HIGH AVAILABILITY –LINUX VIRTUAL SERVER
by

ANKUR DESHMUKH

&

P JAYA SUNDERAM

INDEX OF CONTENTS

	Serial No.

	Contents
	Page Numbers

	1.

	Introduction
	2-3

	2.

	Linux Virtual Server - HA
	4-9

	3.

	Implementation
	10-15

	4.

	Conclusion
	16

	5.

	Bibliography
	17

Chapter 1

INTRODUCTION
LINUX VIRTUAL SERVER:
From the early days of internet, the number of servers and machines has increased many folds. In order to cope with the increasing computing needs and need for high availability of resources paved way to the development of LVS. LVS tackles lot of real time issues such as load balancing, efficient use of resources among other things.

An LVS is a group of servers that appear to the client as one large, fast, reliable server. The real servers are the one’s that does the work. But to the customer it seems that LVS does all the work. The director is the main component on which the ipvs code runs.

· The director is a layer 4 switch. It appears in the network as a router with slightly different rules from a normal router.
· The director receives the connection request from the client and then chooses one of the available backend servers, to service the client's request. The address of the director is called as Virtual I P address.
· The real servers can be offering any of the services normally available from a single server on the internet.

· The individual real servers can be brought into the LVS and removed again without the client being aware of the changes in the LVS,
LVS CONFIGURATIONS:
LVS can be used in three different configurations.

· LVS NAT

· LVS DR

· LVS IP TUNNELING

LVS Network Address Translation – In this configuration, the director acts as the network address translator. This means that director changes the IP address of the packet to the address of the server which will be able to server the particular request. It does the address translation in both the directions, from and to the director.

LVS Direct Routing – LVS NAT becomes a bottle neck in case of high traffic. So as a remedy to the problem, direct routing works fine. In this configuration the real server connects directly to the client.
LVS IP TUNNELING – IP Tunneling provides security .All the data transmissions are sent over secure IP channel.

CHAPTER 2
LINUX VIRTUAL SERVER – HIGH AVAILABILITY

With the increasing use of internet for mission critical and other needs ,it has become imperative that resources and services are available all the time. LVS helps us in this regard. A director can be replicated and be monitored for its performance . whenever the performance falls below a certain predefined value . High availability can be provided by detecting node or daemon failures and reconfiguring the system appropriately so that the workload can be taken over by the remaining nodes in the cluster. Redundancy is used to prevent the overall IT system from having single points of failure a method that has been common in space flight and general aviation

LVS –HA handles two kinds of failure basically

· Director failure

· Real server failure

Director failure – Director failure relates to crashing or failure .To tackle such an event a redundant server is used ,also known as slave. This director tracks and records all the transactions .In case of failure of the master ,slave takes over the operation .In other words it maintains all the session and IP information .

Real Server failure – LVS –HA also helps in keeping a track of real servers also.It does that by checking the availability of resources at regular interval on the server .If a resource is unavailable ,it is removed from the ipvsadm table .When the director notices that the resource is again available then it is added back to the ipvsadm table

HA can be provided by using various kinds of software’s. The list of software’s that can be used for this are

[image: image1.emf]IBM Compatible

Tower box

Tower box

INTERNET

Monitor

IP ADDRESS

128.198.61.74

Tower box

Tower box

IP ADDRESS

128.198.61.111

IP ADDRESS

128.198.61.112

FAKE

MON

MON

HEARTBEAT

Fig 1: OVERALL SCENARIO

The software’s used in our implementation of HA-LVS are:
1. Mon

2. Heartbeat

3. Fake

MON –
Mon is a general-purpose scheduler and alert management tool used for monitoring service availability and triggering alerts upon failure detection. Mon was designed to be open and extensible in the sense that it supports arbitrary monitoring facilities and alert methods via a common interface, all of which are easily implemented with programs in C, Perl, shell, etc., SNMP traps, and special mon traps.

Mon views resource monitoring as two separate tasks: the testing of a condition, and triggering an action upon failure. It was designed to implement the testing and action-taking tasks as separate, stand-alone programs.. The decision to invoke an alert is governed by logic which offers various "squelch" features and dependencies, all of which are configurable by the user.

Monitors and alerts are not a part of the core mon server, even though the distribution comes with a handful of them This means that if a new service needs monitoring, or if a new alert is necessary, the mon server does not need to be changed. This makes mon easily extensible.

Mon consist of sever and client modules. The server modules runs at the director which monitors the health of the various real servers .The director sends out alarm when the real server is down. The alarm can be in the form of mail to the administrator or a message to the director regarding the failure of the node .The client module runs on the real servers. The services that can be checked for are as follows: ICMP ,SMTP ,Telnet ,HTTP ,IMAP ,Disk space

[image: image2.emf]IP ADDRESS

128.198.61.74

(LVS)

IP ADDRESS

128.198.61.11*

(Real Server)

Mon

Client

Mon

Server

In case of failure

clear the service from

ipvsadm

Checks for the

service availabilty

In case of no failure

returns success. No change

made to ipvsadm

Fig 1: Mon signals
HEARTBEAT –
Heartbeat is an open source project that implements a heartbeat protocol. In this messages are sent at regular intervals between machines and if a message is not received from a machine within a specified time, then the machine is assumed to have failed and some form of evasive action is taken. Heartbeat can send heartbeat messages over zero or more serial links zero or more serial links with PPP encapsulation and zero or more Ethernet interfaces. . In this each machine keeps sending the other “I am alive” message.

In the heartbeat configuration, node is selected as master and the other as slave. If the master node fails then slave node will take up the operations. This method of fail-over is called IP Address Takeover. Unless the nice_failback directive is set to on in the ha.cf file, once the master node becomes available again resources will fail-over again so they are once again owned by the master node.

Each virtual IP address is associated with a resource, a program that Heartbeat will start on startup and stop on shutdown. Heartbeat allows arbitrary resources to be used. Ultra Monkey uses ldirectord to run as a resource which runs to monitor the availability of the real servers. In order to use Ethernet, udp port is used. In order to configure the heartbeat various settings like keep alive, warn time, dead time etc. have to be set. The messages can be sent over different medium. It can be sent over a serial connection and Ethernet. On an Ethernet connection a broadcast or a multicast can be sent.

The fake signal is used to conquer the IP of the failed director. The fake signal pings the master at a certain interval. If the master does not respond in that interval then the salve takes over as the fake IP sending messages to the router. The router still sends the requests at the same IP address but this time the machine is different.
[image: image3.emf]IP Address

128.198.61.74

Master Load Balancer

Slave Load Balancer

Heartbeat

Fake

If master goes down then

it is used to fake masters IP

address and its resources

Monitors the

health of the

master load

balancer

Fig2: HEARTBEAT
Chapter 3
Implementation of the Code

The ha.cf code:
#

#
There are lots of options in this file. All you have to have is a set

#
of nodes listedJ {"node ...}

#
and one of {serial, udp, or mcast}

#

#

Note on logging:

If any of debugfile, logfile and logfacility are defined then they

will be used. If debugfile and/or logfile are not defined and

logfacility is defined then the respective logging and debug

messages will be loged to syslog. If logfacility is not defined

then debugfile and logfile will be used to log messges. If

logfacility is not defined and debugfile and/or logfile are not

defined then defaults will be used for debugfile and logfile as

required and messages will be sent there.

#

#
File to wirte debug messages to

debugfile /var/log/ha-debug

#

#

File to write other messages to

#

logfile
/var/log/ha-log

#

#

#
Facility to use for syslog()/logger

#

logfacility
local0

#

#

#
keepalive: how many seconds between heartbeats

#

keepalive 2

#

#
deadtime: seconds-to-declare-host-dead

#

deadtime 10

#

#

#
Very first dead time (initdead)

#

#
On some machines/OSes, etc. the network takes a while to come up

#
and start working right after you've been rebooted. As a result

#
we have a separate dead time for when things first come up.

#
It should be at least twice the normal dead time.

#

initdead 20

#

#
hopfudge maximum hop count minus number of nodes in config

hopfudge 1

#

#
serial
serialportname ...

#serial
/dev/ttyS0

#

#

#
Baud rate for serial ports...

#

#baud
19200

#

#
What UDP port to use for communication?

#

udpport
694

#

#
What interfaces to heartbeat over?

#

udp
eth0

#

#
Set up a multicast heartbeat medium

#
mcast [dev] [mcast group] [port] [ttl] [loop]

#

#
[dev]

device to send/rcv heartbeats on

#
[mcast group]
multicast group to join (class D multicast address

#

224.0.0.0 - 239.255.255.255)

#
[port]

udp port to sendto/rcvfrom (no real reason to differ

#

from the port used for broadcast heartbeats)

#
[ttl]

the ttl value for outbound heartbeats. this effects

#

how far the multicast packet will propagate. (0-255)

#
[loop]

toggles loopback for outbound multicast heartbeats.

#

if enabled, an outbound packet will be looped back and

#

received by the interface it was sent on. (0 or 1)

#

#

#mcast eth0 225.0.0.1 694 1 1

#

#
Watchdog is the watchdog timer. If our own heart doesn't beat for

#
a minute, then our machine will reboot.

#

#watchdog /dev/watchdog

#

"Legacy" STONITH support

Using this directive assumes that there is one stonith

device in the cluster. Parameters to this device are

read from a configuration file. The format of this line is:

#

stonith <stonith_type> <configfile>

#

NOTE: it is up to you to maintain this file on each node in the

cluster!

#

#stonith baytech /etc/ha.d/conf/stonith.baytech

#

STONITH support

You can configure multiple stonith devices using this directive.

The format of the line is:

stonith_host <hostfrom> <stonith_type> <params...>

<hostfrom> is the machine the stonith device is attached

to or * to mean it is accessible from any host.

<stonith_type> is the type of stonith device (a list of

supported drives is in /usr/lib/stonith.)

<params...> are driver specific parameters. To see the

format for a particular device, run:

stonith -l -t <stonith_type>

#

#

#
Note that if you put your stonith device access information in

#
here, and you make this file publically readable, you're asking

#
for a denial of service attack ;-)

#

#

#stonith_host * baytech 10.0.0.3 mylogin mysecretpassword

#stonith_host ken3 rps10 /dev/ttyS1 kathy 0

#stonith_host kathy rps10 /dev/ttyS1 ken3 0

#
Tell what machines are in the cluster

#
node
nodename ...
-- must match uname -n

#nice_failback off

node jbpatillvs.csnet.uccs.edu

node
asdeshmulvs.csnet.uccs.edu

The authkeys code:

#

#
Authentication file. Must be mode 600

#

#

#
Must have exactly one auth directive at the front.

#
auth
send authentication using this method-id

#

#
Then, list the method and key that go with that method-id

#

#
Available methods: crc sha1, md5. Crc doesn't need/want a key.

#

#
You normally only have one authentication method-id listed in this file

#

#
Put more than one to make a smooth transition when changing auth

#
methods and/or keys.

#

#

#
sha1 is believed to be the "best", md5 next best.

#

#
crc adds no security, except from packet corruption.

#

Use only on physically secure networks.

#

auth 1

1 crc

#2 sha1 HI!

#3 md5 Hello!

The haresources code:
#

#
This is a list of resources that move from machine to machine as

#
nodes go down and come up in the cluster. Do not include

#
"administrative" or fixed IP addresses in this file.

#

#
We refer to this file when we're coming up, and when a machine is being

#
taken over after going down.

#

#
You need to make this right for your installation, then install it in

#
/etc/ha.d

#

#
These resources in this file are either IP addresses, or the name

#
of scripts to run to "start" or "stop" the given resource.

#

#
The format is like this:

#

#node-name resource1 resource2 ... resourceN

#

#
If the resource name contains an :: in the middle of it, the

#
part after the :: is passed to the resource script as an argument.

Multiple arguments are separated by the :: delimeter

#

#
In the case of IP addresses, the resource script name IPaddr is

#
implied.

#

#
For example, the IP address 135.9.8.7 could also be represented

#
as IPaddr::135.9.8.7

#

#
THIS IS IMPORTANT!!

#
The given IP address is directed to an interface which has a route

#
to the given address. This means you have to have a net route

#
set up outside of the High-Availability structure. We don't set it

#
up here -- we key off of it.

#

#
The broadcast address for the IP alias that is created to support

#
an IP address defaults to the highest address on the subnet.

#

#
The netmask for the interface that is brought up on this IP address

#
defaults to the same netmask as the route that it selected in

#
in the step above.

#

#
If you want to specify that this IP address is to be brought up

#
on a subnet with a netmask of 255.255.255.0, you would specify

#
this as IPaddr::135.9.8.7/8 .

#

#
If you wished to tell it that the broadcast address for this subnet

#
was 135.9.8.210, then you would specify that this way:

#

IPaddr::135.9.8.7/8/135.9.8.210

#

#
The IP addresses you list in this file are called "service" addresses,

#
since they're they're the publicly advertised addresses that clients

#
use to get at highly available services.

#

#
For a hot/standby (non load-sharing) 2-node system with only

#
a single service address,

#
you will probably only put one system name and one IP address in here.

#
The name you give the address to is the name of the default "hot"

#
system.

#

#
Where the nodename is the name of the node which "normally" owns the

#
resource. If this machine is up, it will always have the resource

#
it is shown as owning.

#

#
The string you put in for nodename must match the uname -n name

#
of your machine. Depending on how you have it administered, it could

#
be a short name or a FQDN.

#

#---

#

#
Simple case: One service address, default subnet and netmask

#

No servers that go up and down with the IP address

#

#just.linux-ha.org
135.9.216.110

#

#---

#

#
Assuming the adminstrative addresses are on the same subnet...

#
A little more complex case: One service address, default subnet

#
and netmask, and you want to start and stop http when you get

#
the IP address...

#

#just.linux-ha.org
135.9.216.110 http

#---

#

#
A little more complex case: Three service addresses, default subnet

#
and netmask, and you want to start and stop http when you get

#
the IP address...

#

#just.linux-ha.org
135.9.216.110 135.9.215.111 135.9.216.112 httpd

#---

#

#
One service address, with funny subnet and bcast addr

#

Stop and start httpd service with the subnet address

#

#just.linux-ha.org
135.9.216.3/4/135.9.216.12 httpd

#

#---

#

An example where a shared filesystem is to be used.

Note that multiple aguments are passed to this script using

the delimiter '::' to separate each argument.

#

#node1 10.0.0.170 Filesystem::/dev/sda1::/data1::ext2

jbpatillvs.csnet.uccs.edu 128.198.192.84 httpd lcs mon

The mon.cf:

The mon.cf file

#

#

global options

#

#cfbasedir = /etc/mon

alertdir = /root/mon-0.99.1/alert.d

mondir = /root/mon-0.99.1/mon.d

maxprocs = 20

histlength = 100

randstart = 30s

#

group definitions (hostnames or IP addresses)

#

hostgroup vinci 128.198.192.193

hostgroup gandalf 128.198.192.194

Web server 1

watch rsnat5.csnet.uccs.edu

 service http

interval 10s

monitor http.monitor

period wd {Sun-Sat}

 alert mail.alert asdeshmu@cs.uccs.edu

 upalert mail.alert asdeshmu@cs.uccs.edu

 alert wk_up.ksh -S 0

 upalert wk_up.ksh -S 1

Web server 2

watch rsnat6.csnet.uccs.edu

 service http

interval 10s

monitor http.monitor

period wd {Sun-Sat}

 alert mail.alert asdeshmu@cs.uccs.edu

 upalert mail.alert asdeshmu@cs.uccs.edu

 alert wk_up.ksh -S 0

 upalert wk_up.ksh -S 1

Chapter 4

Conclusion

During the course of the project work we learnt about the intricacies of the lvs-HA using heartbeat . It gave us a better understanding and grip on the facets of HA.
The major problems faced during the implementation were :

1. .Setting up the Ethernet interfaces to talk to each other.

2. Installation of heartbeat used various modules. It was a very tedious process as each module in turn required other modules

3. Use serial interface for data transmission could not be done ,as we were using Vmware . Therefore we switched to using Ethernet interface for connection.

Future enhancement

 The present setup can up be updated to a fault tolerant system. The fault system that could be implemented be CODA file system.
BIBLIOGRAPHY
1. www.linuxvirtaulserver.org

2. www.ultramonkey.com
3. www.kernel.org/software/mon
4. Master thesis of C Prakash ,UCCS on ENHANCE FEATURES AND PERFORMANCE OF CONTENT SWITCHES
5. www.linux-ha.org
6. www.vergnet.org/linux/fake
� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

� EMBED Visio.Drawing.6 ���

PAGE
17

[image: image4.emf]IBM Compatible

Tower box

Tower box

INTERNET

Monitor

IP ADDRESS

128.198.61.74

Tower box

Tower box

IP ADDRESS

128.198.61.111

IP ADDRESS

128.198.61.112

FAKE

MON

MON

HEARTBEAT

[image: image5.emf]IP ADDRESS

128.198.61.74

(LVS)

IP ADDRESS

128.198.61.11*

(Real Server)

Mon

Client

Mon

Server

In case of failure

clear the service from

ipvsadm

Checks for the

service availabilty

In case of no failure

returns success. No change

made to ipvsadm

[image: image6.emf]IP Address

128.198.61.74

Master Load Balancer

Slave Load Balancer

Heartbeat

Fake

If master goes down then

it is used to fake masters IP

address and its resources

Monitors the

health of the

master load

balancer

_1132920596.vsd
Tower PC�

�

IP Address
128.198.61.74
Master Load Balancer�

Slave Load Balancer�

Heartbeat�

Fake�

If master goes down then
it is used to fake masters IP
address and its resources�

Monitors the health of the master load balancer�

_1132920874.vsd
IBM Compatible�

Tower box�

Cloud�

Monitor�

IP ADDRESS
128.198.61.74�

Monitor�

INTERNET�

IP ADDRESS
128.198.61.111�

IP ADDRESS�128.198.61.112�

FAKE�

MON�

MON�

HEARTBEAT�

_1132920253.vsd
Tower PC�

�

IP ADDRESS
128.198.61.74
(LVS)�

IP ADDRESS
128.198.61.11*
(Real Server)�

Mon Client�

Mon Server�

In case of failure
clear the service from
ipvsadm�

Checks for the
service availabilty�

In case of no failure
returns success. No change
made to ipvsadm�

