Design and Implementation of Alternative Routes Against DDOS

Su Li and Jing Yang

2Introduction

3Latest Development on Internet Security

4Summary of the Thesis by Angela

5Scope of This Project

6Software Package/Tools used in this project

6VMWare

6Bind

6A Brief History of Bind

7Version 8/9 of Bind

8Literature Review

8Fundamentals about DNS

8Domain Name Service DNS

9DNS Protocol Overview

9DNS Lookups

11Zone Transfers

11Lower-Level Transport

11Theory of Operation

13Name Servers

13Primary and Secondary Name Servers

14Recursion, Caching, and Authoritative Replies

15Design and Implementation

15Approach 1

16Hardware and Software Configurations and Descriptions

17A software package developed in this project includes:

18Process Flow

19Installation of a DNS Server

19The Boot File:

19The cache file:

19The Forward Mapping file:

20The Reverse Mapping File:

21Updating DNS with BIND 8/9

21Approach 2

22Results and discussions

23Conclusions

24Lesson Learnt

25Future Works

25Reference

Introduction

The battle against attackers is getting tougher. To avoid defenses, attackers are using more varied and devious techniques. The latest technique is distributed attacks. Attackers may target simultaneous attacks to a single victim from various points of the Internet (Figure 1). A denial of service (DoS) attack on network bandwidth and/or some network service will be very effective when done by a group of collaborating agents. Toward this end, attackers may use some hosts that have been penetrated or compromised and are located in various points of the network and the globe. Distributed probes are very effective for mapping the topology of a network or sub-network[2]. Topological information is the primary input in devising a strategy to attack a network or some host contained within the network[1]. The next step is probing for vulnerable services, once again in a distributed manner.

The present widely deployed defense systems like firewalls are moving towards isolating networks and sites. The focus seems to be on protecting the “internal” network. But there will always be open networking, otherwise the basic philosophy and driving force of the Internet will collapse. There is no escaping from the issue of defending this open Internet from hackers and intruders. Attackers and intruders can be anywhere on the earth and deploy collaborating agents to attack any site on the Internet. In a bandwidth-consumption attack, an intruder directs a large number of packets towards your network, thereby consuming all the available bandwidth and stopping legitimate packets from accessing the congested network link. An attacker or intruder may also modify or destroy the system configuration information of a computer or server system. In a distributed denial of service attack (DDoS), the overall impact can be amplified by the number of attack agents involved.

[image: image1]
Figure 1 – A typical DDoS Architecture

Latest Development on Internet Security

With the increase of DoS attacks [MVS01] and the widespread impact of the attacks, Internet security has become the focus of many researches. In general, DDoS defense research can be roughly categorized into three areas: intrusion prevention, intrusion detection, and intrusion response/tolerance. Research in intrusion prevention has stressed the importance of a well-defined security policy. In those days, most of the companies or institutions are using firewalls to prevent attackers from entering their internal networks, however, firewalls are not enough and developing a sound security policy is not easy particularly when more and more complicated techniques tend to be used by attackers. Many methods or techniques such as scan detection, statistical analysis, anomaly behavior study have been developed and used for intrusion detection[1]. An Internet-wide illegal access detection system, which employs distributed information collection, sharing, and correlation techniques, has been developed by Kohei et al [2]. Once an attack is identified, the immediate response is to identify the attack source and block its traffic accordingly. Instead of defeating DDoS, research in intrusion tolerance focuses on minimizing attack impact and maximizing the quality of its services. An anomic response system has been proposed [3]. Many advances in intrusion tolerance are developed based on fault tolerance and quality of service (QoS) and summarized more in details in the work by Angela [1]. The anti-DDoS devices studied vary vastly, ranging from switches, routers, to load balancers, intrusion detection systems (IDS) and traffic analyzers. Details about various products developed by a number of companies are referred to some of the reference papers[1, 2, 5, 7], and can be found on the Internet.
Summary of the Thesis by Angela

An Autonomous Anti-DdoS Network (A2D2) design that utilizes existing and affordable tools is presented in the work by Angela[1]. The system consists of three main areas: intrusion detection, intrusion tolerance/response, and autonomy system. Snort, an open source intrusion detection system, is used as the detection engine or component in the proposed A2D2 system. Class-Based Queuing (CBQ) and rate limiting techniques are used to maintain intrusion tolerant QoS. Details about system/environment setup, hardware and software configuration as well as data analysis are described in details in the thesis. In general, the A2D2 design presented in the thesis effectively combines firewall policy, CBQ, muli-level rate-limiting and DDoS flood detection in an autonomous architecture. Testing results show that that the A2D2 design demonstrates tolerance against bandwidth consumption attacks of various types. Regardless of the types of DDoS attacks, A2D2 clients enjoy QoS similar to the level of service they experience during normal network activities. More importantly the thesis also discuss the limitations such as firewall processing speed and possible future work - alternative route technique, for example, which is the objective of the project described in this report.

Scope of This Project

In this project, we focus on intrusion response and tolerance. Two methods of alternative route technique are proposed. Upon detection of an attacker or intruder, both methods will update DNS server for the alternative route information. However, the first method utilizes IP-over-IP technique to relay request/data between clients and the real server. The second method, that uses the second firewall as a proxy server, requires adding new fields to the DNS server and new features to web browsers. Details about both proposed methods are presented and discussed in this paper, and the first method was implemented in this project. A series of software was also developed to implement the first method.

Software Package/Tools used in this project

VMWare

VMware server software is virtual machine software for consolidating and partitioning physical servers in secure virtual machines. VMware server software is used throughout the enterprise – from the departmental server to the data center – to simplify server infrastructure. It minimizes your total cost of ownership (TCO) by maximizing server manageability, flexibility, and efficiency. Enterprise-Class Virtual Machines on Intel Servers provide:

· For consolidating and partitioning systems across the enterprise

· Provide a secure, uniform virtual machine platform

· Easily integrates into any environment to maximize server management efficiency and minimize costs

VMWare was installed on Athena and creates two additional server environments (Argo and Ardent) that used in this project. Further information about VMWare is referred to the web site: www.vmware.com
Bind

A Brief History of Bind

BIND (Berkeley Internet Name Domain) is an implementation of the Domain Name System (DNS) protocols and provides an openly redistributable reference implementation of the major components of the Domain Name System, including:

· a Domain Name System server (named)

· a Domain Name System resolver library

· tools for verifying the proper operation of the DNS server

The BIND DNS Server is used on the vast majority of name serving machines on the Internet, providing a robust and stable architecture on top of which an organization’s naming architecture can be built. The resolver library included in the BIND distribution provides the standard APIs for translation between domain names and Internet addresses and is intended to be linked with applications requiring name service.

The Berkeley Internet Name Domain package was originally written at University of California at Berkeley as a graduate student project under a grant from the US Defense Advanced Research Projects Administration (DARPA). After the initial versions of BIND maintained by the Computer Systems Research Group (CSRG) at UC Berkeley, additional work on the software package was done and different versions of Bind have been developed and maintained by a couple of organizations [3,4,10].

Version 8/9 of Bind

Bind 9, which is the latest version of Bind, is used in this project. Bind of version 8/9 has implemented the updated DNS protocol to include a new type of query - the update request (see RFC 2136 for details). The update request allows local and remote hosts to provide new information about a domain to the primary authoritative DNS server for that zone. Updates can add or delete individual resource records (i.e. A, CNAME, MX, etc.) for a zone or even all the resource records in a zone. In addition, changes can be made conditional to the existence or absence of resource records.

The feature of DNS update requests with Bind of version 9 has been used in this project. How to install and configure BIND to allow dynamic updates are described later in this report. Further information about Bind can be found on the Internet and available in some of the papers listed in the reference section[3,410].

Literature Review

Fundamentals about DNS

Domain Name Service DNS

Domain naming, and its most visible component, the Domain Name Service (DNS), is critical to the operation of the Internet. The average American phone number, with area code, is 10 digits in length and encodes 10^10, or 10,000,000,000 possibilities. The Internet IP address, at 32 bits, encodes 2^32 or 4,294,967,296 possibilities. For human engineering purposes, how can we build an effective directory of these difficult large numbers?

The telephone company solves this problem with lots of large paper directories, and operators you call and ask about numbers not in your directory. Internet solves this problem with a hierarchy of simple, mnenomic names, called domain names. Instead of remembering 205.216.138.22, all I need to know is the host’s domain name - ns.adnc.com. Some people think the dots in a domain name correspond to the dots in the numeric address. This is not the case. There are always three periods in an IP address, separating its four constituent bytes. There are a variable number of periods in a domain name. The crucial DNS documentation is provided in RFC 1034 and RFC 1035. The Encyclopedia’s Programmed Instruction Course has a DNS Section, and the Encyclopedia’s software section has a Dig page, discussing use of this free software diagnostic tool. DNS also plays an important role in Internet mail delivery.

DNS Protocol Overview

Part of the confusion associated with the DNS protocol is that it lacks a special name. Thus DNS can refer either to the entire system, or to the protocol that makes it work. This page documents the protocol, which operates in one of two basic modes - lookups or zone transfers.

DNS Lookups

Normal resource records lookups are done with UDP. An “intelligent retransmission” is to be used, though one is not specified in the protocol, resulting in a mix of poor strategies with good ones. The protocol itself is stateless; all the information needed is contained in a single message, fully documented in RFC 1035 §4.1, and having the following format:

 +---------------------+

| Header |

 +---------------------+

| Question | the question for the name server

 +---------------------+

| Answer | RRs answering the question

 +---------------------+

| Authority | RRs pointing toward an authority

 +---------------------+

| Additional | RRs holding additional information

 +---------------------+

· Questions are always Name, Type, Class tuples. For Internet applications, the Class is IN, the Type is a valid RR type, and the Name is a fully-qualified domain name, stored in a standard format. Names can’t be wildcarded, but Types and Classes can be. In addition, special Types exist to wildcard mail records and to trigger zone transfers. The question is the only section included in a query message; the remaining sections being used for replies.

· Answers are RRs that match the Name, Type, Class tuple. If any of the matching records are CNAME pointers leading to other records, the target records should also be included in the answer. There may be multiple answers, since there may be multiple RRs with the same labels.

· Authority RRs are type NS records pointing to name servers closer to the target name in the naming hierarchy. This field is completely optional, but clients are encouraged to cache this information if further requests may be made in the same name hierarchy.

· Additional RRs are records that the name server believes may be useful to the client. The most common use for this field is to supply A (address) records for the name servers listed in the Authority section.

However, more clever name servers are feasible. For example, if the question is for an MX record for FreeSoft.org, the answer will currently point to mail.adnc.com. The name server can infer that the client’s next request will be an A query for mail.adnc.com, which will be answered by with a CNAME record, the DNS equivalent of a symbolic link, and the target of that link, an A record for gemini.adnc.com. The name server can avoid all this extra traffic by just including the CNAME and A records as additional RRs in the original reply. Not all name servers do this, however. Use the Dig program to watch what really happens.

Zone Transfers

Sometimes, it is necessary to efficiently transfer the resource records of an entire DNS zone. This is most commonly done by a secondary name server having determined the need to update its database. The operation of a zone transfer is almost identical to a normal DNS query, except that TCP is used (due to large quantity of reply records) and a special Class exists to trigger a zone transfer. A DNS query with Name=FreeSoft.org, Class=IN, Type=AXFR will trigger a zone transfer for FreeSoft.org. The end of a zone transfer is marked by duplicating the SOA RR that started the zone. Zone transfers are discussed in more detail in RFC 1034 §4.3.5.

Lower-Level Transport

Either TCP or UDP can be used to transport DNS protocol messages, connecting to server port 53 for either. Ordinary DNS requests can be made with TCP, though convention dictates the use of UDP for normal operation. TCP must be used for zone transfers, however, because of the danger of dropping records with an unreliable delivery protocol such as UDP.

Theory of Operation

DNS uses a distributed database protocol to delegate control of domain name hierarchies among zones, each managed by a group of name servers. For example, *.cnn.com, where * is anything, is completely the responsibility of CNN (Turner Broadcasting, as they say). CNN is responsible for constructing name servers to handle any domain name ending in cnn.com, referred to as their Zone of Authority (ZOA). A zone takes its name from its highest point, so this zone is simply called cnn.com. CNN registers their zone with InterNIC, who loads their name server IP addresses into the root name servers, which makes this information available to the global Internet. CNN can also make subdelegations, like delegating news.cnn.com to their news division. This can be as simple as creating new name server entries with the longer names, but mechanisms exist if the delegee wants to operate an independent name server (see RFC 1034 §4.2). Of course, CNN doesn’t actually maintain their own name server. Like most people, they let their Internet service provider do it for them. In their case, that means ANSnet, so nis.ans.net is their primary name server, and ns.ans.net their backup name server.

So, name servers contain pointers to other name servers, that can be used to transverse the entire domain naming hierarchy. You may be wondering how Internet hosts find an entry point to this system. Currently, it can be done in three major ways, all of which depend on preloading the IP address of at least one name server. One way is to preconfigure addresses of the root name servers. This method is typically used by Internet service providers on their name servers, typically in the UNIX file /etc/namedb/named.root. Another way is to preload the address of a name server that supports recursive queries, and send any name server lookups to it. This method is common among dial-up Internet subscribers. The user preloads the address of the service provider’s name server, which processes all queries and returns the answer to the client. The final method is to automatically configure the address of a recursive name server, perhaps using a PPP extension (RFC 1877) that is not yet widely supported. Once a host has been configured with initial name server addresses, it can use the DNS protocols to locate the name servers responsible for any part of the DNS naming hierarchy, and retrieve the resource records (RRs) that match DNS names to IP addresses and control Internet mail delivery.

Name Servers

A name server is an Internet host running software capable of processing DNS requests. A popular free software name server is BIND Named, for UN*X hosts.

Primary and Secondary Name Servers

Typically, a single name server will be configured as the primary name server for a domain. For backup purposes, a number of other name servers may be configured as secondary name servers. From the standpoint of DNS, there is no difference between primary and secondary name servers, since the resolving algorithm simply uses a domain’s NS records in the order provided. Typically, the primary name server is listed first, followed by the secondaries, but this is not a requirement. In fact, if a group of domains is served by a set of name servers, the ordering of the name servers may be mixed among the domains, to facilitate load balancing. A domain’s primary name server will have a file on disk containing the RR definitions for that domain. Typically, secondary name servers do not have to be known to the primary. However, some sites, not wishing to publicly distribute copies of their entire domain, restrict zone transfers to preconfigured hosts. Secondary name servers depend on zone transfers for their operation.

Typically, a secondary name server will perform a zone transfer to acquire a complete copy of the primary’s RR database, often saving this copy on disk. Periodically, the primary’s SOA record for the domain is checked for changes in its SERIAL field. Upon detecting a change, the secondary performs another zone transfer to acquire the updated information. Therefore, the SERIAL field in a domain’s SOA record must be changed every time a change is made within the domain. The timing of secondary updates is governed by several fields in the domain’s SOA record. The secondaries check the primary’s NS record every REFRESH seconds. If one can not perform a scheduled check, it retries every RETRY seconds. If a check can’t be performed for EXPIRE seconds, then all the secondary’s records for that domain are discarded, and it begins to return errors to lookup requests.

Recursion, Caching, and Authoritative Replies

If a name server receives a query for a domain it does not serve, two options are available. The name server may return a referral to the client citing better name servers. Such replies have empty answer sections, and NS records in the authority section pointing to the other servers. Alternately, the server may recurse by attempting to completely resolve the request through a series of exchanges with other name servers, delaying a reply to the original requester until it is complete.

Most name servers will recurse, since this permits them to cache the various resource records used to access the foreign domain, in anticipation of further similar requests. Every resource record has a Time To Live (TTL) field (distinct from the IP TTL field) which specifies the number of seconds the record may be cached before it must be discarded. Although an explicit TTL can be set on any resource record, most records default to the TTL specified in the MINIMUM field of their SOA. Clients may also cache, according to the same rules. Part of the DNS message header is the Authoritative Answer (AA) bit. This bit is set in replies that come direct from a primary or secondary name server. This bit is clear in replies that come from a cache.

Design and Implementation

Approach 1
The basic architecture for approach 1 is shown in Figure 2. Clearly the assumption is that clients communicate with the DNS server through a different firewall or directly so that when the original FireWall is attacked, clients can get the alternative route information.

[image: image2]
Figure 2. Alternative Route using Ip-Over-IP architecture

Hardware and Software Configurations and Descriptions

Three Linux machines are used in this study. In fact, one machine called Athena is broken into three Operating Environments using VMWare. The three operating environments are: Athena.uccs.edu used as the regular firewall server; Ardent.uccs.edu used as real server and DNS server; and Argo.uccs.edu used as the second firewall. The testbed configuration is shown Figure 3.

[image: image3]
Figure 3. Alternative Route using Ip-Over-IP Testbed
A software package developed in this project includes:

1. MessageSend program. This is a client program running at the real server. The MessageSend program will be kicked-off by an intrusion detection program such as Snort upon detection of an attacker.

2. PM (Process Manager) program. This is a server program that listens/reads attacking messages from MessageSend program, and manages/starts up other two processes that update DNS server and transfer data between the alternative firewall and real server using IP-Over-IP technique.

3. UpdatedDNS.sh process. This is a UNIX script started by the PM process to update local DNS server for alternative fire wall information (IP address).

4. IP-Over-IP-Svr program. This program will be started up by the Process Manager to complete the alternative route from client to the real server through the alternative firewall. In this version, the program only handle HTTP protocol.

Process Flow

Step 1: Upon detection of an attacker or intruder (ex. By Snort), MessageSend running on the real server sends an message to the alternative firewall to inform the fact that the server is attacked.

Step 2: Upon receiving an “Attacked” message, Process Manager (PM) running at the alternative fire wall server will start up updateDNS process.

Step 3: Upon successfully updating the DNS server for the alternative firewall information, the PM will start up the IP-Over-IP-Svr process to complete the alternative route from a client to the real server through the alternative firewall.

Installation of a DNS Server

The version 9 of Bind software is used in this study. The DNS server is set up on ardent.uccs.edu machine as root.

The Boot File:

First step is to create the file named.boot. This describes to named where the information that it requires can be found. This file can be found in /etc/named.boot file.

The cache file:

You should always use the latest cache file. The simplest way to do this is by using dig(1) this way:

dig @ardent.uccs.edu. ns > root.cache

The Forward Mapping file:

The SOA record is the Start Of Authority record. It contains the information that other nameservers will learn about this domain and how to treat the information they are given about it. The ‘@’ as the first character in the line indicates that you wish to define things about the domain for which this file is responsible. The domain name is found in the named.boot file in the corresponding line to this filename. All information listed refers to the most recent machine/domain name so all records from the ‘@’ until ‘localhost’ refer to the ‘@’. The SOA record has 5 magic numbers. First magic number is the serial number. If you change the file, change the serial number. If you don’t, no other name servers will update their information. The old information will sit around for a very long time.

Refresh is the time between refreshing information about the SOA. Retry is the frequency of retrying if an authorative server cannot be contacted. Expire is how long a secondary name server will keep information about a zone without successfully updating it or confirming that the data is up to date. This is to help the information withstand fairly lengthy downtimes of machines or connections in the network without having to recollect all the information. Minimum is the default time to live value handed out by a nameserver for all records in a zone without an explicit TTL value. This is how long the data will live after being handed out. The two pieces of information before the 5 magic numbers are the machine that is considered the origin of all of this information. Generally the machine that is running your named is a good one for here. The second is an email address for someone who can fix any problems that may occur with the DNS.

The Reverse Mapping File:

The reverse name lookup is handled in a most bizarre fashion. Well it all makes sense, but it is not immediately obvious. All of the reverse name lookups are done by finding the PTR record associated with the name w.x.y.z.in-addr.arpa. So to find the name associated with the IP number 1.2.3.4, we look for information stored in the DNS under the name 4.3.2.1.in-addr.arpa. They are organized this way so that when you are allocated a B class subnet for example, you get all of the IP numbers in the domain 130.95. Now to turn that into a reverse name lookup domain, you have to invert the numbers or your registered domains will be spread all over the place. It is a mess and you need not understand the finer points of it all. All you need to know is that you put the reverse name lookup files back to front.

Updating DNS with BIND 8/9

RFC 2136 updated the DNS protocol to include a new type of query - the update request. The update request allows local and remote hosts to provide new information about a domain to the primary authoritative DNS server for that zone. Updates can add or delete individual resource records (i.e. A, CNAME, MX, etc.) for a zone or even all the resource records in a zone. In addition, changes can be made conditional to the existence or absence of resource records.

In order to use DNS update requests you must be running BIND 8 or 9 (or another DNS server that supports update requests). To configure BIND to allow dynamic updates you must add the allow-update statement to the zone section for the domain you wish to have dynamic hostnames in /etc/named.conf.
Approach 2

Another approach for implementing alternative route is proposed in this section. The purpose of the approach presented in this section is to provide a complete solution for certain trusted clients for the problems caused by attackers. In other words, the design in this section will guarantee continuous service for trusted clients through an alternative route when the real server is attacked. The basic ideas of this approach is to add three new fields to the current DNS specifications. The three new fields are:

1. Proxy Server IP address;

2. Proxy Server Port Number;

3. A field for a list of trusted client IP addresses or identifiers or digital signatures.

The proposal also includes modifications to the web browsers (IE or Netscape) or network applications to read the three new DNS fields and configure web browsers accordingly and automatically if and only if the client information such as IP or identifier or digital signatures is matching to the client information from the DNS server. In this way, only the trusted clients will go through the alternative route (through a Proxy Server) to the real server. The DNS server should also allow updating the three new fields since the trusted client list or Proxy server information such as IP or port number may change from time to time.

Results and discussions

Approach 1 has been implemented, and some testing of approach 1 by browsing some personal web pages through the alternative routes established using IP-Over-IP indicates that the alternative route is working well. The four pieces of software developed for approach 1 were installed in the test-bed described earlier. Some testing such as browsing personal web pages through IP-Over-IP route is done using cs.uccs.edu and blanca.uccs.edu because of convenient access from home to those machines. More testing with simulating attacking situation or linking SendMessge program to Snort is needed. Currently the IP-Over-IP program developed using socket technology, only handle HTTP protocol. The communications between SendMessage and ProcessManager are also done through socket communications. The source codes can be found in the following URL: http://cs.uccs.edu/~cs526/sli/src

Due to time constraint, approach 2 or method 2 was not implemented in this project, however, the basic design is described in this report. The advantage of approach 1 is relatively easy to use and implement. The IP-Over-IP server in approach 1 can be improved easily to handle other protocols such as FTP, SNMP, etc. Approach 2 requires changes not only to DNS server but also to web browsers or network applications, and thus is difficult to implement. However, approach 2 provides more transparent solution to the DDoS problems, and does guarantee continuous service for trusted clients when the original route is attacked. Approach 2 makes it harder for attackers to detect the alternative route, and thus more secure. With additional rules or sound policies added to the DNS server, approach 2 would provide even better solutions to tackle the DDoS problems

Conclusions

Many researchers in Computer Science and Engineering fields have paid more attentions on Internet security, and many advances have been achieved in the past. However, the number of DDoS victims continues to increase and more complicated methods or tools tend to be used by attackers or intruders. Many studies have been related to intrusion tolerance techniques that maximize quality of service during DDoS attacks. However, a complete solution to the problems caused by various attackers is hardly given due to the different techniques or tools used by attackers. The alternative route techniques presented in this project should be an addition to the solutions published so far related to intrusion tolerance. Approach 1 presented in this report reasonably establishes an alternative route dynamically, and is relatively easy to set up and use. The client can enjoy continuous service without noticing the change of data transfer route, however, this approach does not eliminate the problems caused by attackers completely since the attackers will go through the alternative route upon detection of the alternative route. This is why we proposed another approach (Approach 2) in the paper that guarantees the continuous service for the trusted clients. It will be very difficult for attackers to go through the alternative route in approach 2 because the new rules added to the DNS server make it tougher for the attackers to get any information for the proxy server information or detect the alternative route.

Lesson Learnt

Through literature review, we got better understanding about the latest development in research on Internet security field. By implementing approach 1 presented in this report, we have a chance to understand further about network or Internet communications in related to the DDoS issues. More importantly we leant the important roles that DNS plays in the Internet world, and its possible roles in defeating DDoS. We also leant more about setting up/configuring DNS and Apache web servers, and understand better how DNS and Apache servers work internally.

Future Works

1. The IP-Over-IP-Svr is handling data following HTTP protocol only in the current version. This program can easily be improved to handle data coming through different ports or protocols such as SNMP, FTP, etc ..

2. The Approach 1 architecture can be expanded to include failover/failback capability and used as a load balancer, and thus further improve intrusion tolerance.

3. Approach 2, which requires additions to the current DNS specifications and changes to web browsers or network applications, needs to be implemented

Reference

1. Design of an Autonomous Anti-DDoS network (A2D2). Angela Cearns. Thesis. Department of Computer Science at UCCS. 2002.

2. Detection, Defense, and Tracking of Internet-Wide Illegal Access in a Distributed Manner. Kohei OHTA <kohei@cysols.com>
Glenn MANSFIELD <glenn@cysols.com>
Cyber Solutions Inc. Japan Yohsuke TAKEI takei@nemoto.ecei.tohoku.ac.jp, Nei KATO kato@nemoto.ecei.tohoku.ac.jp Yoshiaki NEMOTO nemoto@nemoto.ecei.tohoku.ac.jp
Tohoku University, Japan

HTTP://www.isoc.org/isoc/conferences/inet/00/cdproceedings/1f/1f_2.htm
3. DNS Overview. http://www.freesoft.org/CIE/Topics/77.htm
4. Setting up a basic DNS server for a domain. http://www.ludd.luth.se/~kavli/BIND-FAQ.html
5. A Testbed for Study of Distributed Denial of Service Attacks. Andrew Barkley, Steve Liu, Quoc Thong Le Gia, Matt Dingfield and Yashodhan Gokhale. Proceedings of the 2000 IEEE Workshop on Information Assurance and Security. United States Military Academy, West Point, NY, 6-7 June, 2000.

6. CERT Coordination Center. Denial of Service Attacks.

http://www.cert.org/tech_tips/denial_of_service.html
7. Implementing Pushback: Router-Based Defense Against DDoS Attacks. John Ioannidis and Steve M. Bellovin. AT & T Research Lab. 2002. http://citeseer.nj.nec.com/ioannidis02implementing.html
8. Protecting Web Servers from Distributed Denial of Service Attacks. Frank Kargl, Joern Maier, and Michael Weber. University of Ulm Germany, May 2001. http://citeseer.nj.nec.com/444367.html
9. VMware. www.vmware.com
10. Internet Software Consortium. www.isc.org
www.victim.com

Agent (Attacker)

Handler

(Middleman)

 Client

(Commander)

Mastermind Intruder

Client

IP-over-IP

Alternative Firewall

(Ardent)

FireWall

(Athena)

DNS Server

(Argo)

Real Server

(Argo)

Client

IP-over-IP

Alternative Firewall

FireWall

DNS Server

Real Server

PAGE
13

[image: image4.wmf]