
1

Design, Implementation and Performance of a
Content-Based Switch

G. Apostolopoulos D. Aubespin V. Peris P. Pradhan D. Saha

IBM T.J. Watson Research Center
Yorktown Heights, NY 10598�

georgeap,aubespin,vperis,prashant,debanjan � @watson.ibm.com

Abstract— In this paper, we share our experience in de-
signing and building a content based switch which we call
L5. In addition to the layer 2-3-4 information available in
the packet, a content based switch uses application level in-
formation to route traffic in the network. Making routing
decisions based on information contained in the payload is
not a new idea. In fact application level proxies which are
functionally equivalent to a content-based switch, have been
around for years.

Our contribution is in combining the functionalities of an
application level proxy with the data handling capabilities of
a switch into a single system. In this paper, we describe the
architecture of the L5 system along with the details of how
application level information can be efficiently processed in
switch hardware. We cover two specific application exam-
ples that we believe are ideal candidates for content-based
switching: one is routing HTTP sessions based on Uniform
Resource Locators (URL) and the other is session-aware dis-
patching of Secure Socket Layer (SSL) connections.

I. INTRODUCTION

Until recently the word switching was synonymous with
forwarding frames based on link layer addresses. Of late,
the definition of switching has been extended to include
routing packets based on layer 3 and layer 4 information.
Layer 3 switches, also known as IP switches, use IP ad-
dresses for network path selection and forwarding. They
are fairly commonplace today and are being used as re-
placements for traditional routers. In addition to layer 2
and 3 information, a layer 4 switch examines the contents
of the transport layer header, such as TCP and UDP port
numbers, to determine how to route connections. Layer
4 switches are slowly making their way into the market-
place and are primarily used as load balancing connection
routers for server clusters. Moving one level higher in the
protocol stack, we can define a layer 5 switch that uses
session level information, such as Uniform Resource Lo-
cators (URL) [5], in addition to layer 2-3-4 information to
route traffic in the network. In this paper, we share our ex-
perience in designing and building a layer 5 switch, which
we call L5. Although, the L5 system can potentially be
used anywhere in the network, we mainly focus on its use-
fulness as a front-end to a server cluster. We explore the

value of a content aware session router in a cluster of Web
servers and Web caches.

Web server and Web cache clusters [3] are common-
place in many large Web provider sites and Internet Ser-
vice Provider (ISP) GigaPOPs. In a typical installation,
the server and the cache clusters are front-ended by layer
4 switches which distribute connections across the nodes
in the cluster [7]. The main objective of these layer 4
switches is to balance load among the servers in the clus-
ter. Since, layer 4 switches are content blind, this approach
mandates that the nodes in the Web server cluster are ei-
ther completely replicated or share a common file system.
Besides the storage overhead, complete replication is also
an administrative nightmare since every time a page is up-
dated it has to be propagated to all the nodes in a relatively
short period of time. A shared file system, on the other
hand, increases the load on the server nodes as they have
to first obtain the file from the file server before serving it
out to the client. In a Web cache cluster, load balancing
without considering the requested URL, leads to cluster
nodes becoming redundant mirrors of each other. The L5
system takes into account session level information, such
as URLs when routing a connection to a server node. Con-
sequently, it makes it possible to partition the URL space
among the server nodes thus improving the performance of
the server cluster. As a session aware load balancer for a
Web cache cluster, the L5 system effectively partitions the
URL space among the cluster nodes, thereby increasing
the total amount of content that is cached and improving
the performance of the cache cluster.

A layer 5 switch can be a valuable tool when it comes
to distributing secure sessions among a cluster of secure
Web servers. Secure HTTP [4] sessions use the Secure
Socket Layer (SSL) [8] protocol for privacy and authenti-
cation. The SSL protocol involves a computationally ex-
pensive handshake procedure that enables the client and
server to authenticate each other and share a secret. Once
this is done, subsequent SSL sessions can be easily setup
using the same shared secret to generate symmetric keys
for each session. A content blind dispatching of SSL ses-
sions results in different sessions being dispatched to dif-

2

 Switch Core

Fast E/N Port
Controller

Fast E/N Port
Controller

C
o
n
tr

o
lle

r
G

ig
a
b
it

 E
/N

 P
o
rt

CPU

M
e
m

o
ry

4x100 E/N 4x100 E/N

1x1000 E/N

Input Control Ouput Control

Ouput Control Input Control

M
ic

ro
c
o
n
tr

o
ll
e
r

Search
Engine

E
x
te

rn
a
l
M

e
m

o
ry

(S
e
a
rc

h
 D

a
ta

b
a
s
e
)

Req FIFO

Status FIFO

Req FIFO

Status FIFO

D
a
ta

 F
IF

O

D
a
ta

 F
IF

O

C
m

d
 F

IF
O

C
m

d
 F

IF
O

MAC

M
ic

ro
c
o
n
tr

o
ll
e
r

T
o
/F

ro
m

Switch Interface

(a) Switch Architecture. (b) Port Controller Architecture.

Fig. 1. Switch & Port Controller Architectures.

ferent nodes in the cluster. Since the server nodes do not
share their secrets, content blind dispatching forces the
client and the server to perform handshake operations for
almost all sessions. This is computationally expensive and
significantly reduces the number of connection requests
the server cluster can handle. We show that the L5 sys-
tem can greatly improve the overall throughput of a secure
Web server cluster by dispatching SSL connections based
on session information.

While layer 5 switching is exciting and useful, to date
very few high-performance layer 5 switching systems have
been built. One of the reasons why layer 5 switches are so
rare is that most layer 5 protocols are designed to be han-
dled by general purpose CPUs at the end-hosts, and typ-
ically involve complex protocol processing. A more sub-
tle, but probably more compelling reason why switching
based on layer 5 information is difficult, is an artifact of
the TCP [9] state machine. Most layer 5 protocols that are
of interest to us run on top of TCP. In order for a layer
5 switch to obtain the session level information necessary
to perform content based switching, it first has to estab-
lish a TCP connection to the source. Once the connection
has been established, migrating it from the switch to the
destination is an extremely difficult task. In [13] the au-
thors propose a technique to migrate live TCP connections.
Unfortunately, their solution requires modifications to the
TCP state machine and the message format. Given the
large installed base of clients and servers using TCP and
the reluctance of the vendors to modify Operating System
kernels, any solution requiring mandatory modifications to
the TCP stack is of limited practical value.

Application level proxies [10], [11], which are in many
ways functionally equivalent to layer 5 switches, use a dif-
ferent approach to avoid migrating TCP end-points. They

establish two TCP connections – one to the source and a
separate connection to the destination. The proxy works
as a bridge between the source and the destination, copy-
ing data between the two connections. While application
layer proxies are functionally rich and flexible, they can
not handle the high volumes of data that a switch is ex-
pected to handle. Our objective in designing the L5 sys-
tem has been to combine the functionalities of application
layer proxies and the data handling capabilities of switches
into one system. Another salient feature of the L5 system
is that it requires minimal configuration. Using two appli-
cation examples we describe how the L5 system automat-
ically learns layer 5 routing information, thus minimizing
the need for configuration.

The rest of the paper is organized as follows. In sec-
tion II we describe the hardware and software architecture
of the L5 system. In section III, we describe the layer
4 processing required to support layer 5 functions. Sec-
tion IV is devoted to URL based HTTP session routing
and its performance. In section V, we describe how an L5
system can be used to balance the load of secure HTTP
sessions that use the SSL (Secure Socket Layer) protocol.
We conclude in section VI.

II. SWITCH ARCHITECTURE

A high level illustration of the L5 system is shown in
Figure 1(a). As shown in the figure, the L5 system con-
sists of a switch core to which a number of custom built
intelligent port controllers are attached. In addition, the
L5 system is equipped with a processor complex. Layer 5
functions, such as the parsing of HTTP protocol messages
and URL based routing, are performed by the processor.
The job of the port controllers is to identify the packets

3

Switch fabric

Processor

Client Server

Client port
 controller

Server port
 controller

Phase I

Processor

Switch fabric
Client

Client port
 controller

Server port
 controller

Server

Phase II TCP header
 translation

Switch fabric

Processor

Client Server

Client port
 controller

Server port
 controller

Phase III

Fig. 2. Example flow through a Layer 5 Switch

that require layer 5 processing and forward them to the
processor. In our design, we make sure that only packets
that need to be handled by the processor are forwarded to
it. The rest of the packets are processed by the port con-
trollers. As we will see later in the paper, in most common
scenarios only a very small fraction of the packets are pro-
cessed by the CPU. As a result we can achieve very high
speeds while delivering sophisticated layer 5 functionality.

The switch fabric consists of a shared memory
cell/packet switching elements that is scalable from
2.5Gbps to upto 40Gbps. Figure 1(b) shows a simplified
architecture of a port controller. The multi-tasking micro-
controller is capable of processing multiple packets simul-
taneously. The search engine implements longest prefix
match in hardware.

The microcontroller polls the request FIFO and picks up
the packets waiting in the data FIFO for processing. As a
part of packet processing, the microcontroller can extract
any part of the packet from the data FIFO. In our system,
we use the microcontroller for layer 2-3-4 processing. This
involves extracting the layer 2,3, and 4 headers from the
data FIFO, composing search keys using different parts of
the headers, performing one or more searches using the
search engine, and then executing necessary actions based
on the search results. To be able to forward packets at
wire-speed we have a processing budget of about 300 in-
structions, assuming a packet size of 64 bytes and a link
speed of 1 Gbps. This is sufficient for our purpose as there
is also a search engine that runs as a co-processor of the
microcontroller.

The processor complex is a PowerPC 603e which is at-
tached to the CPU port of the switch. The software run-
ning on the CPU is responsible for control functions as
well as layer 5 data-path functions which are described in
Section III. At the time of switch initialization, the proces-
sor downloads the microcode to the port controllers. The
search databases are also initialized at this time. All layer
2,3, and 4 data path processing is handled by the port con-
trollers. Packets requiring layer 5 processing are identified
by the port controllers and are forwarded to the CPU for
further processing. In the next section, we discuss how
the CPU and the port controllers coordinate to implement
layer 5 switching.

III. OPERATIONAL BLUEPRINT

The basic working principle of the L5 system is similar
to that of an application layer proxy. It involves three ma-
jor steps as shown in Figure 2. First (phase I in Figure 2), it
intercepts the TCP connection setup request from the client
and responds by establishing a connection to the client. It
acts as a proxy for the server reading in as much layer 5
information as is needed to make a routing decision. De-
pending on the specific layer 5 protocol involved, it parses
the layer 5 protocol messages and determines where to
route the session based on the corresponding layer 5 rout-
ing database. After the routing decision is made, it sets up
a second connection to the appropriate server node (phase
II in Figure 2). In an application layer proxy, the proces-
sor remains on the data path and copies data between the
two connections. In the L5 system, the processor gets out
of the data path at an opportune moment by splicing the
two TCP connections. After splicing (phase III in Fig-
ure 2), all packet processing is handled by the port con-
trollers leading to very efficient data handling through the
switch. Notice that the splicing of the connections requires
TCP sequence number translation at the port controllers.
Hence, although the port controllers do not perform any
layer 5 functions, they play a very critical role in ensuring
that layer 5 switching is fast and efficient. In the rest of
this section, we discuss in detail how the CPU and the port
controllers work in harmony to execute the three phases of
layer 5 switching shown in Figure 2. Specific examples of
layer 5 protocol processing are discussed in Sections IV
and V.

A. Processing at Port Controllers

To better understand the working principles of the L5
system, let us consider the example scenario shown in Fig-
ure 3. In this setup, the L5 system is used as a front-end to
a Web server cluster. The responsibility of the L5 system
is to route HTTP requests from the clients to the nodes
in the cluster based on the URLs in the requests. As is
typical of many configurations of this nature, all nodes in
the cluster share a common IP address, say VIP, and are
known to the external world through this address. Addi-
tionally, each node in the cluster also has its own unique
IP and MAC addresses. Let us assume that the L5 system

4

L5 System

Client network

Client network

Server
cluster

S1

Sn

CPU

Switch
 fabric

P
C

P
C

Fig. 3. Typical scenario in which the L5 system is a front-end
to a server cluster

is configured to perform layer 5 switching on all TCP con-
nections with destination address VIP and destination port
80 (default HTTP port).

Packet processing at the port controllers to which servers
are connected is different from that at other ports. As a re-
sult, we distinguish server ports from other ports which
we refer to as client ports. When a packet arrives at a port
controller it is passed through a classifier. The classifier
is responsible for identifying the processing needs of the
packet based on layer 2,3, and 4 header information. As-
sociated with each classifier is one or more action flags
and necessary meta information that determines how the
packet is processed. Tables I and II show the classification
tables at the client and server ports, respectively, for the ex-
ample discussed below. Notice that there are two types of
classifiers – permanent and temporary. Permanent classi-
fiers are installed during the switch initialization time and
are not deleted unless there is a change in configuration.
Temporary classifiers are installed and removed as con-
nections come and go. Each classifier has a priority level
associated with it. In the event of a conflict, the classifier
with the highest priority overrides the lower priority clas-
sifiers. In our example

���
denotes a higher priority than���

, if ���	� .
Let us now consider a HTTP session originating from

client address CA and client port CP and destined to ad-
dress VIP and port 80. Figure 4 shows the timing diagram
of the different steps involved during the connection setup
as well as the data transfer phases. The client initiates the
connection by sending a TCP SYN packet. In addition to
setting the SYN control bit in the TCP header, the client
also chooses a 32-bit starting sequence number (CSEQ)
which is used to keep track of the data that the client sends
to the server. This SYN packet makes its way to the client
port where it is trapped by classifier CC1 (in Table I) and
is forwarded to the switch CPU (step 1 in Figure 4).

The CPU receives the packet (step 2 in Figure 4) and
then responds (step 3 in Figure 4) with a SYNACK mes-
sage masquerading as the server. It uses VIP:80 as the

source address and port number in the SYNACK packet.
The starting sequence number (DSEQ) is chosen as DSEQ
= H(CA,CP) where
 is a suitable hash function that re-
turns a 32-bit number, and CA, CP are the client IP ad-
dress and port number, respectively. The hash function

is known to all the port controllers allowing them to in-
dependently compute ������ given ��� and � � . This
eliminates the need for the CPU to send a separate con-
trol message with sequence number information to the port
controllers.

The SYNACK message passes (step 4 in Figure 4) un-
modified through the client port and is ultimately routed to
the client. The client completes the three-way handshake
by acknowledging the SYN from the CPU. Typically, the
client piggybacks the ACK with data which in this case
is the HTTP GET request containing the URL. The ACK
and data from the client is again trapped (step 5 in Fig-
ure 4) by classifier CC1 (in Table I) at the client port and
is forwarded to the CPU. The CPU receives the ACK and
data (step 6 in Figure 4) from the client. This completes
the three-way handshake at the CPU. The CPU then parses
the HTTP GET request data to check if it has received the
complete URL. If it has not received the complete URL,
it waits for more client data (not shown in the figure) to
make its routing decision.

Once the complete URL has been received and the rout-
ing decision has been made, the CPU initiates a second
TCP connection to the appropriate cluster node (say S1) by
sending (step 7 in Figure 4) a SYN packet to it. This time
the CPU masquerades as the client and uses the client’s
IP address (CA) and port (CP) as the source address and
the port number, respectively. Recall that all cluster nodes
besides being aliased to VIP, also have their own unique
IP and MAC addresses. The SYN packet is forwarded to
the chosen cluster node using its MAC address. The CPU
also sets the starting sequence number to CSEQ, which is
the same sequence number that the client initially chose.
This way the acknowledgments that are sent back from the
server to the client do not need any sequence number trans-
lations in the switch.

The SYN packet from the CPU travels through (step
8 in Figure 4) the server port unmodified. On receipt of
the SYN, the server sends a SYNACK message addressed
to the client. The server independently chooses a starting
sequence number, say SSEQ. The SYNACK packet from
the server is trapped (step 9 in Figure 4) at the server port
by classifier CS2 (in Table II). The server port controller
snoops the initial sequence number chosen by the server,
viz SSEQ as well as the client address CA and port num-
ber CP from the SYNACK. It then installs temporary clas-
sifiers CS3 and CS4 (in Table II). Classifier CS3 traps all
client generated packets and translates the sequence num-
bers of the ACKs from a base of DSEQ to SSEQ.Classifier

5

CLIENT SERVER

SYN (CSEQ)

SYN (DSEQ)

 DATA(CSEQ+1)

ACK(CSEQ+1)

ACK(DSEQ+1)

Step1 Step2

Step3Step4

Step5 Step6

Step 8SYN (CSEQ)Step 7

Step 9

ACK(CSEQ+1)

 DATA(CSEQ+1)

ACK (CSEQ+len+1)

DATA (SSEQ+1)DATA (DSEQ+1)

ACK (DSEQ+len+1)

ACK (SSEQ+len+1)

Step 10

Step 11
Step 12

Step 13

ACK (CSEQ+len+1)

Step 14

Step 15 Step 16

ACK(CSEQ+1)

SYN (SSEQ) SYN (DSEQ)

ACK(DSEQ+1)

CLIENT PORT PowerPC SERVER PORT

 DATA(CSEQ+1)

ACK(SSEQ+1)

Fig. 4. Flow diagram indicating the steps involved in switching based on Layer 5 information

Client Port Classifiers for HTTP
ID DA:DP:SA:SP:Flg Type Pri Action

CC1 VIP:80:*:*:ANY Perm
���

Fwd to CPU
CC2 VIP:80:CA:CP:ANY Temp

���
Fwd to S1

TABLE I
CLASSIFIERS AT THE CLIENT PORT CONTROLLER.

CS4 traps all packets originating at the server and belong-
ing to this connection and translates the sequence number
of the data from a base of SSEQ to DSEQ. These clas-
sifieres set the stage for the ensuing splicing. Note that
DSEQ can be computed locally since all port controllers
know the hash function
 . After the sequence number
translation, the SYNACK is forwarded to the CPU.

The CPU receives the SYNACK (step 10 in Figure 4).
It then forwards (step 11 in Figure 4) the acknowledged
client data stored at the CPU to the server. This may
involve multiple exchanges (not shown in the figure) be-
tween the server and the CPU. Data packets sent to the
server by the CPU undergo header translation (step 12 in
Figure 4) at the server port controller. Once all acknowl-
edged client data has been successfully received by the
server, the CPU can get itself out of the data path by splic-
ing the connections

�
.

Splicing is accomplished by installing temporary clas-
sifier CC2 at the client port controller. Classifier CC2 (in
Table I) overrides the default permanent classifier CC1 and
forwards all packets belonging to this specific connection
directly to the server node instead of forwarding it to the
CPU. Also, classifier CS4 (in Table II) at the server port is
updated so that packets belonging to this connection and
destined to the client are directly forwarded to the client
instead of the CPU. After splicing, packets from the server
�
The splicing of the connections may also occur at a later point de-

pending on the layer 5 protocol processor.

arriving at the server port and matching the classifier CS4
(in Table II) are sent directly to the client after sequence
number translation. The client port does not perform any
transformation on the packets destined to the client. ACKs
from the client are now trapped by classifier CC2 (in Ta-
ble I) at the client port and are directly forwarded to the
server port for delivery to the server node. At the server
node, the ACKs match classifier CS4 (in Table II) and un-
dergo sequence number translation and are then delivered
to the server. The temporary classifiers are timed out af-
ter configurable periods of inactivity. The search engine is
equipped with hardware mechanisms to identify inactive
classification entries and automatically add them to a list
of inactive classifiers. A low priority task processes this
list and takes appropriate action.

B. Processing at CPU

Although the bulk of the layer 4 processing takes place
at the port controllers, the CPU also plays an important
role. It acts as the end-points for the TCP connections to
the client and the server, copies data between the connec-
tions until they are spliced, and finally splices the con-
nection by sending the appropriate control messages to
the port controllers. There are a few subtle issues that
need to be dealt with when splicing TCP connections.
One of them, viz the handling of TCP options [16] de-
serves special attention. TCP supports various optional
functions such as maximum segment size (MSS), win-
dow scale factor, timestamp, and selective acknowledg-
ment (SACK) [12]. These options are negotiated during
the initial TCP handshake and the set of options supported
by both the client and the server are used for the connec-
tion. Since the L5 system proxies on behalf of the server, it
has to negotiate TCP options with the client. However, at
the time of connection setup, the L5 system does not know
the specific server node the connection will be routed to
and the capabilities of the TCP stack in that server node.

6

As a result, option negotiation becomes a bit tricky. If the
switch accepts a specific option which is not supported
by the server node to which the connection is ultimately
routed to, splicing the connections becomes impossible.
The easiest way for the L5 system to handle this problem is
to reject all TCP options. A better and preferred approach
is to query all the servers in the cluster and to enumer-
ate the minimum set of options supported by all nodes in
the cluster. It can then support this minimal set of options
while setting up connections with the clients.

For most TCP options, the port controllers do not have to
perform any complicated operations. The only exception
is SACK. With SACK, the receiver can inform the sender
about all non-contiguous segments that have arrived suc-
cessfully. This is represented as a list of blocks of con-
tiguous sequence space identified by the first and last se-
quence numbers of the block. This essentially means that
the server port controller may have to perform multiple
sequence number translations in packets that contain the
SACK option. Alternatively, packets with SACK option
can be be treated as exception packets that are handled by
the CPU.

C. Performance

As mentioned before, the port controllers can perform
layer 2-3-4 processing at wire-speed and are not the bot-
tleneck. It is the performance of the processor complex
that limits the throughput of the L5 system. We measured
the overheads associated with different steps of the data-
path executed at the CPU. The measurements were taken
on a processor complex equipped with a 233 MHz Pow-
erPC 603e processor (the same used in the switch), 32 KB
of data and instruction caches, 512 MB of memory run-
ning OS Open. We instrumented the datapath for detailed
profiling of various processing steps shown in Figure 4.
The instrumented datapath was used to capture a sequen-
tial flow of time-stamped events. The time-stamps are of
sub-microsecond granularity and are taken by reading a
real-time clock which is an integral part of the PowerPC
CPUs.

Our measurements show that the overhead associated
with steps 2 & 3 (Figure 4) combined is 42 � secs. The
overhead associated with step 6 is 13 � secs. Time taken
for step 7 is 52 � secs and Step 10 & 11 together take 22
� secs. Hence the total overhead of layer 4 processing at
the CPU is 129 � secs. Our results show that the L5 sys-
tem is capable of handling over 7000 layer 5 sessions per
second. Assuming an average transfer size of 15 KB

�
per

session, this should be able to sustain the throughput of a
Gigabit link.

Clearly, in addition to layer 4 processing the CPU also
�
15 KB is the average transfer size for the SPECweb96 [17]

benchmark

Server Port Classifiers for HTTP
ID DA:DP:SA:SP:Flg Type Pri Action

CS1 *:*:VIP:80:ANY Perm
� �

Fwd to CPU
CS2 *:*:VIP:80:SYN Perm

���
Learn seq#
Inst CS3 & CS4
Fwd to CPU

CS3 VIP:80:CA:CP:ACK Temp
���

Trans seq#
Fwd to dest

CS4 CA:CP:VIP:80:ANY Temp
���

Trans seq#
Fwd to CPU/CA

TABLE II
CLASSIFIERS AT THE SERVER PORT CONTROLLER.

has to handle layer 5 datapath functions. The overhead
of these operations may affect the total throughput of the
L5 system. In later sections we will discuss the cost of
two cases of layer 5 processing and show that it is small
compared to the layer 4 data handling.

IV. HTTP ROUTER

In this section, we explore the use of the L5 system in
routing HTTP requests using URLs and other session level
information. This is particularly useful in environments
where the L5 system is used as a front end to a cluster
of Web caches and/or Web servers. As a front end to a
cluster of Web caches, the L5 system ensures that there
is cache affinity when it is making the decision to route a
HTTP request. This effectively increases the number of
pages that are cached in the cluster resulting in a greater
hit rate. Content-based dispatching can also be used as
an alternative to sharing a distributed file system across a
cluster of web servers. In general, the requirements for
each of these environments are slightly different and it is
worthwhile to consider them separately.

A. Dispatching to Web Caches

Recently, the need for improved Web performance has
resulted in the creation of distributed Web caches that co-
operate with each other to increase the amount of web
coverage that they can provide. Some of these networks
of caches are arranged in a hierarchical fashion [6], [19].
Web caches can also be organized as a loose cluster of dis-
tributed caches. In this case, each cache keeps track of
the pages that are cached at their peers by running special
cache coherency protocols like the Inter-Cache Protocol
(ICP) [20]. Alternatively the Cache Array Routing Proto-
col (CARP) [18], can be used to direct the request to the
appropriate cache by using an implicit mapping between
the URLs and the caches.

An L5 system working as an HTTP router obviates the
need for caches to run ICP and also reduces unnecessary
inter-cache transfers of web pages. Additionally an L5 sys-

7

tem can easily identify the non-cacheable pages, such as
CGI scripts, and forward these requests directly to the ap-
propriate server. This not only reduces transfer latencies,
but lessens the load on the caches. The L5 system also
improves the effective throughput of the cache cluster by
partitioning the content among the caches. Content parti-
tioning reduces the working set size of the content at each
node and thus improves the likelihood that the pages are
cached in memory rather than stored on the disk.

B. Dispatching to Web Servers

Content-based dispatching can be quite useful in the
management of large Web sites, which host millions of
Web pages. As mentioned before, these sites use multiple
Web servers organized as a cluster to handle high volumes
of traffic. The server cluster is front-ended by a layer 4
load balancer to distribute traffic among the server nodes.
Since layer 4 dispatching is content blind, all content has
to be accessible from each node in the cluster. As was
discussed in the introduction, both content duplication and
a shared file system are not satisfactory solutions, while
content un-aware load distribution may result in significant
load variation between the servers of the system.

The L5 system working as a HTTP router is a perfect
solution for this environment. By dispatching HTTP re-
quests based on URLs, the L5 system obviates the need
for a distributed file system or a complete replication of the
content. It allows the content to be partitioned or partially
replicated based on performance needs, resulting in signif-
icant improvement in the efficiency of the server cluster.

In order to quantify the impact of layer 5 switching on
server performance, we conducted a simple experiment us-
ing a small cluster of Web servers. Our testbed consisted of
three IBM RS/6000 model 43P-200 servers running AIX
4.2, with eight PCs working as clients. The servers were
equipped with a PowerPC 604e CPU running at 200 MHz
with 32 KB of on-chip 4-way associative instruction and
data caches, a 512 KB direct mapped secondary cache, and
128 MB of RAM. The client machines were 266 MHz Pen-
tium II PCs running Linux 2.0.35. Each of the servers was
running the Apache version 1.2.4 Web server.

We used the SPECweb96 [17] benchmark to generate
client workload for our server cluster. The workload gen-
erated by SPECweb is designed to mimic the workload
on regular Web servers. More specifically, the workload
mix is built out of files in four classes: files less than 1KB
account for 35% of all requests, files between 1KB and
10KB account for 50% of requests, 14% between 10KB
and 100KB, and finally 1% between 100KB and 1MB.
There are 9 discrete sizes within each class (e.g. 1 KB,
2 KB, on up to 9KB, then 10 KB, 20 KB, through 90KB,
etc.), resulting in a total of 36 different files in each direc-
tory (9 in each of the 4 classes). The number of directo-

10

20

30

40

50

60

70

80

90

100

110

100 150 200 250 300 350 400 450 500 550

La
te

nc
y

(m
se

c)

Operations/Second

2 Servers, replicated
3 Servers, replicated

2 Servers, NFS mounted
3 Servers, NFS mounted

2 Servers, partitioned
3 Servers, partitioned

Fig. 5. SPECWeb96 performance on a cluster with 2/3 servers

ries is based on the target workload. For example, with
a workload of 500 requests per second there were a total
of 100 directories. Accesses within a class are not evenly
distributed; they are allocated using a Poisson distribution
centered around the midpoint within the class. The result-
ing access pattern mimics the behavior where some files
(such as “index.html”) are more popular than the rest, and
some files (such as “mydog.gif”) are rarely requested.

We conducted three sets of experiments - one where the
entire set of files was replicated on each of the servers, a
second set with some of the files shared using NFS, and a
third set with a partitioned fileset and content aware dis-
patching. For the first experiment the entire fileset consist-
ing of 100 directories each with 36 files, was replicated
on all the server nodes. For the NFS experiments, we
partitioned the fileset equally across the different servers
and NFS mounted the remaining filesets onto each of the
servers. For instance, with 3 servers in the cluster, each
server had a third of the files locally whereas 2/3 of the
files were NFS mounted from the other two servers. For
the third set of experiments, the fileset was partitioned
in the same way as in the NFS experiment. However, in
this case they were not mounted on the other nodes, rather
the client requests were appropriately routed to the servers
which hosted them.

Figure 5 shows the latency vs. throughput plots for the
three sets of experiments. As shown in the figure, with
completely replicated content, a two server cluster was
able to register a SPECWeb96 performance of over 300
ops/sec, and a three server cluster was able to support close
to 450 ops/sec. With an NFS mounted file system, the
server cluster performed very poorly and barely supported
200 ops/sec with three nodes in the cluster. This is not
surprising given that a majority of the requests would not
be found locally on the servers. If the file was not cached
locally the web server would first have to obtain the file
through NFS and then serve it out to the client which ef-

8

fectively doubled the work involved. The highest through-
put was achieved in the final set of experiments where the
client requests were appropriately routed to the servers. In
this case the cluster of 3 servers was able to support close
to 500 ops/sec. It is interesting to note that the final ex-
periment achieved a greater throughput than the first one
where the content was fully replicated. The reason for this
higher performance is because in the last case each server
sees a smaller set of distinct requests and so the working
set size is reduced. This improves the likelihood of a server
being able to serve the request from its memory.

B.1 Content to Server Mapping

To be able to dispatch HTTP requests based on URLs,
the L5 system has to know the mapping from the URL to
the web server (or cache) on which the page resides. As
a front-end to a cluster of Web caches it may be sufficient
to route the request based on a simple hash of the URL.
A drawback of this approach is that the hash function as-
signs any given URL to a single Web cache. If there are
some “hot” pages that are accessed very frequently then
this scheme can result in a rather poor load distribution as
most of the requests will be routed to a single cache in the
cluster. One way of alleviating this problem is to modify
the mapping function so that a URL maps to a set of candi-
date web caches. The request is then forwarded to the least
loaded web cache. Alternatively, a mapping from the URL
to Web cache can be built on the fly as the initial HTTP re-
quests are dispatched [13]. When a new request arrives, it
is assigned to the least loaded cache. A hash table is main-
tained that maps the requested URL to the cluster node it
is routed to. When a repeat request arrives, a simple hash
lookup identifies the cluster node on which the page can
be found. This scheme can be modified to allow a map-
ping between a request and a set of nodes, with an incom-
ing request being assigned to the least loaded cache in this
set [13].

When the L5 system is used as a front-end to a cluster
of Web servers the problem is slightly more complicated.
In this case, the L5 system is not responsible for distribut-
ing the content to different server nodes and hence can-
not learn it automatically. Consequently, its first task is
to identify the location of the content. If the Web pages
are organized in a structured fashion, a simple static con-
figuration may be sufficient. We are implementing a more
ambitious scheme where the L5 system learns the mapping
using an URL Resolution Protocol (URP) [1].

B.2 URL Lookup

One of the important components of HTTP routing is
finding the server node that hosts the requested Web page.
The data structure used to store this mapping of URLs to
server nodes, depends on the specific application environ-

Maxlevel Lookup time (� sec) Memory (KB)

1 2.38 8.4
2 4.69 30.10
3 8.98 116.93
4 9.93 416.55
5 10.00 462.26

TABLE III
URL LOOKUP PERFORMANCE USING HASH TREE.

ment. For example, for routing in a Web cache cluster
where the content space has very little structure, a hash
table is probably the best choice. For routing in a Web
server cluster, it may be possible to exploit the structure in
the content space by using a data structure that allows pre-
fix matches. We are considering both hash tables and data
structures that facilitate prefix matching for use in the L5
system. For prefix matching we use multilevel hash trees
where each level in the hash tree corresponds to a level in
the URL.

To estimate the overhead of URL lookup, we con-
structed a multilevel hash tree with about 20,000 URLs
from the 1996 Olympic Web site. We started with a sim-
ple hash function and set the default size of all hash buck-
ets to 256. After populating the tree with all the URLs,
we examined the hash buckets and revised the hash func-
tions and bucket sizes to minimize overflow and underflow
conditions. Table III shows the overhead of URL lookup
both in terms of the lookup time as well as the memory
consumption for different levels of aggregation. Since we
don’t know exactly how the pages were distributed across
the different servers we can’t predict the exact amount of
aggregation that is attainable. Rather we list the results
for different levels of aggregation where an aggregation to
level 3 implies that only the first three components of the
path name are required to identify the server (or servers)
on which the page resides. The lookup time was computed
by measuring the average search time for the URLs over a
trace of 7.5 million requests served by the 1996 Olympic
Web server.

From Table III it is clear that aggregation dramatically
reduces memory consumption. To compare this result to
the performance of the flat hash scheme, we created a
flat hash table with the number of buckets equal to the
total buckets in the multilevel hash tree. The average
lookup time using the flat hash scheme was 5.87 � sec. The
amount of memory required to store the flat hash table was
1 MB – more than double the amount required for the full
multilevel hash tree. This is due to the fact that in the flat
hash table each node stores the full URL as opposed to the
partial URLs stored by each node in the multilevel hash
tree.

9

C. Performance of Content to Server Mapping

The cost of performing this mapping, i.e., parsing the
URL and finding the server that the request should be di-
rected to, can affect the performance of the L5 system. We
evaluate this cost by experimentation. Due to the large
number of clients and servers required to saturate the sys-
tem, it is very difficult to measure the actual throughput of
the L5 system. Hence, we estimate the throughput of the
L5 system as a HTTP router by measuring the overhead of
HTTP parsing and URL lookup.

Our results show that the overhead of HTTP parsing and
URL lookup is substantially smaller than the layer 4 func-
tions performed by the CPU. On average the combined
cost of HTTP parsing and URL lookup is about 15 � sec.
So it takes a total of 144 � sec (129 � sec due to layer 4
processing) to route a HTTP request. This translates to a
throughput of around 7000 connections per second.

V. SELF LEARNING SSL DISPATCHER

Electronic commerce (e-commerce) applications are
one of the fastest growing segments of the Internet.
The most conspicuous feature that differentiates an e-
commerce application from other Internet applications is
security. In almost all instances, the Secure Sockets
Layer (SSL) protocol [8] is used to ensure security in e-
commerce applications. While the importance of SSL in
the context of e-commerce applications cannot be over-
stressed, it adds significant overhead to protocol process-
ing, especially at the server end. Consequently, large e-
commerce installations use clusters of servers to improve
scalability. In this section, we discuss the problems associ-
ated with dispatching SSL sessions to the nodes in a server
cluster and show how the L5 system can be used to address
this problem.

A. SSL Session Reuse

SSL typically runs over TCP. A client wishing to es-
tablish a secure channel to the server has to first setup a
TCP connection to the server. Once the TCP connection
is established, the client and the server authenticate each
other and exchange session keys. This phase is known as
the SSL handshake and is computationally very expensive
as it typically involves public key cryptography. Once the
handshake is complete, the two parties share a secret which
is used to construct a secure channel between the client and
the server. In contrast to the handshake performed during
the establishment of a new session, the reestablishment of
an SSL session is relatively simple. The client specifies the
session ID of the old or existing session it wishes to reuse.
The server checks to determine if the state associated with
this session is still in its cache. If the session state exists
in the cache, it uses the stored secret to create keys for the
secure channel. The latency involved in setting up a se-

cure connection using cached session state is an order of
magnitude lower than a full SSL handshake [2].

In this paper we focus on SSL session reuse in the con-
text of a server cluster. To better understand the problem
consider a scenario similar to the one depicted in Figure 3
where a cluster of Web servers are serving HTTP requests
over SSL. The L5 system is responsible for dispatching
the incoming SSL connections to the server nodes with the
objective of balancing the load among them. This scenario
is typical of many large e-commerce installations which
have to handle thousands of secure Web transactions ev-
ery second. At present, the common practice is to use a
layer 4 load balancing switch that distributes connections
to server nodes disregarding SSL session level informa-
tion. Since the server nodes do not share their session
caches, this approach leads to poor SSL session reuse effi-
ciency. An easy way to improve the reuse efficiency is to
route all connections from a client to the same server node.
Unfortunately, this approach may cause severe load imbal-
ance among the nodes in the cluster. A layer 4 dispatcher
cannot distinguish between two different clients that are
behind the same firewall or proxy. As a result, it routes
connections originating from all clients behind a firewall
or a proxy to the same server node, leading to massive load
imbalance. Since a large percentage of Internet clients are
behind proxies and firewalls, this poses a serious problem
with no obvious solutions.

From the above discussion, it is clear that a cluster envi-
ronment complicates session reuse unless the cluster nodes
share the session cache. While sharing of session cache
is feasible, there are many technical obstacles that makes
it difficult. First, for security reasons, it is not advisable
to make the session cache accessible over the network.
Even if one disregards the security advisory, at a mini-
mum one has to make sure that both the session caches and
their clients authenticate each other appropriately. Creat-
ing such an infrastructure requires a complex configuration
and is an administrative nightmare. Second, this approach
requires modifications to the SSL libraries and standard-
ization of session cache interfaces so that different imple-
mentations of SSL can share the session state information
with each other.

An elegant and much better alternative to sharing the
SSL session cache among the nodes in a cluster is to use a
SSL session aware dispatcher. Such a dispatcher can learn
the SSL session to cluster node mappings by snooping on
SSL messages and can dispatch the session reuse requests
to the appropriate server nodes using this mapping. In the
following, we describe how the L5 system can be used for
this purpose.

10

100

200

300

400

500

600

700

800

10 15 20 25 30 35 40 45 50

La
te

nc
y

(m
se

c)

Operations/Second

No Reuse
30% Reuse
50% Reuse
80% Reuse

100% Reuse

0

100

200

300

400

500

600

700

0 50 100 150 200 250 300

La
te

nc
y

(m
se

c)

Operations/Second

No Reuse
30% Reuse
50% Reuse
80% Reuse

100% Reuse

(a) Apache cluster with SSL unaware dispatching. (b) Apache cluster with SSL aware dispatching.

Fig. 6. Impact of session session aware dispatching on server performance.

B. Session Aware Dispatching

The basic steps involved in session aware dispatching
of SSL connections are similar to the URL based routing
discussed in the previous section. As the client request to
setup a TCP connection arrives at the L5 system, it is inter-
cepted by the port controller and is forwarded to the CPU.
The CPU establishes a connection to the client and waits
for the SSL session setup message. Upon receiving the
SSL session setup message, the SSL protocol processor
parses the message and extracts the session ID contained
in the message. Based on the session ID it decides which
server node has session state corresponding to this session.
Once the appropriate server is identified, it sets up a sec-
ond connection to the server node and forwards the setup
request. The response from the server is intercepted by
the port controller and is forwarded to the CPU. The CPU
parses the message and extracts the session ID information
contained in it to update its session ID to server node map-
ping. It then splices the two connections and gets out of
the data path.

Understanding the steps involved in SSL session aware
dispatching requires a knowledge of the message flow in-
volved in SSL session setup. After the underlying TCP
session has been established, the client initiates the SSL
connection by sending a Hello message to the server. The
Hello message includes a session ID field which is empty
if a new SSL session is to be established. In response to
the client Hello, the server picks a session ID and then
sends a Hello of its own which includes the session ID.
The server Hello is followed by the server certificate which
contains the server’s public key. The client verifies the cer-
tificate, generates a secret, and encrypts it with the public
key obtained from the server’s certificate. This is sent to
the server which performs a decryption using its private
key, thus obtaining the secret. This shared secret is then
used to generate symmetric keys for encryption and mes-
sage authentication. Until this point all the messages are

exchanged in the clear and are potentially available to the
L5 system. Once the secret keys have been generated by
both sides, the client and the server start using encryption
and message authentication.

When reconnecting to the same server, a client can reuse
the session state established during a previous handshake.
In this case the client sends a Hello message which in-
cludes the session ID of the session it wishes to reuse. If
the server still has the session state in its cache, the client
and the server undergo a short exchange, leading to the
reestablishment of the session state. Otherwise, the server
picks a new session ID and a full handshake is performed.

Figure 6 shows the impact of session aware dispatching
on the Apache server 1.2.4 using SSLeay 0.8. For this ex-
periment, we used the three identical IBM RS/6000 servers
that were described in Section IV. A cluster of PCs run-
ning SPECweb96, suitably modified to generate HTTPS

�

traffic, were used as clients. We used RC4 [15] for data en-
cryption and MD5 [14] for message authentication, since
these are the most commonly used ciphers in real life

�

.
We varied the degree of session reuse from 0-100%. When
session reuse is 0% all SSL sessions setup between the
server and the clients require a full handshake. When ses-
sion reuse is 100%, only the first SSL session setup be-
tween the server and a client involves a full handshake. All
subsequent connections reuse the already established ses-
sion state between the server and the client. When the per-
centage of session reuse is between 0 and 100, the clients
reuse the same session for a certain number of times de-
pending on the value of the reuse percentage.

Figure 6(a) shows the performance of the server clus-
ter when the load balancer is unaware of layer 5 sessions
and dispatches connections based on layer 4 information
only. From the figure it is clear that when SSL sessions are

�

HTTP requests over SSL.
�

Both Netscape and Microsoft Web browsers use RC4 and MD5 as
defaults.

11

blindly dispatched to nodes in the cluster, the aggregate
throughput of the cluster saturates at around 30-35 con-
nections per second depending on the degree of session
reuse. As expected, the degree of session reuse has little
impact on performance. There is however an interesting
anomaly that can be observed at low utilizations where the
latency increases with the degree of session reuse. This
is due to the fact that Apache maintains a global cache to
store all SSL session state in addition to the per-process
cache maintained by the server processes. While process-
ing a reuse request, the server process first checks its local
cache for a hit. If it fails to find a match in its local cache
it searches the global cache for a hit. As the degree of
session reuse increases, so does this futile search through
the global cache. This results in an increased latency for
the connections that request a reuse of session state. This
results in a higher average latency as the level of session
reuse is increased. When the utilization level is sufficiently
high a significant amount of time is spent waiting for the
CPU and so this effect is masked at higher loads.

Figure 6(b) demonstrates how SSL session aware dis-
patching can substantially improve the performance of the
server cluster. In this case as the degree of reuse increases
so does the throughput of the server cluster. With 80% ses-
sion reuse the three server cluster can sustain a through-
put of about 100 connections per second, almost triple
the throughput achieved in the previous experiment at the
same level of reuse. With 100% reuse we observe a six
fold improvement in the performance.

We are in the process of evaluating the performance of
the L5 system as a session aware dispatcher of SSL con-
nections. Preliminary measurements indicate that the CPU
overhead for routing SSL sessions based on session ID is
very close to that of routing HTTP sessions using URLs.

VI. CONCLUSIONS

In this paper, we share our experiences in the design
and implementation of a content-based switching system
named L5. The L5 system uses application level informa-
tion in addition to layer 2-3-4 information to route traffic
in the network. It combines the functionalities of an appli-
cation layer proxy and the data handling capabilities of a
switch into a single system. By migrating all of the layer 4
processing to the port-controllers we are able to achieve a
high throughput through the L5 system. In this paper, we
also discuss the usefulness of the L5 system as a content
based router front-ending a server cluster. Using a popu-
lar web benchmark, we clearly demonstrate the benefits of
the L5 system in the context of two application examples,
namely URL based routing and session aware dispatching
of SSL connections.

The work presented in this paper can be extended in
many ways. We are currently exploring the use of the L5

system for content based service differentiation. Content
based service differentiation is particularly useful in large
e-commerce sites to differentiate serious buyers from ca-
sual browsers. Content based service differentiation can
also be used to provide service differentiation based on
user profiles. Web servers often set cookies to identify
users and track session information. The L5 system can
make use of the cookies in the HTTP requests to deter-
mine the level of service required by a given connection.
We are also investigating the usefulness of the L5 system
as a content based filter at ISP and corporate access gate-
ways.

REFERENCES

[1] G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha. L5: A self
learning layer 5 switch. Technical Report RC21461, IBM, T.J.
Watson Research Center, 1999.

[2] G. Apostolopoulos, V. Peris, and D. Saha. Transport layer secu-
rity: How much does it really cost? In Proceedings of the IEEE
INFOCOM, 1999.

[3] Web Server Farm Performance. White Paper, Arrowpoint Com-
munications, 1998.

[4] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext Transfer
Protocol – HTTP/1.0. IETF Request for Comments 1945, October
1995.

[5] T. Berners-Lee, L. Masinter, and M. McCahill. Uniform Resource
Locators (URL). IETF Request for Comments 1738, December
1994.

[6] A. Chankhunthod, P. Danzig, C. Neerdaels, M. Schwartz, and
K. Worrell. A hierarchical internet object cache. In Proceedings
of the 1996 USENIX Technical Conference, Januaray 1996.

[7] Cisco Local Director. Technical White Paper, 1998. Cisco Sys-
tems.

[8] A. Frier, P. Karlton, and P. Kocher. The SSL 3.0 Protocol.
Netscape Communications Corporation, November 1996.

[9] ISI for DARPA. Transport Control Protocol. RFC 793, September
1981.

[10] M. Leech and D. Koblas. SOCKS Protocol Version 5. IETF
Request for Comments 1928, April 1996.

[11] D. Maltz and P. Bhagwat. Application Layer Proxy Performance
Using TCP Splice. IBM Technical Report RC-21139, March
1998.

[12] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow. TCP Selec-
tive Acknowledgement Options. IETF Request for Comments,
2018, October 1996.

[13] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality Aware Request Distribu-
tion in Cluster-based Network Servers. In Architectural Support
for Programming Languages and Operating Systems, 1998.

[14] R. Rivest. The MD5 Message Digest Algorithm. IETF Request
for Comments 1321, April 1992.

[15] B. Schneier. Applied Cryptography. Wiley, New York, 1996.
[16] W. R. Stevens. TCP/IP Illustrated Volume 1. Addison-Wesley,

New York, 1996.
[17] The Standard Performance Evaluation Corporation. Specweb96,

1996. http://www.spec.org/osg/web96.
[18] V. Vallopilli and K. Ross. Cache Array Routing Protocol Version

1.0. Internet Draft draft-vinod-carp-v1-03.txt, February 1998.
[19] D. Wessels. Squid internet cache object. URL: http://

squid.nlanr.net/Squid/, 1998.
[20] D. Wessels and K. Claffy. Internet Cache Protocol Version 2.

IETF Request for Comments 2186, September 1997.

