffusion and TinyDB. It should be noted that, in general, comments made regarding TinyDB also apply to the Cougar project.

General Usability
In terms of general usability, TinyDB is the only system that comes closest to “out of the box” usability. After installing the TinyDB software on the motes, installing the host application on an external PC, and connecting the PC to the gateway node (identified by a node id of 0), users can immediately begin generating queries manually or using the provided query builder.

TinyDB can be compiled and run without modification to provide basic functionality on the Mica motes with the standard sensor board. It is also relatively easy to compile in support for alternative sensor boards and to add the unique query-able attributes of these sensors. Include files for other sensor boards are provided in the installation package.
Not only is it quite simple to define data requests in TinyDB due to the SQL-like syntax, it is also very flexible and powerful. Complex selections, aggregations, and conditions on the retrieved data can be easily defined using this syntax.

TinyDiffusion does not provide a useable application as packaged. Rather, it provides the framework for the underlying execution of TinyDiffusion, and then exposes an interface to be used by the application developer to access the TinyDiffusion functionality. One such application has been implemented on a network of Mica2 motes in order to provide environmental monitoring at James Reserve1.
 All data requests in TinyDiffusion consist of sets of tuples composed of an attribute, an operator, and a value. In a sense, it is a hybrid SELECT/WHERE clause of an SQL statement where all attributes in the request are returned if all of the conditions are satisfied. Aggregation can not be defined in the data request. Rather, a set of filters must be developed and installed on the motes to intercept and aggregate data. Aggregations such as SUM and AVG appear to be much more difficult to compute in this manner.
In the documentation that this author was able to locate, it appears that the Cougar project at this stage has not been implemented on any physical platform. However, many of the proposed ideas have undergone experimentation and testing using simulation platforms. In reality, TinyDB has implemented most of the original Cougar concepts, and thus could be considered a working verification of these concepts.
Network Routing
There is a significant difference between TinyDB and TinyDiffusion in regards to network routing. TinyDiffusion is essentially a network routing protocol based on named data packets that handles all aspects of route construction, maintenance, and packet transmission. No underlying network protocol is used by TinyDiffusion. On the contrary, TinyDB sits on top of and interacts with an existing routing layer that has been modified to provide essential services to TinyDB. The advantage of this approach is that further development of TinyDB can focus on query optimization techniques, separate from the development of more efficient routing algorithms. The authors of Diffusion will likely argue that routing and data retrieval can be more closely integrated in order to achieve the most efficient design.
Both TinyDB and TinyDiffusion focus on distributing aggregation operations throughout the network in order to reduce network traffic and thus lower power consumption. TinyDiffusion provides this functionality through the use of filters installed on the network motes that intercept data messages and perform aggregation/data reduction. No knowledge of the overall network topology is necessary. On the contrary, the query processor must know the network topology and the capabilities of the nodes in order to form the most efficient query plan. So in TinyDB, each node maintains a catalog containing local attributes, events, and functions. Periodically, this data is transmitted back to the query processor to be used for query optimization. A higher level of optimization is possible through use of this catalog, but it comes at the cost of the communications necessary to maintain the data. In addition, TinyDB periodically sends information down the routing tree to maintain the necessary structure and coordinate timing, which adds overhead to the standard communications required by the network layer.
Data Request Optimization Techniques
TinyDiffusion does not optimize data requests. Since TinyDiffusion maintains no knowledge of network topology or the capabilities of the nodes, no request processing is performed; rather, all requests are flooded throughout the network in an attempt to locate the desired data. All nodes attempt to match the data request, and will return data along the request path if a match is made.

Through the development and use of the appropriate filters, data can be aggregated and/or reduced on the return trip to reduce network demands. However, these filters are not a standard part of TinyDiffusion, leaving it to the user to determine how to develop and deploy the filters.
Due to the catalog data maintained by TinyDB, it is possible to perform optimization on the data request before injecting it into the network. For example, knowing exactly which sensors can provide humidity readings, a request for humidity readings can be routed only to those sensors. A significant amount of research has been done related to developing these optimization techniques, and there are many opportunities for further work.
One optimization unique to TinyDB is an attempt to reduce the energy costs of sampling data by optimizing the sampling and selection order within a particular mote and in the network in general
. For example, suppose that a query requests light and sound data where the light level is above a particular limit and the sound level is below a particular limit. Suppose that the cost to sample the light level is much less than that of sampling the microphone. An optimization could be to first sample the light level to see if it is high enough before sampling the microphone. If the light level is not high enough, there is no need to sample the microphone since the data will not meet the query criteria. These types of optimizations appear to be much more difficult to implement in TinyDiffusion since only the attribute, operator, value tuples are available..
Conclusion

TinyDiffusion provides a very efficient framework for collecting data from a network of sensors. It provides the user with an API that abstracts away the underlying communication process and allows a user to more easily develop energy-efficient data collection applications. An interested user must have the skills and resources to develop his/her own application to perform the data collection.

TinyDiffusion replaces the existing network layer, and therefore considerably reduces the messaging overhead required by most network protocols in order to maintain the network topology. By enabling the use of filters, aggregations and data reduction can be performed to further decrease network traffic.
TinyDB provides an interested user with out-of-the-box usability for standard mica motes and sensor boards. It maintains a catalog of network topology data and sensor capability data that is used to optimize the data collection plan before it is inserted into the network. More efficient requests are therefore made, but at the cost of maintaining the catalog data.

TinyDB relies on an underlying network protocol to send/receive messages and maintain network links. This protocol must implement a specified interface that can be used by TinyDB. TinyDB therefore incurs the overhead inherent in the routing protocol, but at the same time, is able to take advantage of new, more efficient routing algorithms developed by other parties.
The Cougar project is conducting significant research into all aspects of the use of declarative languages for querying sensor networks. Much of their concepts have been validated using simulation or in the TinyDB system.
� M. Mysore, M. Golan, E. Osterweil, D. Estrin, M. Rahimi. TinyDiffusion in the Extensible Sensing System at the James Reserve, May 2003

� Y. Yao, J. Gehrke The Cougar Approach to In-Network Query Processing in Sensor Networks. Department of Computer Science, Cornell University, Sept 2003

� Y. Yao, J. Gehrke. Query Processing for Sensor Networks. Department of Computer Science, Cornell University, Jan 2003

� S. Madden, J. Hellerstein, W. Hong. TinyDB: In-Network Query Processing in TinyOS. University of California at Berkeley, Intel Research, Sept 2003

� J. Heidemann, F. Silva, C. Intanagonwiwat, R. Govindan, D. Estrin, D. Ganesan. Building Efficient Wireless Sensor Networks with Low-Level Naming. University of Southern California/Information Sciences Institute, Computer Science Department, University of California Los Angeles, Oct 2001

� S. Madden, M.J. Franklin, J. Hellerstein. The Design of an Acquisitional Query Processor for Sensor Networks. University of California at Berkeley, Intel Research, SIGMOD 2003

PAGE
9

