Microengine Programming on Intel IXP1200

Network Processor

Submitted By:

Apparao Kodavanti

Srinivasa Guntupalli

Microengine Programming on Intel IXP1200

Network Processor

Introduction

Intel has developed the First True Network Processor called IXP1200. The IXP1200 is a highly integrated, hybrid data processor that delivers high-performance parallel processing power and flexibility to a wide variety of networking, communications, and other data-intensive products. The IXP1200 is designed specifically as a data control element for applications that require access to a fast memory subsystem, a fast interface to I/O devices such as network MAC devices, and processing power to perform efficient manipulation on bits, bytes, words, and longword data.

The IXP1200 has the popular StrongARM Core microprocessor and six independent 32-bit RISC based microengines with hardware multithread support. Intel has provided a C compiler for the StrongARM Core microprocessor and assembler for the instructions for the microengines. The programs for the microengines can be written in assembly or c (ver 2.0) , but the version we have does not have a c compiler .

The basic goal of this project is to study the microengines and their instruction set, study the development environment provided by Intel and implement a small program (microengine code) .

IXP1200 Network Processor

The IXP1200 has the popular StrongARM microprocessor and six independent 32-bit RISC data engines with hardware multithread support that combined, provide over 1 giga-operations per second. The Microengines contain the processing power to perform tasks typically reserved for high speed ASICs. In LAN switching applications, the six Microengines are capable of packet forwarding of over 3 million Ethernet packets per second at Layer 3. The StrongARM processor can then be used for more complex tasks such as address learning, building and maintaining forwarding tables, and network management.

The microengines support a 32-bit RISC instruction set tailored to networking and communications applications. The Microengines operate at the IXP1200 Core frequency and all instructions execute in a single cycle.

The six Microengines each provide the following features:

· Hardware multithread support for four contexts.

· Programmable 1K instruction Control Store (program memory)

· 128 32-bit general purpose registers

· 128 32-bit Transfer Registers (for transferring data into and out of the Microengines)
· Powerful ALU and Shifter capable of performing an ALU and shift operation in a single cycle
[image: image1.jpg]——————————————

SDRAM

(o

Controller e

He[Wicroengine Je,

Data Cache

i -
I
POl et Ho[Microengine |+ L
Interface v
— engne
Ho{ Microengine
:'—‘ aus
sidon teace
Stongam | | et T
o Microengine o1 | =——r-
e) 4 a
8K SRAM
Data Cache £
Hal Microengine |«
TRE Minl- —_—

(oo

L [Mictoenzine fo]
SRAM
Controller

Figure1: The IXP1200 packs seven processor cores on one die

Hardware Multithread Support

Hardware multithread support allows four separate programs to share execution time on a Microengine. When a program is not executing, each program context is preserved in hardware through separate program counters, signal event states, and relatively addressed register set (General Purpose Registers (GPRs) and Transfer Registers) for each program. When a program is put to sleep, a context switch occurs and another program begins executing. The overhead associated with switching contexts is a maximum of one cycle, however a deferred instruction can be used to eliminate this overhead.

Control Store

Each Microengine contains a programmable Control Store that holds the microcode program. The four program threads associated with the Microengine share the Control Store. The Control Stores support 1024 32-bit instructions and must be programmed by the StrongARM Core upon system initialization.

General-Purpose Registers (GPRs)

Each Microengine supports 128 32-bit GPRs. The GPRs can be addressed using relative addressing or absolute addressing. Relative addressing divides the GPRs among the Microengine threads so that each thread has exclusive access to a subset of GPRs (32 maximum). Absolute addressing allows a register to be shared among all the threads within a Microengine.

Transfer Registers

Data is moved into and out of the Microengines via the Transfer Registers. Each Microengine supports 128 32-bit Transfer Registers. This register set is divided into 32 SRAM Read, 32 SRAM Write, 32 SDRAM Read, and 32 SDRAM Write Transfer Registers. Each register subset connects to the other functional units via four separate 32-bit data buses. The SDRAM registers are used to move data between the SDRAM Unit and the Microengine. The SRAM Transfer Registers are used to move data between the SRAM Unit or FBI Unit and the Microengine. The Transfer Registers can be addressed using relative addressing or absolute addressing. Relative addressing divides the Transfer Registers amongst the Microengine threads so that each thread has exclusive access to a subset of Transfer Registers (8 SRAM read, 8 SDRAM read, 8 SRAM write, 8 SDRAM write). Absolute addressing allows a register to be shared among all the threads within aMicroengine.

ALU and Shifter

The Microengines contain a powerful 32-bit ALU and Shifter capable of performing an ALU and shift operation in a single cycle. The two inputs of the ALU (A and B) can operate on data supplied by the SRAM/FBI read Transfer Registers, SDRAM read Transfer Registers, GPRs, and immediate data within the instruction. The ALU can perform addition, subtraction, and logical operations as well as generate sign, zero, and carry out condition codes based on these operations.

Microengine Instruction Set

The following lists the RISC instructions supported by the Microengines. Each instruction is executed in a single cycle.

	Instruction
	Description

	Arithmetic, Rotate, and Shift Instructions
	

	ALU
	Perform an ALU operation.

	ALU_SHF
	Perform an ALU and shift operation.

	DBL_SHIFT
	Concatenate two longwords, shift the result, and save a longword.

	
	

	Branch and Jump Instructions
	

	BR, BR=0, BR!=0, BR>0, BR>=0, BR<0, BR<=0, BR=cout, BR!=cout
	Branch on condition code.

	BR_BSET, BR_BCLR
	Branch on bit set or bit clear.

	BR=BYTE, BR!=BYTE
	Branch on byte equal or not equal.

	BR=CTX, BR!=CTX
	Branch on current context.

	BR_INP_STATE
	Branch on event state (e.g., SRAM done).

	BR_!SIGNAL
	Branch if signal deasserted.

	JUMP
	Jump to label.

	RTN
	Return from a branch or a jump.

	Reference Instructions
	

	CSR
	CSR reference.

	FAST_WR
	Write immediate data to the thd_ done CSRs.

	LOCAL_CSR_RD, LOCAL_CSR_WR
	Read and write CSRs.

	R_FIFO_RD
	Read the receive FIFO.

	PCI_DMA
	Issue a request to the PCI Unit.

	SCRATCH
	Scratchpad reference.

	SDRAM
	SDRAM reference.

	SRAM
	SRAM reference.

	T_FIFO_WR
	Write to the transmit FIFO.

	Local Register Instructions
	

	FIND_BSET, FIND_BSET_WITH_MASK
	Determine position number of first bit set in an arbitrary 16-bit field of a register.

	IMMED
	Load immediate word and sign extend or zero fill with shift.

	IMMED_BO, IMMED_B1, IMMED_B2, IMMED_B3
	Load immediate byte to a field.

	IMMED_WO, IMMED_W1
	Load immediate word to a field.

	LD_FIELD, LD_FIELD_W_CLR
	Load byte(s) into specified field(s).

	LOAD_ADDR
	Load instruction address.

	LOAD_BSET_RESULT1, LOAD_BSET_RESULT2
	Load the result of a find_bset or find_bset_with_mask instruction.

	Miscellaneous Instructions
	

	CTX_ARB
	Perform context swap and wake on event.

	NOP
	Perform no operation.

	HASH1_48, HASH2_48, HASH3_48
	Perform 1, 2, or 3 48-bit hash operations.

	HASH1_64, HASH2_64, HASH3_64
	Perform 1, 2, or 3 64-bit hash operations.

Table 1. Summary of Microengine Instructions

IXP1200 Network Processor Microengine Development Enviroment

The supported programming languages for Intel IXP1200 microengine are IXP1200 microcode and microengine C for IXP1200. Intel provides a set of development tools for IXP1200 microengine, such as the Developer GUI Workbench, Assembler, Linker and Transactor. The development station operating system (OS) is Windows NT.

Developer Workbench

The Intel IXP1200 Network Processor Developers Workbench, also called the Workbench or GUI Workbench, is the GUI interface to either the Transactor (the simulator - IXP1200 cycle and data accurate model) or the IXP1200 Hardware (i.e. the Ethernet Evaluation System). The Workbench gives a window-based graphic interface to the simulator or the hardware and provides various debugging features and statistics. It is an integrated development environment (IDE) for assembling, linking, and debugging microcodes that run on the IXP1200 Network Processor Microengines. The Workbench is a Win32 application that runs on Windows NT/95/98 platforms.

The Workbench supports debugging in four different configurations:

Local simulation with no foreign model, in which the Workbench and the IXP1200 Network Processor simulator (Transactor) both run on the same Windows platform.

Local simulation with a local foreign model, in which the Workbench, the Transactor, and a foreign model Dynamic-Link Library all run on the same Windows platform.

Local simulation with a remote foreign model, in which the Workbench and the Transactor both run on the same Windows platform and communicate over the network with a foreign model running on a remote system.

Hardware, in which the Workbench runs on a Windows host and communicates over a network or a serial port with a subsystem containing actual IXP1200 Network Processors.

When debugging in a simulation configuration, the Workbench provides performance statistics for the IXP1200 Network Processor subsystem. For example, it provides data on memory bandwidth to the SDRAM.

Important Workbench features include:

Source level debugging.

Execution history and statistics.

IX Bus device and network traffic simulation.

Optional command line interface to the IXP1200 Network Processor Transactor

 Customizable graphical user interface (GUI) components.

Assembler

The assembler is invoked from the command line:

uca [options] microcode_file microcode_file...

It may also be invoked through the IXP1200 Workbench. Invoking the assembler results in a two-step process composed of a preprocessor step and an assembler step. The preprocessor step takes a “.uc” file and creates a “.ucp” file for the assembler. The assembler takes a “.ucp” file and creates an intermediate file with the file name extension of “.uci”. The “.uci” file is used by the assembler to create the ‘.list’ file and provides error information that may be used to resolve semantic problems (such as register conflicts) in the input file. The assembly procedure is shown in Figure 1.

[image: image2.jpg]

Figure 1.6 Assembly Procedure

Linker

In IXP1200 Network Processor, memory is shared between the StrongARM Core and the Microengines. The StrongARM Core generates and maintains data structures, while the Microengine reads the data. Microengine Image Linker (ucld) is an executable that accepts a list of Microengine images (“*.list”) generated by the assembler, uca, and combines them into a single object that is loadable by the core image, running on the StrongARM processor, utilizing Microengine Loader Library (libD) functions.

The usage of ucld is

ucld [options ...] uca_list_file ...

Transactor

The IXP1200 Transactor executes IXP1200 microengine object code. It demonstrates the functional behavior and performance characteristics of a system design based on the IXP1200 without relying on IXP1200 hardware. The IXP1200 Transactor is a cycle-accurate architectural model of the IXP1200 hardware that is optimized for high-speed simulation of an IXP1200 based system.

The first step in using the IXP1200 Transactor is to create a model of an IXP1200 based system. This involves the use of commands that define how many IXP1200 chips are in the system and the amount of SRAM and SDRAM associated with each IXP1200. Once the system model has been defined, the Transactor can be used to run simulations, debug them, and gather performance statistics.

The Transactor recognizes two types of inputs:

Transactor commands. Commands unique to the IXP1200 Transactor that allow you to control its operation.

A subset of C commands. Provided to give you greater flexibility in controlling the Transactor.

Commands can be typed in through the command line interface or be executed as a series of commands from a command script file.

Microcode Examples

Example1: Longword Endian Swap Instructions

In this example we will use IXP1200 microcode to perform an endian swap on a hex longword.That is, we will reverse the order of the bytes in the longword as shown below.

The Instructions used in this example are alu_shf, ld_field

The register definitions used in this example are

rbuf Longword source

rswap Longword destination

[image: image3.jpg]Longword Endian Swap

Befora Swap

| Byte0 | Byte 1 Byte2 Byie 3
Afer Swap:
[ores [Core2 Byte 1 Byie0

Endian swaps are typically used to convert big endian network bytes to the little

endian bytes used by the IXP1200.
Code:

alu_shf[rswap,0,B,rbuf, <<rot8]

ld_field[rswap,1010,rbuf,<<rot24]

Example 2: Checksum Verification for IP Header – Longword Addition Instructions

In this example, a source sends an IP header consisting of five longwords.In this example, however we will work with 32-bit longwords rather than 16-bit words in performing our arithmetic.This is a faster and more efficient way of performing the calculation.

The Instructions used in this example are alu, alu_shf, br!=cout, ld_field, nop

The labels and register definitions used in this example are

iphdr1 1st longword of IP header

iphdr2 2nd longword of IP header

iphdr3
3rd longword of IP header

iphdr4
4th longword of IP header

iphdr5
5th longword of IP header

temp
Temporary location

check Result of checksum calculations

bad_header_checksum#:Label of bad checksum handler

The function we perform this time and the theory behind it is identical to that of the previous example.That is, at the destination, we want to add all the 16-bit words of the IP header together and get a result of all 1’s for a valid transmission. The difference is that this time we perform the addition two words at a time rather than one.For example, our first addition is the following:

[image: image4.jpg]Longword Addition

a

iphdr1

+

iphdr2

As in the above example, iphdr1 and iphdr2 contain the first four words of the IP header, labeled a, b, c, and d. When we add iphdr1 and iphdr2, we are adding (a concatenated with b) with (c concatenated with d). If there is any carryout from this addition, we need to add it to the accumulated result. We do the same as we add the other longwords to the accumulated result.Finally, we add the upper and lower halves of the accumulated result to check for all 1’s.
Code:

alu[temp,iphdr1,+,iphdr2]

alu[temp,temp,+carry,iphdr3]

alu[temp,temp,+carry,iphdr4]

alu[temp,temp,+carry,iphdr5]

alu[temp,temp,+carry,0]

ld_field[check,1100,temp]

alu_shf[check,check,+,temp,<<16]

alu_shf[check,check,+,1,<<16]

br!=cout[bad_header_checksum#]

bad_header_checksum#:nop
Example3: IP Header Alignment

In this example we will use IXP1200 microcode to align an IP header consisting of five longwords.

The Instructions used in this example are alu, alu_shf, dbl_shf

The labels and register definitions used in this example are

addr_lsbs

Address of least significant bits

shift

Shift Amount

ipv4_packet_addr
Memory address of ipv4 packet.

$$iphdr1

Beginning of 1st longword of IP header

iphdr1

Aligned 1st longword of IP header

$$iphdr2

Beginning of 2nd longword of IP header

iphdr2

Aligned 2nd longword of IP header

$$iphdr3

Beginning of 3rd longword of IP header

iphdr3

Aligned 3rd longword of IP header

$$iphdr4

Beginning of 4th longword of IP header

iphdr4

Aligned 4th longword of IP header

$$iphdr5

Beginning of 5th longword of IP header

iphdr5

Aligned 5th longword of IP header

$$iphdr6

Possible ending of 5th longword of IP header

Indirect

Indirect shift amount

temp

Temporary location

Code:

alu[addr_lsbs,4,-,ipv4_packet_addr]

alu_shf[shift,0x1F,AND,addr_lsbs,<<3]

alu[temp,shift,B,$$iphdr1]

dbl_shf[iphdr1,temp,$$iphdr2,<<indirect]

alu[temp,shift,B,$$iphdr2]

dbl_shf[iphdr2,temp,$$iphdr3,<<indirect]

alu[temp,shift,B,$$iphdr3]

dbl_shf[iphdr3,temp,$$iphdr4,<<indirect]

alu[temp,shift,B,$$iphdr4]

dbl_shf[iphdr4,temp,$$iphdr5,<<indirect]

alu[temp,shift,B,$$iphdr5]

dbl_shf[iphdr5,temp,$$iphdr6,<<indirect]

Details of Instructions used in the examples

ALU

Perform an ALU operation on one or two operands and deposit the result into the destination register. Update all ALU condition codes according to the result of the operation.Condition codes are lost during context swaps.The sign condition code is not valid on underflow or overflow conditions.Care must be taken to ensure that compare operations do not cause either an underflow or an overflow or the incorrect branch might be taken.This instruction applies to comparisions made when using the ALU and ALU_SHF instructions and when using the .if directive.

Format:
alu[dest_reg, A_operand, alu_op, B_operand]

dest_reg
An absolute or context-relative transfer register or general purpose register(GPR) that holds the result of the ALU operation

A_operand
A transfer register, general-purpose register(GPR), or immediate data that acts as a source for the ALU operation.

alu_op
The ALU operation performed, as summarized in table below.

	ALU Operation
	Description

	B
	B operand (A operand is ignored).

	~B
	Inverted B operand (A operand is ignored).

	+carry
	A operand + B operand.

	+4
	A operand + B operand + previous carry-in (carry-in equals previous carry-out).

	+8
	A operand + B operand truncated to the least significant 8 bits (upper 3 bytes of the B operand are zeroed).

	+16
	A operand + B operand truncated to the least significant 16 bits (upper 2 bytes of the B operand zeroed).

	-
	A operand - B operand.

	B-A
	B operand - A operand.

	AND
	A operand AND B operand (Bit-wise AND).

	~AND
	Inverted A operand AND B operand (Bit-wise AND).

	AND~
	Inverted B operand AND A operand (Bit-wise AND).

	OR
	A operand OR B operand (Bit-wise OR).

	XOR
	A operand XOR B operand (Bit-wise exclusive OR).

	+IFSign
	If the sign condition code is set, A operand + B operand.

If the sign condition code is not set, result is B operand.

When using +IFsign in an ALU instuction, note that the condition code is set by the

second instruction immediately preceding the current one. This is in contrast to a

branch instruction, where the condition code is set by the instruction immediately

preceding the current one.

B_operand
An absolute or context-relative transfer register, general-purpose register(GPR), or immediate data that acts as a source for the ALU operation

Example:
alu[dest_reg, left_reg_or_constant_1, OR, right_reg_or_constant_2]

This microcode allows absolute-addressed operands to be referenced and data to be supplied at the expense of giving up shifter control and giving up the ability to supply immediate data.ALU condition codes are always updated on the alu instruction.

ALU_SHF

Perform an ALU operation on one or two operands and deposit the result into the destination register. The B operand is shifted or rotated prior to the ALU operation. Update all ALU condition codes according to the result of the operation. Condition codes are lost during context swaps. The sign condition code is not valid on underflow or overflow conditions. Care must be taken to ensure that compare operations do not cause either an underflow or an overflow or the incorrect branch might be taken. This restriction applies to comparisons made when using the ALU and ALU_SHF

instructions and when using the .if directive.

Note: The carryout condition code is only valid for these ALU operations: +, +carry, +4, +8, +16, -, and B-A. Its value is unpredictable for all other ALU operations.

Indirect rotates are not allowed. However, an indirect rotate can be emulated by copying the desired register value to be rotated into a register on the opposite bank and then performing a dbl_shf instruction.

Format: alu_shf[dest_reg, A_operand, alu_op, B_operand, B_op_shf_cntl]

dest_reg
A context-relative transfer register or general-purpose register (GPR)

that holds the result of the ALU operation. The -- notation indicates that

the result has no destination. The -- notation is typically used to set ALU

condition codes for branches or to create indirect_ref formats for

memory references such as the sram instruction.

A_operand
A transfer register, general-purpose register (GPR), or immediate data

that acts as a source for the ALU operation. The transfer registers and

GPRs can use context-relative addressing only. A transfer register may

be specified for either A_operand or B_operand, but not both.The

immediate data can range from 0 to 0x1F. The B and ~B ALU operations

use the -- notation for A_operand.

alu_op
Perform an ALU operation using the syntax shown in table below.

	ALU Operation
	Description

	B
	B operand (A operand is ignored).

	~B
	Inverted B operand (A operand is ignored).

	+carry
	A operand + B operand.

	+4
	A operand + B operand + previous carry-in (carry-in equals previous carry-out).

	+8
	A operand + B operand truncated to the least significant 8 bits (upper 3 bytes of the B operand are zeroed).

	+16
	A operand + B operand truncated to the least significant 16 bits (upper 2 bytes of the B operand zeroed).

	-
	A operand - B operand.

	B-A
	B operand - A operand.

	AND
	A operand AND B operand (Bit-wise AND).

	~AND
	Inverted A operand AND B operand (Bit-wise AND).

	AND~
	Inverted B operand AND A operand (Bit-wise AND).

	OR
	A operand OR B operand (Bit-wise OR).

	XOR
	A operand XOR B operand (Bit-wise exclusive OR).

	+IFSign
	If the sign condition code is set, A operand + B operand.

If the sign condition code is not set, result is B operand.

When using +IFsign in an ALU instuction, note that the condition code is set by the

second instruction immediately preceding the current one. This is in contrast to a

branch instruction, where the condition code is set by the instruction immediately

preceding the current one.

B_operand
A transfer register, general-purpose register (GPR), or immediate data

that acts as a source for the ALU operation. The transfer registers and

GPRs can use context-relative addressing only. A transfer register may

be specified for either A_operand or B_operand, but not both. The

immediate data can range from 0 to 0x1F.

B_op_shf_cntl Shift or rotate the B operand using the syntax shown in the table below.

	Operation

	Description

	<<n
	Left shift n bits, where n = 1 through 31.

	<<indirect

	Left shift by an amount specified in the lower 5 bits of the A operand of the previous instruction. The lower 5 bits of the A operand should be (32-n), where n is the desired left shift amount.

	>>n
	Right shift n bits, where n = 1 through 31.

	>>indirect

	Right shift by the amount specified in the lower 5 bits of the A operand of the

previous instruction.

	<<rotn
	Left rotate n bits, where n = 1 through 31.

	>>rotn
	Right rotate n bits, where n = 1 through 31.

Example 1: alu_shf[dest_reg,left_reg_or_constant,+,

right_reg_or_constant,<<19]

Example 2: immed[shift_parameter,3]

alu[--, shift_parameter,b,0] ;left shift value = 32-3=29

alu_shf[dest_reg1,--, b,1,<<indirect];result = 0x2000000

alu[--, shift_parameter,b,0] ;right rotate value = 3

alu_shf[dest_reg2,--, b,1,>>rot8] ;result =0x0100000

immed[b_op,0x8]

alu[--, shift_parameter, b, 0] ;right shift value = 3

alu_shf[dest_reg3,--, b,8,>>indirect] ;result=0x00000001

BR!=COUT

Branch to an instruction at a specified label based on an ALU condition code. The ALU condition codes are Sign, Zero, and Carryout (cout). The sign condition code is not valid on underflow or overflow conditions. Care must be taken to ensure that compare operations do not cause either an underflow or an overflow or the incorrect branch might be taken. This restriction applies to comparisons made when using the ALU and ALU_SHF instructions and when using the .if directive.

Note: The carryout condition code is only valid for these ALU operations: +, +carry, +4, +8, +16, -, and B-A. Its value is unpredictable for all other ALU operations.

Note: For the IXP1200 Network Processor C0 stepping, IXP1240, and IXP1250 these branch instructions cannot cross the segment boundary. Only the br instruction may cross the boundary.

Formats: br=0[label#], optional_token

br!=0[label#], optional_token

br>0[label#], optional_token

br>=0[label#], optional_token

br<0[label#], optional_token

br<=0[label#], optional_token

br=cout[label#], optional_token

br!=cout[label#], optional_token

label#

Symbolic label corresponding to the address of an instruction.

optional_token

• defer [1]

Execute the instruction following this instruction before

performing the branch operation. The ALU operation that sets the

condition codes may occur several instructions before the branch

instruction.

• defer [2]

Execute the two instructions following this instruction before

performing the branch operation. The ALU operation that sets the

condition codes must occur immediately before the branch

instruction. Not used with guess_branch.

• guess_branch

Prefetch the instruction for the “branch taken” condition rather than

the next sequential instruction. The ALU operation that sets the

condition codes must occur immediately before the branch

instruction. Whenever possible, should be used with defer [1] to

improve performance. Not used with defer [2].

Example:
label#:

alu[--,--,b,2]

br=0[label#],defer[2]

nop

nop
DBL_SHF

Load a destination register with a 32-bit longword that is formed by concatenating the A operands and B operands together, fight shifting the 64-bit quantity by the specified amount, and then storing the lower 32 bits.

Format:
dbl_shf[dest_reg, A_operand, B_operand, A_op_shf_cntl]

Dest_reg
-- Indicates no destination

Absolute or context-relative register name.

A_operand
Context-relative register name

5-bit zero-filled immediate data.

B_operand
context-relative register name

5-bit zero-filled immediate data

A_op_shf_cntl
 >>1 (right shift 1) through >>31 (right shift 31)

>>indirect (right shift by the amount specified in the lower 5bits of the previous A operand)

Example:
If a = 0x87654321 and b = 0xFEDCBA98, then

Dbl_shf[c, a, b, >>12]

stores 0x321FEDCB in c. The ALU condition codes are updated based on the result.

LD_FIELD

Load 1 or more bytes within a register with the shifted value of another operand. Data in the bytes that are not loaded remain unchanged or are cleared. LD_FIELD performs a read-modify-write on a destination register. LD_FIELD_W_CLR performs a write to a destination register. When a transfer register is used as the destination register, LD_FIELD reads from the read transfer register and writes the modified data to the write transfer register.

Format:
ld_field[dest_reg, byte_ld_enables, source_op,

opt_shf_cntl], optional_token

ld_field_w_clr[dest_reg, byte_ld_enables,

source_op, opt_shf_cntl], optional_token

dest_reg
A context-relative transfer register or general-purpose register (GPR)

that holds the result of the instruction.

byte_ld_enables
A 4-bit mask that specifies which byte(s) are affected by the instruction.Each set bit enables the corresponding byte of the destination operand longword to be loaded or cleared. There must be at least 1 set bit in this mask. For example, 0101 loads the 1st and 3rd bytes while the other bytes remain unchanged.

source_op
Context relative transfer or general-purpose register. This register must be on the opposite bank as the destination register.

opt_shf_cntl
Shift or rotate the register contents using the syntax shown in Table 3-7.

optional_token

• load_cc

Load ALU condition codes based on result formed.

Example 1:

If dest_op = 0xAABBCCDD and src_op = 0x11223344, then

ld_field[dest_op, 0101, src_op, <<rot4]

results in dest_op = AA23CC41.

Example 2:

If dest_op = 0xAABBCCDD and src_op = 0x11223344, then the

instruction

ld_field_w_clr[dest_op,0101,src_op]

results in dest_op = 00220044

NOP

Consume one microcycle without performing any operation and without setting any microengine state.

Format:
nop

