Event Application
Using

Pushlets

By

Patricia Ferrao

UCCS-CS526

Dec 6, 2002

1. Introduction

1.1 What is a Pushlet?

A pushlet is a java servlet designed and implemented by Just van den Broecke from Just Objects B.V. It’s main goal is to hold onto a client connection once it has been established, and send information back to the client piecemeal, as it becomes available. The information can be internally generated by separate threads controlled by the pushlet code, or by outside events such as another server or another client. The information generated is called an event, and is sent back to the client as javascript code. The client can use javascript to subscribe to particular event types. The servlet then pushes to the client only those events that the client has subscribed to. Once the client receives an event, it can update its browser using DHTML technology such as javascript and CSS (Cascading Style Sheets).

1.2 What is my Event Application?

My event application uses Just van den Broecke’s pushlet version 0.0.7 technology to generate a particular type of event, which I simply call “eventapp”. The events contain an event number (an integer from 1 to 10), some text describing the nature of the event, and a severity (either Critical, Major, Minor, Warning or Clear). The events are generated randomly, one every few seconds, and pushed to clients subscribed to “eventapp”. My application also includes client-side javascript and HTML documents that allows a client to subscribe to “eventapp”. The client side javascript constantly updates the client browser with new events coming from the server.

2. Event Application Design

2.1 Client Side
The client side code consists of three main files called eventapp.html, blank-init.html and pushlet.html. These html files contain both html and javascript. They make use of six supporting files containing only javascript. I implemented the eventapp.html file using examples that Just provided. The rest of the code is his. The architecture is as follows:

1[image: image1.wmf]displayFrame

eventapp.html

pushletFrame

(

hidden frame

)

-

 blank

-

init.html,

-

 eventapp.html

-

 pushlet.html

creates

creates

Javascript utility files

browser.js

layer.js

layer

-

grid.js

map.js

 pushlet.js

util.js

Figure : Client-Side Architecture

eventapp.html:

· creates both the displayFrame and the pushletFrame
· contains code that displays the event table at the browser
· contains code that updates the event table with new events from the server
 blank-init.html:

· sets the display background color and calls the init function in eventapp.html

pushlet.html:

· contains the callback function that the servlet uses to send events back to the client

· invokes the pushlet servlet on the server side and subscribes this client to “eventapp” events

· sends the event received from the servlet to the displayFrame (eventapp.html).

The registration for “eventapp” events is done by sending “/mypushlet/servlet/pushlet? subject=’eventapp’” to the server, where “mypushlet” is the name of the application directory on Tomcat 4.1.12 (the server that I used for testing), and “servlet/pushlet” maps to the “pushlet.java” servlet code. “eventapp” is the event type that this client is interested in receiving.

The callback function in pushlet.html is “push(args)”. The servlet sends “parent.push(args)”, back to the client, where “args” is the event information. “parent” refers to the document that invoked the pushlet, which in this case is pushlet.html. Therefore, parent.push(args) is a call to the javascript “push(args)” function in pushlet.html.

2.2 Server Side
The server side code consists of the pushlet servlet and a collection of java classes designed around it. The UML diagram
 is give in Figure 2. The key classes are described below:

Pushlet.java:
· extends HttpServlet and contains the doGet(…) method

· creates a pushletSubscriber object and hands it the request and response parameters received from the web server

· calls the processEvents() method of pushletSubscriber
PushletSubscriber.java:
· class is responsible for handling a particular subscriber

· processEvents() method contains a forever loop that waits on a queue for an event to be deposited and sends it to the client as soon as it is available, through clientAdaptor.push(). The loop terminates when the clientAdapter.push() method fails (meaning that the client is no longer there)

· when the push() method fails, the subscriber is terminated

BlockingQueue.java:

· class used to create a queue of events for each subscriber.

· events that need to be sent to the subscriber are enqueued.

· queue blocks when enqueuing on queue-full, or dequeueing on queue-empty

BrowserClientAdapter.java:

· sends the event to the client by writing out javascript. and calling parent.push at the client side

EventSourceManager.java:

· loads and activates event generators. Event generator classes are read from a file (eventsources.properties) and instantiated here.

EventPullSource.java:
· a generic internal event generator that is a separate thread.

· is an abstract class that needs to be extended.

· it sleeps the required time, then calls the abstract pullEvent() method to obtain a new event.

· calls Publisher.getInstance().publish(event) to enqueue the event to interested subscribers.

Publisher.java:
· dispatcher of events to subscriber queues

· contains methods to add and delete subscribers from the pushlet application

EventAppPullSource.java:
· my eventapp class that generates eventapp events.

· It extends EventPullSource, and provides a pullEvent() method that generates an eventapp event.

· It’s getSleepTime() method requests that this thread sleeps for a random number of seconds up to 4 seconds in between event generations.

· I hard-coded 30 events that get generated and cleared randomly. Only up to 10 events are allowed to be active at any given time. If the thread wakes up and selects to activate a new event, but ten of them are already active, no event is generated or cleared during this cycle.

Postlet.java:
· servlet used to post an event from an outside client to the publisher

· not used in my application, since events are internally generated

[image: image2.png]Postlet
HttpServiet Jostlet

interface
Subscrider

Publisher Event

void publich
creates|

<outilicg>

| EventGenerators
+ [Pushietswscriver Guardeagueue e
Ghe per HTTP req
interface
Clientadapter
T
I I
<<abstracts> JavaPushlethdapter
BrowserPushletadapter | [—

PlainBrowserPushlethdapter | [IultipartBrovserPushlethdapter MultipartHttpResponse

Figure 2. Pushlet Framework Class Diagram

3. System Configuration and Testing

3.1 System Configuration

I used Tomcat version 4.1.12 as the Java Servlet Web server for my testing. I configure Tomcat to run on Sanluis machine, port 8289, and to accept up to 10 connections. The connection timeout is set to 20000.

I used the Tomcat ant utility to compile and install my application. The project directories and build.xml file are in the “mypushlet” directory. Therefore, Tomcat knows the application by “myservlet”.
The web.xml file in WEB-INF directory maps the URL pattern “/servlet/pushlet” to the servlet “pushlet” and the class “Pushlet.java”. This is why the client code needs to invoke my application by calling “/mypushlet/servlet/pushlet”

In order to run my application, I

1. startup Tomcat

2. go into mypushlet directory and type ant
3. type ant install
4. type http://sanluis.uccs.edu:8289/mypushlet/examples/eventapp.html from my Internet Explorer 6.0 browser

3.2 Test Results

The following is a screen dump from my application.

[image: image3.png]£ 1 BETE

Ele Edt View Favotes Ioos Help [

oo S‘JD NG Hﬁ? 8 6 [0 o i s oSl g =l e
EVENT DISPLAY

Event Num Severity

2 none clear
3 Need Groceries minor
5 Out of Milk minor
6 none clear
7 none clear
9 none clear
10 Thunderstorm on the Way minor

£] Opening page hitp://sankis uccs.eduu 8263/ mypushiet/serviet/pushletsubject=/eventapp/eventtboColor=easae. ® Inteet

I noticed a few noteworthy things from my testing.

1. Tomcat does not time-out and close the subscriber connection unless the servlet releases it. This is true even though the connection timeout interval in server.xml configuration file is set to 2000. I changed my application to generate events every 400 seconds or more, and the connection held.

2. The pushlet servlet does indeed hold onto the client connection. I changed the build.xml configuration file to allow tomcat to accept up to 2 connections, and could not have multiple subscribers registered with my application at the same time. When I changed it back to 10 connections, the problem went away.

4. Analysis of Pushlets

4.1 Advantages and Disadvantages of Using Pushlets

The main advantages that I see from pushlets are that a pushlet application can run inside of a standard java servlet, and operate over a standard HTTP connection. Pushlets integrate well with DHTML Web browser technology such as CSS and javascript. They don’t rely on java applets or plug-ins on the browser side. This makes them light-weight on the client side. Pushlets are simple. They are easy and fun to work with. Pushlet events may contain as little information as need in order to allow the browser to update the client-side through DHTML. The most trouble I had with designing this application was trying to figure out the javascript, since my experience with it is limited.

There are some disadvantages to pushlets, the main one being that they hold onto resources such as threads and sockets. I don’t think that sockets are a big deal, since they are only file descriptors. However, threads are more of a problem, especially if many users are planning to make use of the application at the same time. Pushlets have no choice but to hang on to sockets. However, there is no reason why one thread cannot handle all connections sequentially. The limitation is more with Tomcat, since every call to a servlet runs in a separate thread. If we can redesign Tomcat such that it allows a servlet like pushlet to take-over control of subscriber connections and relinquish the tomcat thread, than a pushlet can use one thread to handle all subscriber connections after the initial contact with a client has been made.

Another issue with pushlets is that they rely on DHTML technology, which is not compatible across browsers. Hopefully, this will improve.

4.2 What you can do with Pushlets

Pushlets can be used to design many applications such as chat groups, stock feed applications, and alarm reporting applications for servers and embedded systems. Events can be generated internally, such as with my application, or externally by other servers or other clients. Also a pushlet application can be designed to manipulate events generated by outside sources. Events from multiple sources can be merged, filtered, altered, etc. A pushlet application can also scale very well by having a central server push events to multiple edge servers who handle local clients. This scenario is shown in Figure 3.

[image: image4.wmf]Central DataBase

Pushlet

server

Pushlet

server

Pushlet

server

Clients

Pushing Event using Postlet

Pushing events using Pushlet

Figure 3 Distributed Pushlet Application

4.3 Competing Technologies

There are three main technologies competing with pushlets: polling, server-side callbacks and messaging.

The simplest solution for a browser to get updated information from a server is to periodically poll the server for it. This can be done with HTML refresh. HTML META tags in the header of the HTML document tell the browser how often to poll. The refresh is at fixed time intervals, but events can be generated anytime. This method is not good for real-time response. Also, the client forces the server to make a connection even if there is no new data available. This can create a burden on the server if the refresh period is small, and there are many clients polling.

Another solution is server-side callbacks using RMI (Remote Method Invocation) or CORBA. Typically, this solution involves a client-side application such as a Java applet. This solution is difficult to integrate within a HTML browser page. It also requires knowledge of RMI or CORBA. Knowledge of Java is more common.

A third solution is messaging. This solution also needs some type of client-side application or applet. It also does not integrate well within a HTML browser page, and uses non-standard ports and protocols.

4.4 The Future of Pushlets

The author of pushlets is continuing to evolve the technology. He is looking into the possibility of using connection types other than HTTP to send information back to the client. If the server can respond to the client using UDP, then there would be no need to hold up a connection. Currently, events can be generated externally through the HTTP postlet servlet. Just van den Broecke is looking at also allowing protocols such as RMI, TCP and UDP to be used for this purpose. Also, the current implementation of pushlets does not allow for a new subscriber to get those events that may already have been generated, ie: history or state information. This extension can be added. He also plan to experiment with multi-user HTTP sessions for pushlets.

5. Conclusion

I agree with Just van den Broecke when he states in his whitepaper that the most optimal solution for server-side notification to browser clients depends on the application. Pushlets are not meant to replace the competing technologies discussed in this paper. Pushlets are another option in the toolbox.

6. References

1. http://www.pushlet.com/ for source code, installation guide, demos and whitepaper

2. Just van den Broecke, Pushlet Whitepaper, Just Objects B.V, August 6, 2002

3. Just van den Broecke, http://www.javaworld.com/javaworld/jw-03-2000/jw-03-pushlet_p.html Pushlets: Send events from servlets to DHTML client browsers, March 2000.

4. Marty Hall, Core Servlets and JavaServer Pages, Sun Microsystems Press, Prentice Hall, August 2000

5. Dan Livingston, essential CSS & DHTML For Web Professionals (second edition), Prentice Hall, 2002.

� Taken from (2)

� Taken from (2)

PAGE
11

_1100801657.unknown

_1100801931.unknown

