
Profile-Based Web Intrusion Prevention System

CS526 - Advanced Internet & Web Systems

By Donovan Thorpe

Abstract

This paper describes the motivation, design, and implementation of a Profile-Based Web Intrusion Prevention System. The goal of this system is to provide a way to secure a web server from existing as well as unknown threats. The system is made from a content switch, a rule module and a web server. In this system the rule module communicates with the web server generating a profile-based list of route-to or allows rules. The content switch communicates with the rule module to figure out the appropriate action to take with each incoming packet. This system can prevent traffic from trying to access unauthorized files or directories and only allow traffic requesting authorized files and directories through to the web server.

1 Introduction

General access to the Internet has decreased in price and increased in availability for everyone. High speed access to the Internet has also become cheaper and available in more areas. More kids are online today then their parents are. This increase in accessibility has lead to an increase in use and also an increase in abuse of the Internet. Today you can find thousands of scripts that use vulnerabilities in different Internet systems readily available for anyone to download and execute. Vulnerabilities found in DNS servers, like Bind, to World Wide Web servers like Apache and Microsoft’s Internet Information Services (IIS).

Combined the increase of high speed Internet access, with the youth of today and the availability of exploit scripts and you get Script Kiddies. A Script Kiddie is a person, normally someone who is not technologically sophisticated, who randomly seeks out a specific weakness over the Internet in order to gain privileged access to a system without really understanding what it is he or she is exploiting because the weakness was discovered by someone else [1]. The number of true Hackers and Crackers trying to gain access to a system or disrupt a service is minute compared to the number of Script Kiddies running scripts against every random IP. There is a higher chance of you seeing an attack or break-in by a Script Kiddie then a true Hacker. Some people think that Script Kiddies are actually a bigger threat then Hackers are, like in the article “Don't Fear The Reaper, Fear The Script Kiddie” [2]. Whether you are worried about the Script Kiddie or the Hacker if you are running a web server chances are that you are very worried about the security of your system.

The current ways of protect a web server is limited and has disadvantages. Firewalls are installed usually at edge of a network and protect by blocking certain ports. Usually firewalls are setup to allow port 80, www port, through. This provides no protection against vulnerabilities on the web server if all traffic to that port is allowed through. Another common security piece is an Intrusion Detection System (IDS). An IDS identifies malicious activity and some IDSs responded to it by modifying a layer-7 firewall to block the malicious traffic. An IDS classifies traffic either with profile-based rules, normal and abnormal behavior, or with signature-based rules, pattern matching of known exploits. The problem with this is that your most IDS are design with signature-based rules that need updated when new exploits come out. IDS using profile-based rules can also give a false positive and modify your firewall to deny packets that are valid traffic. This is because some valid traffic looks like invalid traffic. This overlap makes profile-based rules hard to define. Invalid traffic to one web server might be valid traffic to a different web server. If the firewall is at the edge of your network it could be blocking traffic to the entire network not just one web server.

A web intrusion prevention system only blocks or re-routes traffic to the web server not the entire network. It is like having a private layer-7 firewall directly in front of the web server. Making the intrusion detection and prevention system use a profile-based rule mechanism you are not limited to preventing only current known exploits.
2 System Architecture Overview

In this section we present a simple overview of the system architecture for a Profile-Based Web Intrusion Prevention System. There are three main components to this system; a content switch, a rule module and a web server. In this example we will be only using one each. This should be scaled up or down to meet the needs of your systems.

Figure 1: Architecture of Web Intrusion Prevention System

3 Content Switch

A content switch routes packets based on the headers in the upper layer protocols and on the payload content. This is also called an application level or layer 7 switch. A web based content switch is a specific layer 7 switch, which only focuses on http packets. It can route based on information in the lower layers, like layer 2 all the way up to HTTP headers and the payload in layer 7. Most commonly web based content switches will route based on the URL, but some can route based on data with in the html or xml page.

In these experiments we used a web based content switch, which can route based on layers 3 to 7.

4 Rule Module

The content switch communicates with the rule module to know how to direct each incoming packet. The rule module looks at the information give to it by the content switch and tries to match a rule with it. Once a rule has been matched to the information a return routing instruction is passed back to the content switch. Routing instructions can be route-to a specific IP address, port or URL or to discard or drop the packet.

4.1 Profile-Based Rule Module

A Profile-based system is made up of rules that define normal activity. Usually defining normal activity is hard to do. Some normal activity can look the same as malicious activity. If you allow all normal activity through, it is possible that some malicious packets will get through too. This overlap between normal activity and malicious activity is what makes profile-based rules so hard to design.

The key to this system being an affective profile-based system is having a snapshot of the files and directories being shared through the web server. This snapshot or listing of files and directories is used to make a list of allow or route-to rules. This list defines what normal behavior is. Anything not on the list is classified as abnormal or malicious behavior.

4.2 Rule Design
There are two designs to make the snapshot for the rules at. The rules can be designed for the top-level directories or for all files and directories. Top-level makes a rule for the site and each top-level directory. If your web site was the following:

test/

test/index.html

example/

example/docs/

example/docs/index.html

index.html

You would have three rules; one for the root of the site or /, one for test/ and one for example/.
if (strcmp(url,"http://www.yourdomain.com/") != NULL){

 return route_to("www.yourdomain.com",NON_STICKY,saddr);}

else if (strstr(url,"http://web.uccs.edu/test/") != NULL){

 return route_to("www.yourdomain.com ",NON_STICKY,saddr);}

else if (strstr(url,"http://web.uccs.edu/example/") != NULL){

 return route_to("www.yourdomain.com ",NON_STICKY,saddr);}
else {

 return route_to("reject",NON_STICKY,saddr);}

}

This is a simple but not foolproof profile system. A better system is file-level.
File-level would make a rule for the site, each and every file and directory. With File level rules using the same example web site we would have 7 rules; one for the site, three for the index.html in different locations, and three for the three directories.

Both file-level and top-level prevent a user from requesting a URL like /scripts/..%5c%5c../winnt/system32/cmd.exe /c+dir.
File-level restricts access to only file and directories listed. A file-level design produces more rules, is less flexible, but more secure then a top-level design.
4.3 Updating the Rules

Every web site changes and with it the files and directories change too. There is two time mechanizes to update your rules, periodically and dynamically. With periodically you would take a new snapshot of the web server’s file system every 10, 30 or 60 minutes. Using a dynamic update system when a new file or directory was created it would trigger a script that would update the rule module. Depending on how frequently your site changes and the level at which you make your rules, top-level or file-level, will depend on which method and the time interval you update the rules on the rule module.

4.4 Sample Rule Making Process

A sample process for make the rule would be:

Step 1: A scheduled script starts up and makes a catalog of the web servers file system.

Step 2: From that catalog the script makes a route-to rule for each file or directory.
Step 3: Add in a White List, trusted computer or networks, at the beginning of the rules.

Step 4: Add in the “else” or “default” rule that rejects or route-to at the end of the list.

Step 5: Add the new rules to the rule module process running.

5 Web Server

Any standard web server will work in this system. The only requirement is that you are able to run a script locally and upload it to the rule module or have the directories that the web server uses shared out so the rule module can access them. The key to this system being a profile-based is having a snapshot of the files and directories that are shared through the web server.

6 Results and Future work

Overall the Profile-based Web Intrusion Prevention System seemed to accomplish what it was designed security of a web server. Security should be a major concern for any web administrator, by adding a web intrusion prevention system in front of your web server you limit expose to hackers, crackers and script kiddies. Choosing the appropriate rule making technique was the most difficult. This will depend you your web server, the number of files and frequency you update files on it. It my test case the web server was update very offended and at random times during the day. I chose making rule for only the top-level. This made the rule making efficient enough to run once an hour. I recommend having a minimum of two rule modules. This way you are able to take one down and update the rules while the other keep run. After starting back up the first rule module you can take the second one down without interruption of services.
As for future work, compact the rules down by nesting rules, regular expressions, or a table look would be my first priority. As web servers get more and more complex and using alias and virtual directories the scripts cataloging the file system would also need to read in the server config files to add entries for the aliases. Developing and testing more advance setup, include having the abnormal or else condition route-to a hardened, robust and isolated web server. Another addition would be to research having a separate process for signature-base rules to make a blacklist of bad IPs. This list would be passed back to the content switch and stored in a Blacklist sticky table.
This system could be used for a sophisticated content switch. One that could scan your web servers and route packets to the appropriate web server based on where the files are located. Example: All mpg files are stored on one server, all html are stored on another server and gif on a third web server. To the user they would like the same server, but each server could be tuned for performance to match the files they are serving. The content switch rules would take care of which server to get the right file from.
7 Conclusions

A Profile-based Web Intrusion Prevention System should be network device that any web administration should consider installing in front of their web servers. The number of attacks, exploit scripts, Viruses and Worms are on the rise. With out proper protection for your servers and networks, it is only time before a system is compromised.

8 References

[1] Webopedia: The only online dictionary and search engine you need for computer and Internet technology. http://www.webopedia.com/TERM/S/script_kiddie.html

[2] about.com: Don't Fear The Reaper, Fear The Script Kiddie http://netsecurity.about.com/library/weekly/aa111600a.htm

Page 5

_1101544476

