Distributed Packet Rewriting

 Semester Project F2002

 CS526

 Prof: Dr. Edward Chow

Submitted by: Aparna Srikanta Swamy and Reena Hans

1. Introduction………………………………………………..………………………...3

2. Centralized Connection Routing………………………….………………………..3

3. Distributed Connection Routing……………………………………………………4

3.1. Goals for DPR:………………………………………………………..…………...4

3.2. Stateless and Stateful DPR……………………………………………..…………5

3.3. DPR Implementation ……………………………………………………………..6

3.4. Overview………………………………………………………………………..….6

3.5. Routing Functionality in Kernel Space………………………………………….7

3.6. State Sharing Functionality in User Space……………………………..……….8

4.Performance Evaluation ……………………….……………………………..……8

4.1. Experimental Setup ………………………………………………………………9

4.2. Test Scenarios and Metrics………………………………………………………9
4.3. Test Results……………………………………………………………………….9

5. Advantages of DPR as compared to Centralized routing………………….……10

6. Tradeoffs……………………………………………………………………………10

7. Conclusions…………………………………………………………………………11

8. References…………………………………………………………………………..11

1. Introduction

Why Distributed Packet Rewriting?

The phenomenal, continual growth of the World Wide Web is imposing considerable strain on Internet resources, prompting numerous concerns about the Web' s continued viability. In that respect, one of the most common bottlenecks is the performance of Web servers, the popular ones in particular. To build high performance Web servers, designers are increasingly turning to distributed systems. An important challenge that arises in distributed Web servers is the need to direct incoming connections to individual hosts or servers. Previous methods for connection routing have employed a centralized node termed a TCP router that acts as a switchboard, directing incoming requests to backend hosts. Under this architecture, a single machine whose IP address is published through DNS takes on the responsibility of balancing the load across the cluster. This centralized approach is not inherently scalable because it does not take into account the fact that the TCP router becomes a bottleneck at high loads. In such systems, a collection of hosts work together to serve Web requests. A proposed alternative decentralized approach to this centralized approach is Distributed Packet Rewriting (DPR). DPR follows the same idea of distributing requests across a number of web servers to handle high loads of web traffic. The major difference between DPR and TCP routing lies in the manner in which IP addresses are published. Earlier the work on distribution and assignment of incoming connections across a cluster of servers has been done using Round-Robin DNS to publish individual addresses of all machines in the cluster of web servers, thereby distributing the responsibility of re-routing requests to each machine. Also DPR enhances the scalability of Web server clusters by eliminating the performance bottleneck exhibited when centralized connection routing techniques are utilized.

2. Centralized Connection Routing:

Instead of delegating to DNS the responsibility of distributing requests to individual servers in a cluster, different research groups have suggested the use of a local ``router'' to perform this function. The MagicRouter developed by the NOW project at Berkley acts as a switchboard that distributes requests for Web service to the individual nodes in the cluster. To do so requires that packets from a client be forwarded or rewritten by the MagicRouter to the individual server chosen to service the client's TCP connection. Also, it requires that packets from the server be

rewritten by the MagicRouter on their way back to the client. This packet rewriting mechanism gives the illusion of a ``high-performance'' Web Server, which in reality consists of a router and a cluster of servers. The emphasis of the MagicRouter work is on reducing packet processing time through ``Fast Packet Interposing'' but not on the issue

of balancing load. Other solutions based on similar architectures include Cisco’s Local Director and IBM’s Interactive Network Dispatcher. An architecture slightly different from that of the MagicRouter is one in which a ``TCP Router'' acts as a front-end that forwards requests for Web service to the individual back-end servers of the cluster. Two features of the TCP Router differentiate it from the MagicRouter solution mentioned above. First, rewriting packets from servers to clients is eliminated. This is particularly important when serving large volumes of data. To allow for the elimination of packet rewriting from server hosts to clients requires modifying the server host kernels, which is not needed with MagicRouter solution. Second, the TCP Router assigns connections to servers based on the state of these servers. This means that the TCP Router must keep track of connection assignments. The architecture presented uses a TCP-based switching mechanism to implement a distributed proxy server. The motivation for this work is to address the performance limitations of client-side caching proxies by allowing a number of servers to act as a single proxy for clients of an institutional network. Their architecture uses a centralized dispatcher a Depot to distribute client requests to one of the servers in the cluster representing the proxy. The function of the Depot is similar to that of the MagicRouter. However, due to the caching functionality of the distributed proxy, additional issues are addressed mostly related to the maintenance of cache consistency amongst all servers in the cluster. Content switch is an example, which uses centralized connection routing. On of the main drawbacks is that single machine which has the responsibility of load balancing becomes a bottleneck at high loads.

3. Distributed Connection Routing:

So far, all of the connection routing techniques also known as Layer 4 Switching techniques have employed a centralized node which handles all incoming requests. In contrast, the Distributed Packet Rewriting technique presented in (DPR) distributes that functionality. As shown in Figure 1, using DPR, all hosts of the distributed system participate in connection routing i.e. each server acts as a load balancer and also as a switch. This distributed approach promises better scalability and fault-tolerance than the predominant use of centralized, special-purpose connection routers. DPR is an IP level mechanism that equips a server with the ability to redirect an incoming connection to a different server in the cluster based on the very first packet, the SYN packet received from the client. This implies that the redirection decision i.e. which server ought to be chosen for redirection can only rely on the information included in the SYN packet namely, src/dst IP addresses and src/dst port numbers as well as on cluster state information. Using this information, a DPR-enabled server either forwards a connection to a different server, or lets it percolate up its network stack to the application layer.

3.1. Goals for DPR:

The novelty of DPR lies in its distribution of the connection routing protocol - Layer 4 Switching, which allows all hosts in the system to participate in request redirection, thereby eliminating the practice of using a special purpose connection router to achieve that functionality. DPR is one of the salient features. The design of DPR is driven by a large set of goals that the COMMONWEALTH which is an architecture and prototype for scalable Web servers being developed at Boston University is striving to achieve.

These goals are:

1. Transparency: Clients should not be exposed to design internals. For example, a solution that allows a client to distinguish between the various servers in the cluster and hence target servers individually is hard to control.

2. Scalability: Increasing the size of the cluster should result in a proportional improvement in performance. In particular, no performance bottlenecks should prevent the design from scaling up.

3. Efficiency: The capacity of the cluster as a whole should be as close as possible to the total capacity of its constituent servers. Thus, solutions that impose a large over-head

are not desired.

4. Graceful Degradation: The failure of a system component should result in a proportional degradation in the offered quality of service. For example, a solution that

allows for a single point of failure may result in major disruptions due to the failure of a miniscule fraction of the system.

5. Connection Assignment Flexibility: Connection assignment techniques should be flexible enough to support resource management functionalities such as admission

control and load balancing.

3.2. Stateless and Stateful DPR

There are two versions of DPR, stateless and stateful. Stateless DPR does not require any information different from what can be found in the headers of each packet in a connection. Thus, forwarding is done independently on a packet by packet basis according to a hash function.

Stateful DPR keeps a table of translations, which is used to determine where to forward packets of a given connection based on a choice made initially upon receipt of the connection's SYN packet. DPR was tested using a randomizing re-routing algorithm to determine whether or not to forward packets or serve them locally. Based on a hash function that was applied to the source port number of the TCP packet, the decision was made. This approach is entirely stateless it does not rely on feedback from other machines regarding current load in order to make the determination of whether to forward a packet.

[image: image1.png]for distributed Web Servers

3.3. DPR Implementation

Here, in the implementation of DPR, each host in the cluster is a web server. They have the ability to re-route requests to other machines through packet rewriting. The IP

addresses of all hosts are advertised through RR-DNS, allowing any of the machines to receive requests. Such requests can be either served locally or re-routed to another machine. In the latter case, the responsibility of serving the request will be transferred to another machine, which will respond directly to the client.

3.4. Overview

While implementing, it is necessary for the machines within the cluster to distinguish between packets that have been re-routed and packets that come directly from the client.

Furthermore, if a host re-routes a request to another host, then knowledge of the client’s IP address must also be transferred. To address both of these issues, IP-IP

encapsulation is employed. Using IP-IP encapsulation, a host encapsulates the original packet received from a client inside another IP packet, which is then re-routed. The host to which the packet is rerouted is now able to deduce that the packet was re-routed and can respond directly to the client whose IP address is preserved in the encapsulated packet.

To enable a stateful routing of requests using DPR, each machine keeps an updated list of all other machines within the cluster, with information such as their IP addresses and current load. Hosts intermittently broadcast their load to the other machines using

multicast UDP packets. This information is used by a server to determine whether an incoming request should be re-routed or whether it should be served locally. Also,

each machine keeps routing tables with information about redirected connections.

One of the load-balancing algorithms is used. When a new request i.e. the SYN packet of a TCP connection is received by a host from a client, the server first examines its own load. If the load is under a certain threshold value MaxLoad, then the server will serve the request locally. If not, it will create a new entry in its routing tables and will forward the request i.e. the SYN packet of the TCP connection to one of the other servers in the cluster. Subsequent packets from this connection are routed according to the information in the routing table. This threshold value MaxLoad can be adjusted according to certain factors such as CPU speed, memory, etc. Two different approaches are used to select the server to which a request is re-routed. The first approach is deterministic, whereby the server with the lowest load is selected. The second approach is probabilistic, whereby the probability of selecting a server is inversely proportional to the load on that server. The advantage of this latter approach is that it avoids possible oscillations whereby all requests in a short timeframe are re-routed to the server with the lowest advertised load, potentially overloading such a server. Different metrics are used to estimate the “load” on each of the hosts namely - total number of open TCP connections on the host, CPU utilization of the hosts, number of redirected TCP connections at host, and number of active sockets at the host. The implementation of stateful distributed connection routing is done under linux 2.0.28. It consists of two main components: one in kernel space and one in user space. The first component required the design of a very fast mechanism to search, insert, delete and update real-time data for routing purposes. This mechanism is implemented entirely in the kernel using multiple hash tables and linked list. The second component is to design a mechanism to store the information regarding other machines current loads and update such information periodically. A sorted linked list, three user processes and new systems calls are needed for the implementation of this component.

3.5. Routing Functionality in Kernel Space

When a machine receives an IP packet, the kernel calls the function ip_receive(). Some modifications are made to this function to be able to redirect connections. In this

function, the IP packet is examined. If it contains a TCP packet and the TCP destination port is 80 or whatever other port the web server is running on, we know that such a TCP

connection is an HTTP connection and is coming directly from the client. If the TCP packet contains a SYN, then we know that a new connection is being requested. A decision has to be made, to serve it locally or to forward it. As eluded to earlier, this decision is based on the load table and the current load of the machine. If the machine is under the threshold value or the current load of the machine is the lowest compared to the other machines then the request is served locally and no routing tables are updated. If the current load is above the threshold value and the lowest load correspond to another machine then the routing tables are updated and the packet is forwarded to some other server using either the deterministic or probabilistic approaches. If the TCP packet is not a SYN then, look up in the routing tables and if the connection has been redirected, then the packet is forwarded. If the IP packet contains an IP-IP packet and the unused bit of the fragment offset is set to 1, then we know that it is a packet that has been redirected and that we have to serve it. We unpack the IP-IP packet and send the TCP packet to the TCP layer to be processed. Instead of utilizing the unused bit of the fragment offset, we could check if the source IP address correspond to the servers participating in the DPR to detect redirected connections.

3.6. State Sharing Functionality in User Space

An accurate view of the load on the various servers in the cluster is implemented with three user processes and seven new system calls. One process is in charge of broadcasting the local server’s own load periodically. To get local load information, this process makes a system call to obtain the appropriate value of the load namely: CPU utilization, number of open TCP connections, number of active sockets, and number of rerouted

connections. A second process is in charge of waiting for the load of the other servers that are participating in the DPR protocol to be multicast. Every time a new value is received, the process makes a system call to update the sorted linked list maintained in the kernel. The third process is in charge of cleaning up of the load and the routing tables. If no load packet is received from one machine for a certain number of seconds, then the entry of this machine in the load table is deleted to avoid redirecting connection to a machine that is not running which can be due to a failure or a periodic maintenance shutdown. Using IP-IP to redirect connections allows the servers to be in different networks. The only thing to be taken care of is to tell the process in charge of broadcasting the load the networks that participate in DPR. If more than one network have servers participating in DPR, this process will broadcast the load packet not only to the local network but also to all other networks participating in this protocol. The identity of all participating networks is captured from a configuration file upon the initialization of this process.

4. Performance Evaluation

The performance evaluation and the load distribution of the implementation were done using a URL request generator tool called SURGE Scalable URL Reference Generator to create a realistic web workload. Surge is a tool that was developed as part of the Commonwealth project attempting to accurately mimic a fixed population of users accessing a Web server. It adheres to six empirically measured statistical properties of typical client requests, including request size distribution and inter-arrival time distribution. Surge adopts a closed system model workload and was generated by a fixed population of users, which alternate between making requests and lying idle. SURGE was run in each client machine with the following parameters: five client sub-processes with 50 threads each for 200 seconds. SURGE was run from six machines that were generating requests to three Pentium-class web servers (266 Mhz, 128MB, 100Mbps Ethernet) running apache. These servers are named: Brookline, Baystate and Buick. Four SURGE clients were generating requests to Buick, one to Brookline and one to Baystate.

4.1. Experimental Setup

This uneven assignment of SURGE clients to servers results in a heavy load being offered to one of the machines namely Buick. As shown in previous studies, this is typically what happens when round-robin DNS is used to map a domain name to a set of IP addresses. First, the test was run using no load balancing at all, second the random load balancing was used and third, the TCP load balancing was used.

4.2. Test Scenarios and Metrics:

In the first scenario termed as “No Load Balancing”, the system is run with the DPR functionality turned off. This scenario represents RR-DNS solutions for assigning client requests to cluster hosts. In the second situation termed as “Random Load Balancing”, the system is run with DPR functionality enabled, but with a stateless (random) rerouting policy. In the third scenario termed as “TCP Load Balancing”, the system is run with DPR functionality enabled and with a stateful re-routing policy that uses the total number of TCP connections to a server as a measure of load. Evaluation of these three approaches, is done by measuring the mean and variance of the transfer delay of documents as measured by SURGE clients as well as the total number of requests served and the rate of service or throughput.

4.3. Test Results:

The testing of scenarios are compared using how many requests each machine serves per second. When no load balancing used, Buick served the majority of requests. When Random load balancing or TCP load balancing used the three servers are serving approximately the same number of connections per second leading to a better response time and throughput. Clearly, TCP load balancing outperforms the other scenarios in both the mean transfer delay and the number of requests served per second. [image: image2.png]o Transter Dalay Requests Served
olicy.
Mean __ Varance __Total __ Raie

None | DOT&T7e 15240070 0672600 40603

Random | 0272362 0813577 123, 63486
Top | 0oew67 ossaion 1202780

5. Advantages of DPR as compared to Centralized routing:

· Consider the problem of scaling up a Web site that initially consists of a single server host. Adding a second server host using typical existing solutions for example, Cisco’s local Director or IBM’s NetDispatcher requires using special-purpose hardware to distribute incoming HTTP requests between the two server hosts. This kind of centralized solution provides connection routing capacity that far surpasses what a two-host server is likely to require, i.e. the upgrade path and hence the price tag for a centralized solution is not truly incremental; the two-host server will be roughly three times the cost if an ordinary PC is used as a centralized router and may reach ten times the cost of a single-host server. Thus it is just as efficient and cheaper to use the server hosts already present to perform the connection routing function than adding a specialized connection router to a small system which may not be justified.

· Also an additional important issue for many content providers is that the centralized solution creates a single-point-of-failure in the system, which leads to even more costly solutions such as using a second, standby connection router. Hence for mission-critical Web sites, centralized connection routing escalates the imbalance in capacity between connection routing and connection service. These problems disappear when using a DPR-based architecture. Adding a second server to the site requires no special hardware, introduces no single-point-of-failure, and utilizes the added capacity and hence the amount spent to scale both the connection routing and connection service capacities equally.

· DPR is able to achieve good throughput even when requests arrive in a highly imbalanced way and all packet rewriting occurs on only one host. This has been established experimentally wherein the fact that the Stateful-balanced and Stateful-imbalanced show nearly identical performance.

6. Tradeoffs:

· Design Tradeoffs:

Two design issues arise in determining the specific capabilities of a DPR implementation. First, will routing decisions be based on stateless functions, or will it require per connection state? Second, how should the rewritten traffic be carried on the server network?

· Delay:
Since the packets travel through an additional server node in the DPR and TCP router schemes, there is a potential for a delay. However after several experiments were carried out, it has been able to say that the additional delays induced by the additional hop are small compared to the average response time for an HTTP GET.

7. Conclusions:

During the course of studying this project, some of the observations made are as follows:

Distributed Packet Rewriting technique has less overhead than the centralized connection routing. Instead of using a distinguished node to route connections to their destinations, as in previous systems, DPR involves all the hosts of the distributed system in connection routing.

The system is not completely disabled by the failure of any one node. The benefits that DPR presents over centralized approaches are considerable the amount of routing power in the system scales with the number of nodes.

DPR also has special value for small-scale systems. For example, consider the case in which a Web server needs to grow in capacity from one host to two. Under a centralized approach, two additional hosts must be purchased: the new host plus a connection router, even though most of the capacity of the connection router will be unused. DPR allows more cost-effective scaling of distributed servers.

8. References:

a)Luis Aversa and Azer Bestavros, "Load Balancing a Cluster of Web Servers: Using Distributed Packet Rewriting," Proceedings of IPCCC 2000.

b) Distributed Packet Rewriting and is Application to Scalable Server Architectures by Azer Bestavros, Mark Crovella, Jun Liu and David Martin.

http://www.nmsl.cs.ucsb.edu/~ksarac/icnp/1998/papers/1998-31.pdf

11
11

