WLAN Security :PEAP

Submitted By:

 Sunanda Kandimalla

Table of Contents

3Introduction

4802.11 Security Mechanisms

4Authentication Mechanism in 802.11

5802.1x overview

8EAP

9Authentication in EAP

11Length

11Type

11Type-Data

12Advantages of EAP

12Disadvantages of EAP

19PEAP Response Packet

Introduction

Wireless LANs are, as the name indicates, Local Area Networks that use electro-magnetic waves as the medium of communication. The specifications of Wireless LANs are such as to make them compatible with the ``Ethernet'' LANs which are the most widely implemented Local Area Networks. The chief concern in migrating to WLAN access is security. An 802 LAN specifications cover the lowest two layers of the OSI/ISO model -- the Physical Layer and the Data Link Layer. The Data Link Layer is further broken down into three sub-layers. The lowest one of these is the Medium Access Control (MAC) sublayer responsible for allocating the carrier channel to a host for transmission in a fair manner. Above that comes the Bridge that is responsible for ironing out the dissimilarities between the various types of LANs and present a uniform interface to the next higher Logical Link Control (LLC) layer that is responsible for providing QoS and a uniform interface to the Network layer.

Transmitting data on the Wireless Medium violates some of the implicit authenticity and privacy assumptions made in wired networks. Those assumptions are that of authenticity, privacy and location, among others. Due to the long history of wired media, these assumptions are also carried over to the design and configuration of upper layers. The major security implications of having a wireless medium for LANs are:

1. Privacy of data is violated and anyone equipped with a physical layer compliant radio can sniff data flowing through the network.

2. Authenticity is not guaranteed and an intruder can spoof as a currently unassociated station and insert his own data onto the network.

The primary goals of any security setup for WLANs should include:

1. Access control and mutual authentication, preferably on a per packet basis.

2. Enough flexibility to provide different levels of security for different environments

3. Ubiquitous security for roaming users, independent of their physical location.

4. Strong confidentiality and protection from eavesdroppers

5. Scalability to support varying number of users and network complexity.

Wireless LANs are technically referred to by their IEEE Standard Number - 802.11. There are several offshoots of the 802.11 standard that differ in the Physical Layer specifications due to incorporation of techniques to enhance data rates (802.11a., 802.11b, etc). The IEEE 802.11 specification defines authentication and confidentiality mechanisms. We recall that the term authentication refers to the confirmation of the identity of an entity that seeks to establish a connection with another entity, while confidentiality is about keeping information from all but those authorized to have it.

802.11 Security Mechanisms

The IEEE 802.11 wireless LAN standard specifies how to achieve wireless connectivity for fixed, portable, and moving stations in a local area. Any device that contains an IEEE 802.11 interface to the wireless medium is called a station. An entity that has station functionality and also gives associated stations access to e.g. a wired LAN or the Internet is called an access point. the wireless network consists of at least one access point connected to the wired network infrastructure and a set of wireless end stations. This configuration is called a Basic Service Set (BSS). An Extended Service Set (ESS) is a set of two or more BSSs forming a single subnetwork.

[image: image1.png]JSTIITON RySEm LR

e

Basic Servit Set (BSS)

@@

Extnded Serice Set (ESS)

802.11 operates on two modes of authentication Open System Authentication and Shared Key Authentication. The former doesn't include any explicit authentication and any station is free to join the network. The latter includes authentication of the station by the AP using shared private keys. Privacy of data is ensured by encryption of the MAC payload using a combination of the shared key and a sequence generated on the fly as the encryption key. The encryption algorithm is capabale of operating on streaming data. This system is known as Wired Equivalent Privacy (WEP). It is a standard security mechanism for 802.11b WLAN networking. Because it relies on the secret key shared between the Access Point (AP) and the WLAN client, WEP has been found to be vulnerable because it calls for the use of a weak keying scheme to be used with RC4. Protection against unauthorized modification is achieved through a 32-bit Integrity Check Value (ICV) that uses the CRC-32 algorithm to ensure data integrity. The ICV is also sent encrypted.

Authentication Mechanism in 802.11

The Open System Authentication does not require an station to authenticate before associating and the station can listen to all unencrypted traffic on the network. This is usually employed in airports etc. where privacy is not an issue and the motive is to just provide connectivity to roaming users.

The second mode is shared secret key authentication and encryption. In this mode, a 40-bit secret key is used that is known before hand to the AP and the station. If a station is not authorized to use the network then it doesn't have the secret key. The key resides in each station's Management Information Base (MIB) in a write-only form and is therefore available to the MAC Co-ordinator only. The 802.11 standard does not specify how to distribute the keys to each station. The authentication process has the following steps:

1. A requesting station sends an Authentication frame to the intended responder announcing that it intends to use shared key authentication

2. The responder replies with the second Authentication frame having 128 bytes of random challenge text generated by the WEP engine in a standard form.

3. The requester copies the challenge in the third Authentication frame, encrypts the frame with it's secret key and sends it back to the responder.

4. The responder then checks the ICV and if correct, it decrypts the contents of the challenge text field and compares them to that sent in frame 2. If the contents match, it sends a final frame announcing success. If the contents don't match or the ICV check fails, the final frame announces failiure.

A major underlying problem with the existing 802.11 standard is that the keys are cumbersome to change. If you don't update the WEP keys often, an unauthorized person with a sniffing tool, such as AirSnort or WEPcrack, can monitor your network for less than a day and decode the encrypted messages. In order to use different keys, you must manually configure each access point and radio NIC with new common keys. Products based on the 802.11 standard alone offer system administrators no effective method to update the keys. This might not be too much of concern with a few users, but the job of renewing keys on larger networks can be a monumental task. As a result, companies either don't use WEP at all or maintain the same keys for weeks, months, and even years. Both cases significantly heightens the wireless LAN's vulnerability to eavesdroppers and another problem is that the access point is never authenticated which opens up for a number of attacks, such as denial of service via rogue access points. The IEEE 802.11 security group is presently working to remedy this problem, by proposing a short-term solution that can be used with existing hardware as well as a more stable long-term solution.
802.1x overview

The next version of the IEEE 802.11 specification will allow authentication to take place in upper layers. To this end a new standard, IEEE 802.1X, has been created. 802.1X is a transport mechanism. The actual authentication takes place in the EAP-protocol on top of 802.1X. IEEE 802.1X can be described to lie between the MAC layer and higher layers and takes care of filtering of frames to/from non-authenticated stations.This standard specifies a general method for the provision of port based network access control. A port in this context is an attachment point to the LAN infrastructure, e.g. an association between a station and an access point. The specification describes the architectural framework within which the authentication takes place, and establishes the requirements for a higher level authentication protocol between the station and the access point.
[image: image2.png]EAP

[s 4

802.11 MAC

802.11 PHY

Figure 1 IEEE 802.1X in part of protocol stack in Access Point or mobile station. EAP messages are always accepted while other packets are filtered based on authentication status.

The new IEEE 802.1X standard allows mutual authentication and session key generation to take place at higher layers, using any suitable Extensible Authentication Protocol (EAP) mechanism. 802.1x addresses weaknesses in the standalone WEP. 802.1x is an IEEE standard that defines the authentication methods support in 802.11. 802.1x requires authentication of WLAN clients to the Access Point (AP), via an authentication server. Encryption is used between WLAN clients and the AP to deliver the session key by dynamically varying encryption keys. This eliminates the possibility of an attacker using the same session key to attack data in transit. 802.1X ties a protocol called EAP (Extensible Authentication Protocol) to both the wired and wireless LAN media and supports multiple authentication methods, such as token cards, Kerberos, one-time passwords, certificates, and public key authentication.

Initial 802.1X communications begins with an unauthenticated supplicant (i.e., client device) attempting to connect with an authenticator (i.e., 802.11 access point). The access point responds by enabling a port for passing only EAP packets from the client to an authentication server located on the wired side of the access point. The access point blocks all other traffic, such as HTTP, DHCP, and POP3 packets, until the access point can verify the client's identity using an authentication server (e.g., RADIUS). Once authenticated, the access point opens the client's port for other types of traffic. In its database, or a database connected to it, the RADIUS server looks up the user, the type of authentication to be used and his permissions. An institution can either choose to use Username/Password, Certificates (either on a chip card, a USB token or as a file) or methods to be developed (like a One Time Password sent by SMS. It is even possible to choose an authentication type per user, thanks to the modularity of 802.1X and EAP. The entire A&A process is encrypted, which makes it hard to intercept passwords or ID's. If the user enters the right credentials, the RADIUS-server tells the AP to open the connection for the user, and gives both the AP and the user temporary WEP keys. This means that the entire session of the user is encrypted as well.

[image: image3.png]Ehemer

P Authentiator Authentication ->a

A

= signaling

data

To get a better idea of how 802.1X operates, the following are specific interactions that take place among the various 802.1X elements:

1. The client sends an EAP-start message. This begins a series of message exchanges to authenticate the client; think of this as a group of visitors entering the front gate of a theme park and the group's leader (i.e., client) asking the gatekeeper (i.e., access point) whether they can enter.

2. The access point replies with an EAP-request identity message. In the case of the theme park, the gatekeeper will ask the leader for their name and drivers license.

3. The client sends an EAP-response packet containing the identity to the authentication server. The leader in our example will provide their name and drivers license, and the gatekeeper forwards this information to the group tour manager (i.e., authentication server) who determines whether the group has rights to enter the park.

4. The authentication server uses a specific authentication algorithm to verify the client's identity. This could be through the use of digital certificates or other EAP authentication type. In the case of our example, this process simply involves verifying the validity of the leader's drivers' license and ensuring that the picture on the license matches the leader. In our example, we'll assume the leader is authorized.

5. The authentication server will either send an accept or reject message to the access point. So the group tour manager at the theme park tells the gatekeeper to let the group enter.

6. The access point sends an EAP-success packet (or reject packet) to the client. The gatekeeper informs the leader that the group can enter the park. Of course the gatekeeper would not let the group in if the group tour manager had rejected the group's admittance.

7. If the authentication server accepts the client, then the access point will transition the client's port to an authorized state and forward additional traffic. This is similar to the gatekeeper automatically opening the gate to let in only people belonging to the group cleared for entry.

8. In a roaming environment, the station may connect to several access points during a session. All the access points are assumed to be connected to the same back-end authentication server.
The basic 802.1X protocol provides effective authentication regardless of whether you implement 802.11 WEP keys or no encryption at all. Most of major wireless LAN vendors, however, are offering proprietary versions of dynamic key management using 802.1X as a delivery mechanism. If configured to implement dynamic key exchange, the 802.1X authentication server can return session keys to the access point along with the accept message. The access point uses the session keys to build, sign and encrypt an EAP key message that is sent to the client immediately after sending the success message. The client can then use contents of the key message to define applicable encryption keys. In typical 802.1X implementations, the client can automatically change encryption keys as often as necessary to minimize the possibility of eavesdroppers having enough time to crack the key in current use.
 The software supporting the specific EAP type resides on the authentication server and within the operating system or application software on the client devices. The access point acts as a "pass through" for 802.1X messages, which means that you can specify any EAP type without needing to upgrade an 802.1X-compliant access point. As a result, you can update the EAP authentication type as newer types become available and your requirements for security change.

EAP

The Extensible Authentication Protocol (EAP) is a general authentication protocol defined in IETF standards. It's important to note that 802.1X doesn't provide the actual authentication mechanisms. It allows to provide different authentication mechanisms to be transported. There are many EAP types. When utilizing 802.1X, you need to choose an EAP type, such as Transport Layer Security (EAP-TLS) or EAP Tunneled Transport Layer Security (EAP-TTLS), LEAP, Protected EAP (PEAP) (developed and used by RSA Security, Cisco and Microsoft) which defines how the authentication takes place. Lightweight EAP is Cisco’s proprietary protocol use to share authentication data between the Cisco Aironet AP and the Cisco Secure ACS server. EAP-Tunneled Transport Layer Security (EAP-TTLS) is a competing method of PEAP. EAP-TTLS is used by Funk and Certicom WLAN solutions.

EAP ties network authentication to the underlying wired infrastructure in an approach known as EAP over LAN (EAPOL). For the best security, EAPOL requires three hardware components: the WAP, the wireless station, and a remove Authentication Dial-In User Service (RADIUS) server. EAP is a Point-to-Point Protocol (PPP)-based authentication technology that was adapted for use on point-to-point LAN segments. Because EAP messages were originally defined to be sent as the payload of PPP frames, This standard specifies a general method for the provision of port based network access control. A port in this context is an attachment point to the LAN infrastructure, e.g. an association between a station and an access point. The specification describes the architectural framework within which the authentication takes place, and establishes the requirements for a higher level authentication protocol between the station and the access point.
In EAP to establish communications over a point-to-point link, each end of the PPP link must first send LCP packets to configure the data link during Link Establishment phase. After the link has been established, PPP provides for an optional Authentication phase before proceeding to the Network-Layer Protocol phase. By default, authentication is not mandatory. If authentication of the link is desired, an implementation must specify the Authentication-Protocol Configuration Option during Link Establishment phase. This allows the authenticator to request more information before determining the specific authentication mechanism. This also permits the use of a "back-end" server which actually implements the various mechanisms while the PPP authenticator merely passes through the authentication exchange. An overview of the most relevant elements of the 802.1X and EAP framework are shown in the picture below.

[image: image4.png]CHAP.

N |
MD5 | TLS | TTLS | PEAP |MS—CHAPV2|
EAP |
802.1X |
PPP 802.11 |

Authentication in EAP

The steps involved are

1. After the Link Establishment phase is complete, the authenticator sends one or more Requests to authenticate the peer. The Request has a type field to indicate what is being requested.

2. The peer sends a Response packet in reply to each Request. As with the Request packet, the Response packet contains a type field which corresponds to the type field of the Request.

3. The authenticator ends the authentication phase with a Success or failure packet.

Packet format

Exactly one PPP EAP packet is encapsulated in the Information field of a PPP Data Link Layer frame where the protocol field indicates type hex C227 (PPP EAP). A summary of the EAP packet format is shown below. The fields are transmitted from left to right.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

 +-+

 | Code | Identifier | Length |

 +-+

 | Type | Type-Data ...

 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-

code:

The Code field is one octet and identifies the type of EAP packet.

EAP Codes are assigned as follows:

 1 Request

 2 Response

 3 Success

4 Failure

The Request packet is sent by the authenticator to the peer. Each Request has a type field which serves to indicate what is being requested. The authenticator MUST transmit an EAP packet with the Code field set to 1 (Request). Additional Request packets MUST be sent until a valid Response packet is received, or an optional retry counter expires. Retransmitted Requests MUST be sent with the same Identifier value in order to distinguish them from new Requests. The contents of the data field is dependent on the Request type. The peer MUST send a response packet in reply to a Request packet. Responses MUST only be sent in reply to a

received Request and never retransmitted on a timer. The Identifier field of the Response MUST match that of the Request. The Success packet is sent by the authenticator to the peer to acknowledge successful authentication. The authenticator MUST transmit an EAP packet with the Code field set to 3 (Success).

If the authenticator cannot authenticate the peer (unacceptable Responses to one or more requests) then the implementation MUST transmit an EAP packet with the Code field set to 4 (Failure). An authenticator MAY wish to issue multiple Requests before sending a Failure response in order to allow for human typing mistakes. All EAP implementatins MUST support Types 1-4. These Types, as well as types 5 and 6, are defined in this document. Follow-on RFCs will define additional EAP Types like Identity , Notification, Nak (Response only), MD5-Challenge, One-Time Password (OTP) , Generic Token Card.

Identifier:

The Identifier field is one octet. The Identifier field MUST be the same if a Request packet is retransmitted due to a timeout while waiting for a Response. Any new (non-retransmission)

Requests MUST modify the Identifier field. If a peer recieves a duplicate Request for which it has already sent a Response, it MUST resend it's Response. If a peer receives a duplicate Request before it has sent a Response to the initial Request (i.e. it's waiting for user input), it MUST silently discard the duplicate Request. The Identifier field MUST match the Indentifier field of the Response packet that it is sent in response to.

Length

The Length field is two octets and indicates the length of the EAP packet including the Code, Identifier, Length, Type, and Type-Data fields. Octets outside the range of the Length field should be treated as Data Link Layer padding and should be ignored on reception.

Type

The Type field is one octet. This field indicates the Type of equest or Response. Only one Type MUST be specified per EAP Request or Response. Normally, the Type field of the Response will be the same as the Type of the Request. However, there is also a Nak Response Type for indicating that a Request type is unacceptable to the peer. When sending a Nak in response to a

Request, the peer MAY indicate an alternative desired authentication Type which it supports. An initial specification of Types follows in a later section of this document.

Type-Data

The Type-Data field varies with the Type of Request and the associated Response.

EAPAuthenicationTypes
Because WLAN security is essential - and EAP authentication types provide the means of securing the WLAN connection - vendors are rapidly developing and adding EAP authentication types to their WLAN access points. Some of the commonly deployed EAP authentication types include:
· EAP-TLS (Transport Layer Security). EAP-TLS - the security method used in the 802.1X client in Windows XP - provides for certificate-based, mutual authentication of the client and the network. It relies on client-side and server-side certificates to perform authentication; dynamically generated user- and session-based WEP keys are distributed to secure the connection. Windows XP includes an EAP-TLS client.

· EAP-TTLS. Funk Software and Certicom have jointly developed EAP-TTLS (Tunneled Transport Layer Security). EAP-TTLS is an extension of EAP-TLS, which provides for certificate-based, mutual authentication of the client and network. Unlike EAP-TLS, however, EAP-TTLS requires only server-side certificates, eliminating the need to configure certificates for each WLAN client. In addition, it supports legacy password protocols, so you can deploy it against your existing authentication system (such as tokens or Active Directories). It securely tunnels client authentication within TLS records, ensuring that the user remains anonymous to eavesdroppers on the wireless link and the entire network to the RADIUS server.

· EAP-Cisco Wireless. Also called LEAP (Lightweight Extensible Authentication Protocol), this EAP authentication type is used primarily in Cisco WLAN APs, including the Aironet Series. It encrypts data transmission using dynamically generated WEP keys, and supports mutual authentication.

· EAP-MD-5 Challenge. The earliest EAP authentication type, this essentially duplicates CHAP password protection on a WLAN. EAP-MD5 represents a kind of base-level EAP support among 802.1X devices.
· Protected EAP (PEAP) is an authentication protocol that uses TLS to enhance the security of other EAP authentication methods. PEAP for Microsoft 802.1X Authentication Client provides support for EAP-TLS, which uses certificates for both server authentication and client authentication, and Microsoft Challenge Handshake Authentication Protocol version 2 (EAP-MS-CHAP v2), which uses certificates for server authentication and password-based credentials for client authentication.

Advantages of EAP

The EAP protocol can support multiple authentication mechanisms without having to pre-negotiate a particular one during LCP Phase. Certain devices (e.g. a NAS) do not necessarily have to understand each request type and may be able to simply act as a passthrough agent for a "back-end" server on a host. The device only need look for the success/failure code to terminate the authentication phase.

Disadvantages of EAP

EAP does require the addition of a new authentication type to LCP and thus PPP implementations will need to be modified to use it. It also strays from the previous PPP authentication model of negotiating a specific authentication mechanism during LCP.

Since its deployment, a number of weaknesses in EAP have become apparent. These include lack of protection of the user identity or the EAP negotiation; no standardized mechanism for key exchange; no built-in support for fragmentation and reassembly; and lack of support for fast reconnect.
Requirements for 802.1x and EAP

To use 802.1x and EAP, you must have the following components:

· Client wireless network adaptor compatible with 802.1x

· Client access software capable of EAP

· Wireless access point (base station) compatible with 802.1x and EAP

· RADIUS (authentication server) compatible with EAP

· PKI (public key infrastucture)
The “Protected EAP” proposal

The deficiencies in EAP that are discussed above are addressed by wrapping the EAP protocol within TLS, Protected EAP (PEAP). Any EAP method running within PEAP is provided with built-in support for key exchange, session resumption and fragmentation and reassembly.

 RSA, Microsoft, and Cisco have developed a new EAP mechanism (Protected EAP) that is well suited for these authentication purposes. A station wishes to associate with a wireless LAN access point. It is assumed that a back-end server is sitting behind the access point. The TLS handshake protocol is used to authenticate the back-end server (from the viewpoint of the user of the station, it is the access point that is being authenticated). First the station notifies the access point that a new connection should be initiated, and sends a list of preferred cryptographic algorithms. The back-end server responds with a new Session ID, a list of selected cryptographic algorithms and a public key certificate. The station then generates a secret, encrypts it using the public key obtained from the server, and sends the result. Finally, the server in its last message proves its ability to retrieve the secret.

At this stage, both station and server may generate any amount of new key material to be used for subsequent bulk encryption. TLS also provides a secure link over which authentication of the user can be established, by simply tunneling another authentication mechanism. The user e.g. provides a username and a one-time passcode provided by a hardware token. The authentication information is transferred to the back-end server over the secure TLS link. The back-end server itself may need to contact some other server to get this information validated. With the approach described here, the messages sent by the station during user authentication are not transmitted in clear. This is particularly important in a wireless environment where passive eavesdropping is a serious threat.

An important aspect to consider is the case of roaming users, i.e. when a station is transiting between two access points during a session. In order to obtain a seamless transition, we use the connection re-establishment mechanism provided by the TLS handshake protocol. Note that the new access point is assumed to use the same back-end server as the old one, hence the old negotiated secrets are still available. The station sends the Session ID of the old TLS connection and the previously negotiated cryptographic algorithms. If the Session ID is still valid then the handshake is finished promptly, otherwise a new Session ID is presented to the station by the server and full authentication takes place. Both the station and the server have to know the old secrets in order to successfully complete the protocol. The time of validity of the Session ID is application dependent. In some environments it may be desirable that the server notify the station that the Session ID is about to expire. No mechanism is defined here to handle this situation.

Since EAP does not include support for fragmentation and reassembly, individual methods need to include this capability. By including support for fragmentation and reassembly within PEAP, methods leveraging PEAP do not need to support this on their own. Where EAP is used for authentication in wireless networks, the authentication latency is a concern. As a result, it is valuable to be able to do a quick re-authentication on roaming between access points. PEAP supports this capability by leveraging the TLS session resumption facility, and any EAP method running under PEAP can take advantage of it. In order to provide keying material for a wide range of link layer ciphersuites, EAP methods need to provide a key hierarchy generating authentication and encryption keys, as well as initialization vectors. Development of a secure key hierarchy is complex, and not easy to generalize for all EAP methods. By relying on the well-reviewed TLS key derivation method, PEAP provides the required keying material for any EAP method running within it. This frees EAP method developers from taking on the difficult (and error prone) task of designing a key hierarchy for each method.

Protocol overview

Protected EAP (PEAP) is comprised of a two-part conversation:

[1] In Part 1, a TLS session is negotiated, with server authenticating to the client and optionally the client to the server. The negotiated key is then used to encrypt the rest of the conversation.

[2] In Part 2, within the TLS session, a complete EAP conversation is carried out, unless part 1 provided client authentication.

 PEAP Part 1

The PEAP conversation typically begins with the authenticator and the peer negotiating EAP. The authenticator will typically send an EAP-Request/Identity packet to the peer, and the peer will respond with an EAP-Response/Identity packet to the authenticator, containing the peer's userId. Once the optional initial Identity Request/Response exchange is completed, while nominally the EAP conversation occurs between the authenticator and the peer, the authenticator MAY act as a passthrough device, with the EAP packets received from the peer being encapsulated for transmission to a backend authentication server. In the discussion that follows, we will use the term "EAP server" to denote the ultimate endpoint conversing with the peer.

Once having received the peer's Identity, and determined that PEAP authentication is to occur, the EAP server MUST respond with a PEAP/Start packet, which is an EAP-Request packet with EAP-Type=PEAP, the Start (S) bit set, and no data. Assuming that the peer supports PEAP, the PEAP conversation will then begin, with the peer sending an EAP-Response packet with EAP-Type=PEAP. The data field of the EAP-Response packet will encapsulate one or more TLS records in TLS record layer format, containing a TLS client_hello handshake message. The current cipher spec for the TLS records will be TLS_NULL_WITH_NULL_NULL and null compression. This current cipher spec remains the same until the change_cipher_spec message signals that subsequent records will have the negotiated attributes for the remainder of the handshake.

The client_hello message contains the client's TLS version number, a sessionId, a random number, and a set of TLS ciphersuites supported by the client. The version offered by the client MUST correspond to TLS v1.0 or later. The EAP server will then respond with an EAP-Request packet with EAP-Type=PEAP. The data field of this packet will encapsulate one or more TLS records. These will contain a TLS server_hello handshake message, possibly followed by TLS certificate, server_key_exchange, certificate_request, server_hello_done and/or finished handshake messages, and/or a TLS change_cipher_spec message.

Since after the TLS session is established, another complete EAP negotiation will occur and the peer will authenticate using a secondary mechanism, with PEAP the client need not authenticate as part of TLS session establishment. As a result, although the EAP-Request packet sent by the EAP Server MAY contain a certificate_request message, this is not required. The certificate_request message indicates that the server desires the client to authenticate itself via public key. Typically when the EAP server sends a certificate_request message, the intent is to complete the PEAP authentication without requiring negotiation of an additional EAP method, so that only an EAP-Success or EAP-Failure message is sent inside the TLS channel. However, it is valid for the server to request a certificate in the server_hello and for the client refuse to provide one. In this case, the EAP server MUST require that PEAP Part 2 be completed.

Note that since TLS client certificates are sent in the clear, if identity protection is required, then it is possible for the TLS authentication to be re-negotiated after the first server authentication. To accomplish this, after the server_finished message is sent, and before PEAP part 2, the server sends a TLS hello_request.This allows the client to perform client authentication by sending a client_hello if it wants to, or, send a no_renegotiation alert to the server indicating that it wants to continue with PEAP part 2 instead. Since this re-negotiation occurs within the encrypted TLS channel, it does not reveal client certificate details.

The server_hello handshake message contains a TLS version number, another random number, a sessionId, and a TLS ciphersuite. The version offered by the server MUST correspond to TLS v1.0 or later. In order to provide confidentiality, integrity and replay protection, and authentication, the negotiated TLS ciphersuite MUST provide all of these security services. If the client's sessionId is null or unrecognized by the server, the server MUST choose the sessionId to establish a new session; otherwise, the sessionId will match that offered by the client, indicating a resumption of the previously established session with that sessionID. The server will also choose a TLS ciphersuite from those offered by the client; if the session matches the client's, then the TLS ciphersuite MUST match the one negotiated during the handshake protocol execution that established the session.

PEAP Part 2
The second portion of the PEAP conversation consists of another complete EAP conversation occurring within the TLS session negotiated in PEAP Part 1. It will therefore occur only if establishment of the TLS session in Part 1 is successful. It MUST NOT occur if the EAP Server authenticates unsuccessfully or if an EAP-Failure has been sent by the EAP Server to the peer, terminating the conversation. Since all packets sent within the PEAP Part 2 conversation occur after TLS session establishment, they are protected using the negotiated TLS ciphersuite.

Part 2 of the PEAP conversation typically begins with the Authenticator sending an EAP-Request/Identity packet to the peer, protected by the TLS ciphersuite negotiated in PEAP Part 1. The peer responds with an EAP-Response/Identity packet to the authenticator, containing the peer's userId. Since this Identity Request/Response exchange is protected by the ciphersuite negotiated in TLS, it is protected against snooping or packet modification attacks.

After the TLS session-protected Identity exchange, the EAP server will then select authentication method(s) for the peer, and will send an EAP-Request with the EAP-Type set to the initial method. The peer can NAK the suggested EAP method, suggesting an alternative. Since the NAK will be sent within the TLS channel, it is protected from snooping or packet modification. As a result, an attacker snooping on the exchange will be unable to inject NAKs in order to "negotiate down" the authentication method. An attacker will also not be able to determine which EAP method was negotiated.

As with a normal EAP conversation, an EAP conversation encapsulated within the TLS channel as within PEAP Part 2 continues until the EAP server sends an EAP-Failure or EAP-Success. The receipt of an EAP-Failure or EAP-Success within the TLS protected channel results in a shutdown of the TLS channel by the peer and EAP server. The EAP-Failure or EAP-Success packet sent within the TLS channel is protected from snooping or packet modification, and as a result, while an EAP server MAY send an additional EAP-Failure or EAP-Success message in cleartext, this is not required, since it adds another round-trip. A RADIUS Access-Accept or Access-Reject packet need not contain an EAP-Message attribute, since the NAS determines the success of the conversation from the RADIUS message (Accept/Reject), not the encapsulated EAP-Message attribute.

PEAP Packet Format

A summary of the PEAP Request/Response packet format is shown below.

The fields are transmitted from left to right.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Code | Identifier | Length |

+-+

| Type | Flags |Ver| Data...

+-+

Code

 1 - Request

 2 – Response

Identifier

The Identifier field is one octet and aids in matching responses with

requests.

Length

The Length field is two octets and indicates the length of the EAP packet including the Code, Identifier, Length, Type, and Data fields. Octets outside the range of the Length field should be treated as Data Link Layer padding and should be ignored on reception.

Type

 25 - PEAP

Flags

 0 1 2 3 4 5

 +-+-+-+-+-+-+

 |L M S R R R|

 +-+-+-+-+-+-+

 L = Length included

 M = More fragments

 S = PEAP start

 R = Reserved (must be zero)

The L bit (length included) is set to indicate the presence of the four octet TLS Message Length field, and MUST be set for the first fragment of a fragmented TLS message or set of messages. The M bit (more fragments) is set on all but the last fragment. The S bit (PEAP start) is set in a PEAP Start message. This differentiates the PEAP Start message from a fragment aknowledgment.

Version

 0 1

 +-+-+

 |R 1|

 +-+-+

R = Reserved (must be zero)

Data

The format of the Data field is determined by the Code field.

PEAP Request Packet

A summary of the PEAP Request packet format is shown below. The fields

are transmitted from left to right.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Code | Identifier | Length |

+-+

| Type | Flags |Ver| TLS Message Length

+-+

| TLS Message Length | TLS Data...

+-+

Code

 1

Identifier

The Identifier field is one octet and aids in matching responses with requests. The Identifier field MUST be changed on each Request packet.

Length

The Length field is two octets and indicates the length of the EAP packet including the Code, Identifier, Length, Type, and TLS Response fields.

Type

 25 - PEAP

Flags

 0 1 2 3 4 5

 +-+-+-+-+-+-+

 |L M S R R R|

 +-+-+-+-+-+-+

 L = Length included

 M = More fragments

 S = PEAP start

 R = Reserved (must be zero)

The L bit (length included) is set to indicate the presence of the four octet TLS Message Length field, and MUST be set for the first fragment of a fragmented TLS message or set of messages. The M bit (more fragments) is set on all but the last fragment. The S bit (PEAP start) is set in a PEAP Start message. This differentiates the PEAP Start message from a fragment acknowledgment.

Version

 0 1

 +-+-+

 |R 1|

 +-+-+

 R = Reserved (must be zero)

TLS Message Length

The TLS Message Length field is four octets, and is present only if the L bit is set. This field provides the total length of the TLS message or set of messages that is being fragmented.

TLS data

The TLS data consists of the encapsulated packet in TLS record format.

PEAP Response Packet

A summary of the PEAP Response packet format is shown below. The fields

are transmitted from left to right.

 0 1 2 3

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Code | Identifier | Length |

+-+

| Type | Flags |Ver| TLS Message Length

+-+

| TLS Message Length | TLS Data...

+-+

Code

 2

Identifier

The Identifier field is one octet and MUST match the Identifier field from the corresponding request.

Length

The Length field is two octets and indicates the length of the EAP packet including the Code, Identifier, Length, Type, and TLS data fields.

Type

 25 - PEAP

Flags

 0 1 2 3 4 5

 +-+-+-+-+-+-+

 |L M S R R R|

 +-+-+-+-+-+-+

 L = Length included

 M = More fragments

 S = PEAP start

 R = Reserved (must be zero)

The L bit (length included) is set to indicate the presence of the four octet TLS Message Length field, and MUST be set for the first fragment of a fragmented TLS message or set of messages. The M bit (more fragments) is set on all but the last fragment. The S bit (PEAP start) is set in a PEAP Start message. This differentiates the PEAP Start message from a fragment acknowledgment.

Version

 0 1

 +-+-+

 |R 1|

 +-+-+

 R = Reserved (must be zero)

TLS Message Length

The TLS Message Length field is four octets, and is present only if the L bit is set. This field provides the total length of the TLS message or set of messages that is being fragmented.

TLS data

The TLS data consists of the encapsulated TLS packet in TLS record format.
Conclusion

Selection of an authentication method is the key decision in securing a wireless LAN deployment. The authentication method drives the choice of authentication server, which in turn drives the choice of client software. Fortunately, selecting an authentication method is a reasonably straightforward endeavor. PEAP is designed to use older authentication mechanisms while retaining the strong cryptographic foundation of TLS. PEAP is a two-stage protocol that establish security in stage one and then exchange authentication in stage two. Stage one of the protocol establishes a TLS tunnel and authenticates the authentication server to the client with a certificate. PEAP still use certificates to authenticate the wireless network to the user, but only a few certificates will be required, so it is much more manageable. Once that secure channel has been established, client authentication credentials are exchanged in the second stage. PEAP uses the TLS channel to protect a second EAP exchange. Authentication must be performed using a protocol that is defined for use with EAP. In practice, the restriction to EAP methods is not a severe drawback because any "important" authentication protocol would be defined for use with EAP in short order so that PEAP could use it. A far greater concern is client software support. PEAP is backed by Microsoft, and clients are beginning to become available for recent professional versions of Windows (XP now, with Windows 2000 support coming shortly).

Suppliers of PEAP clients for other operating systems have yet to materialize, which may restrict PEAP to being used only in pure Microsoft networks. PEAP uses the TLS channel to protect a second EAP exchange. Authentication must be performed using a protocol that is defined for use with EAP. In practice, the restriction to EAP methods is not a severe drawback because any "important" authentication protocol would be defined for use with EAP in short order so that PEAP could use it. A far greater concern is client software support. PEAP is backed by Microsoft, and clients are beginning to become available for recent professional versions of Windows (XP now, with Windows 2000 support coming shortly). Suppliers of PEAP clients for other operating systems have yet to materialize, which may restrict PEAP to being used only in pure Microsoft networks.
References

Here are some of the references that I collected my material from:

· http://www.surfnet.nl/innovatie/wlan/
· http://www.drizzle.com/~aboba/IEEE/
· http://www.ietf.org/internet-drafts/draft-

 HYPERLINK "http://207.68.164.250/cgi-bin/linkrd?_lang=EN&lah=757a6e6f9bc63347a58c5327dbe04499&lat=1039638408&hm___action=http%3a%2f%2fwww%2eietf%2eorg%2finternet%2ddrafts%2fdraft%2djosefsson%2dpppext%2deap%2dtls%2deap%2d05%2etxt" \t "_parent" josefsson-pppext-eap-tls-eap-05.txt
· http://www.drizzle.com/~aboba/IEEE/draft-ietf-

 HYPERLINK "http://207.68.164.250/cgi-bin/linkrd?_lang=EN&lah=43a2c476907b64f622b8e36946a194d6&lat=1039638408&hm___action=http%3a%2f%2fwww%2edrizzle%2ecom%2f%7eaboba%2fIEEE%2fdraft%2dietf%2dpppext%2deap%2dttls%2d01%2etxt" \t "_parent" pppext-eap- ttls-01.txt
· http://www.cisco.com/warp/public/cc/pd/witc/ao1200ap/prodlit/wswpf_wp.htm
