TinySchema: Managing Attributes, Commands and Events in TinyOS

Wei Hong and Sam Madden
whong@intel-research.net, madden@cs.berkeley.edu

Version 1.1
September, 2003



1 Introduction

TinySchema is a collection of TinyOS components that manages a small respository of named at-
tributes, commands and events that can be easily queried, invoked or signaled from inside or outside a
mote network. A TinySchema attribute is much like a column in a traditional database system. It has

a name and a type. In addition, TinySchema allows you to associate arbitrary TinyOS code to each

attribute for getting and setting the attribute value. Once an attribute is created, it can be retrieved

or updated through a unified interface provided by TinySchema. TinyDB (see TinyDB document), the
in-network query processing system for TinyOS, is one of the applications built on top of this interface.
You can also build your own application for manipulating attributes based on the interfaces provided

by TinySchema. Typically, there are three classes of attributes:

e Sensor Attributes. These can be raw readings from sensors such as temperature and photo
sensors, accelerometers, magnetometers, etc. They can also be computed sensor values after

applying some calibration or signal processing logic.

o Introspective Attributes. These are values from internal software or hardware states, e.g., soft-
ware version stamp, parent node in routing tree, battery voltage, etc. They are very useful for

monitoring the health and statistics of a mote network.

e Constant Attributes. These are constant values assigned to a mote at programming time or run

time, e.g., node id, group id, name, location, etc.

A TinySchema command is much like a stored procedure in a traditional database system. It
consists of a name, a list of arguments and a return type. You can associate arbitrary TinyOS code to
each command. TinySchema provides a unified interface for invoking these commands. TinyDB is also
built on top of the TinySchema command interfaces for its trigger actions (see TinyDB document).

Typically, there are two classes of commands:

e Actuation Command. These are commands that cause some physical actions on a mote, e.g.,
rebooting a mote, flash LEDs, sound buzzer, raise a blind (when connected to an appropriate

actuator), etc.

e Tuning Command. These are commands that adjust internal parameters, e.g., routing policy,

number of retransmissions, sample rate, etc.

A TinySchema event is introduced to capture asynchronous events in sensor networks, e.g., detection
of a bird, push of a button, etc. TinySchema provides interfaces for registering and invoking events as
well as associating TinySchema commands with events as callbacks when events are signaled.

Currently all attributes and all commands must be staticly built into each mote. We plan to
integrate with the virtual machines being developed for the TinyOS such as Mate and Mottle to allow
dynamic creation of attributes and commands.

TinySchema is part of TinyOS1.1 release.



2 System Overview

TinySchema has three separate components in tinyos-1.x/tos/lib/Attributes/Attr.nc, tinyos-1.x/tos/1:
and tinyos-1.x/tos/1lib/Events/Event .nc. Attr provides all attributes related interfaces, Command

provides all command related interfaces, and Event provides all event related interfaces.

Attr provides the following interfaces:
e StdControl for initialization.

e AttrRegister for creating new attributes. It is parametrized by a uint8_t (for up to 256 such
interfaces). Fach non-constant attribute must be connected to one of these interfaces. The coding
convention is not to hardwire a specific number when you wire to one these 256 interfaces, but to
wire your interface to Attr.Attr[unique ("Attr")] and let the NesC compiler to automatically

choose a unique number for you.

e AttrRegisterConst for creating new constant attributes. It is a simplified interface of AttrReg-

ister for attributes associated to constant values only.
o AttrUse for discovering and using attributes.
Command provides the following interfaces:
e StdControl for initialization.

e CommandRegister for creating new commands. It is parametrized by a uint8_t (for up to 256
such interfaces). Each command must be connected to one of these interfaces. The coding
convention is not to hardwire a specific number when you wire to one these 256 interfaces,
but to wire your interface to Command.Cmd[unique ("Command")] and let the NesC compiler to

automatically choose a unique number for you.
e CommandUse for discovering and using commands.
FEvent provides the following interfaces:
e StdControl for initialization.
e EventRegister for creating new events.
e EventUse for discovering and signaling events as well as creating command callbacks to events.

We will describe each of the above interfaces in details in the next section.

3 Detailed Interface Descriptions

3.1 Data Types and Error Codes

All of TinySchema’s data types and error codes are defined in tinyos-1.x/tos/interfaces/SchemaTypes.h.

The following data types are supported:



VOID: the void type. Used for defining commands that do not return anything.

INT8 and UINT8: 8-bit signed and unsigned integer types.

INT16 and UINT16: 16-bit signed and unsigned integer types.

INT32 and UINT32: 32-bit signed and unsigned integer types.

TIMESTAMP: not yet supported.

STRING: null-terminated ASCII strings.

COMPLEX_TYPE: not yet supported.
Here are the error codes used in all TinySchema interfaces:

SCHEMA_SUCCESS: success!

e SCHEMA ERROR: something is wrong.

e SCHEMA_RESULT_READY: the return result is ready in the result buffer. Used for non-split-phase

attributes and commands.
e SCHEMA _RESULT_NULL: the return result is null.

e SCHEMA _RESULT_PENDING: the return result is not yet filled in in the result buffer. Must wait for

the data ready event. Used for split-phase attributes and commands.

3.2 Attribute Related Interfaces
3.2.1 Attribute Data Structures

All attribute related data structures are defined in tinyos-1.x/tos/interfaces/Attr.h. The main
data structure is AttrDesc which contains the definition of each attribute. AttrDescs is just an array of
AttrDesc’s for all the attributes defined in each mote. You must pay attention to the constants defined
at the beginning of the file which defines the maximum number of attributes, maximum attribute name
length, etc. Do not exceed those limits! Increase them as needed, but they cost more precious RAM

space on a mote.

3.2.2 AttrRegister

command result t registerAttr(char *name, TOSType attrType, uint8_t attrLen)

This is the command you call to register an attribute. The attrLen argument is only relevant to
variable-length types such as STRING. It is ignored for fixed-length types.
event result_t getAttr(char *name, char *resultBuf, SchemaErrorNo *errorNo)

This is the TinyOS code that you must provide for getting the value of the attribute you just
registered through registerAttr. name is the name of the attribute. It is mostly redundent, but may

come in handy if you want to write one piece of code that supports mulitple attributes. resultBuf



is a pointer to a pre-allocated buffer to hold the value of this attribute. You can assume that enough

space has been allocated to hold the value of this attribute. errorNo is the return error code. You are

required to do one of the following in getAttr:

o fill in the attribute value in resultBuf and set *errorNo to SCHEMA_RESULT _READY,

e or set *errorNo to SCHEMA_RESULT_PENDING and fill in resultBuf later when the data is ready
and call getAttrDone,

e or set *errorNo to SCHEMA RESULT NULL,
e or set *errorNo to SCHEMA _RESULT_ERROR.

event result_t setAttr(char *name, char *attrVal)

This is the TinyOS code that you must provide for setting the value of the attribute you just
registered through registerAttr. name is the name of the attribute. It is mostly redundent, but may
come in handy if you want to write one piece of code that supports multiple attributes. attrVal is a
pointer to a value of the same type as the attribute type. NULL pointer means a null value. If the
value of this attribute cannot be set, simply return FAIL.
command result_t getAttrDone(char *name, char *resultBuf, SchemaErroriNo erroriNo)

This is the command you must call for split-phase attributes. In this case, the getAttr will initiate
a split-phase operation, set *errorNo to SCHEMA_RESULT_PENDING then return. In the split-phase
completion event (e.g. ADC.dataReady()), you must call this command with the attribute value filled

in resultBuf.

3.2.3 AttrRegisterConst

command result t registerAttr(char *name, TOSType attrType, char *attrVal)

This command provides a simplified way to associate a constant value to an attribute without having
to write the getAttr and setAttr code as described above in the AttrRegister interface. attrVal
points to a value of the attrType type. The Attr component preallocates space to hold values for a fixed
number (MAX_CONST_ATTRS defined in tinyos-1.x/tos/interfaces/Attr.h) of constant attributes.
This command assigns a slot in the preallocated space to hold the constant value at attrVal. The
AttrUse interface to be described below will automatically handle the get and set of the newly defined
constant attributes just like any other attributes. Currently, a constant attribute can be at most 4

bytes long.

3.2.4 AttrUse

command AttrDescPtr getAttr(char *name)

This command returns a pointer to the attribute descriptor for the attribute with a name that
matches the argument. The name is case-insensitive. NULL will be returned if the attribute does not
exist. The returned attribute descriptor is NOT to be freed.
command AttrDescPtr getAttrById(uint8_t attrIdx)



This command returns a pointer to the attribute descriptor corresponding to an attribute index.

command uint8_t numAttrs()

This command returns the total number of attributes that have been registered.
command AttrDescsPtr getAttrs()
This command returns the array of attribute descriptors for all the the attributes that have been
registered.
command result t getAttrValue(char *name, char *resultBuf, SchemaErorNo *errorlo)
This is the command retrieves the value of an attribute by name. name is the name of the atiribute.

resultBuf is a pointer to a preallocated buffer to hold the attribute value. It must be at least as big

as the attribute length. errorNo is a return parameter of the error code. It has the following cases:

o SCHEMA RESULT _READY. This means that the value of the atiribute has already been copied into
resultBuf. This is not a split-phase attribute.

e SCHEMA RESULT_PENDING. This means that the attribute value is not ready. It will be ready when
the getAttrDone event is signaled. This is a split-phase attribute.

e SCHEMA RESULT_NULL. The value of this attribute is null.
e SCHEMA RESULT_ERROR. Something is wrong.

command result_t setAttrValue(char *name, char *attrVal)

This command sets the value of an attribute by name. name is the attribute name. attrVal is a
pointer to a value of the same type as the attribute. This command will return FAIL if the attribute
cannot be set.
event result t getAttrDone(char *name, char *resultBuf, SchemaErrorNo errorlo)

This event will be signaled after a getAttrValue command is called on a split-phase attribute
when the value of the attribute is ready. By this time, the value of the attribute is already copied into
resultBuf. errorNo are the same as described for getAttrValue.
command result_t startAttr(uint8.t id)

This command is called to start or restart the attribute with attribute id id. It is typically called
after a mote wakes up after a sleep period for turning on the corresponding sensor associated with an
attribute.
event result t startAttrDone(uint8t id)

This event will be signaled after a startAttr command is called when the sensor associated with

the attribute is ready for use. getAttrValue must not be called before this event is signaled.
3.3 Command Related Interfaces

3.3.1 Command Data Structures

All command related data structures are defined in tinyos-1.x/tos/interfaces/Command.h. It de-

fines the following important data structures:

e CommandDesc is for a command descriptor.



e CommandDescs is for an array of command descriptors.

e ParamList is a list of parameter types used in command definitions. There is a convinient varg

function setParamList to populate a ParamList with a list of types.
e ParamVals is a a list of parameter values for command invocation.

You must pay attention to the constants defined at the beginning of Command.h for the current

limitations such as maximum number of parameters in a command, maximum number of commands

and maximum number of characters in a command name. These limits must be observed or extended

at the cost of more RAM consumption.

3.3.2 CommandRegister

command result t registerCommand(char *name, TOSType retType, uint8._t retlen, Paramlist
*paramlist)

This NesC command registers a new TinySchema command. name is the name of the command.
retType is the return type of the command. Use the VOID type if the command does not return any
value. retLen is the maximum length for the return value for any variable length types such as STRING.
It is ignored for fixed-length types. paramList is the list of parameter types that this command expects
when invoked.
event result_t commandFunc(char *commandName, char *resultBuf, SchemaErrorNo *errorlNo,
ParamVals *params)

This is the TinyOS code you provide that implements the command that you just registered through
registerCommand. commandName is the name of the command. It is mostly redundant, but may come
in handy when you want to write one piece of code to implement multiple commands. resultBuf is a
pointer to the preallocated buffer this command’s return value is supposed to be copied into. errorNo
is the return parameter for error code. params is the list of parameter values for the current invocation.

You are required to do one of the following in commandFunc:

o Non-split-phase return. Copy the return value to resultBuf, set *errorNo to SCHEMA_RESULT _READY
or SCHEMA RESULT_NULL then return.

e Split-phase return. Initiate the split-phase operation, set *errorNo to SCHEMA RESULT_PENDING

then return. commandDone must be called from the split-phase completion event.
e Error. Set *errorNo to SCHEMA_RESULT_ERROR then return.

command result_t commandDone{(char *commandName, char *resultBuf, SchemaErrorNo errorNo)
This NesC command must be called in the split-phase completion event if commandFunc returns an
error code of SCHEMA RESULT_PENDING. commandName is the command name. resultBuf is a pointer to

a buffer the return value is supposed to be copied into. errorNo is the error code.



3.3.3 CommandUse

command CommandDescPtr getCommand(char *name)

This NesC command looks up a TinySchema command descriptor by name. The name is case-
insensitive. NULL is returned if the command does not exist.
command CommandDescPtr getCommandById(uint8.t idx)

This NesC command looks up a TinySchema command descriptor by index.

command uint8_t numCommands ()

This NesC command returns the total number of TinySchema commands currently registered.

command CommandDescsPtr getCommands ()

This NesC command returns an array of command descriptors for all the currently registered
TinySchema commands.
command result_t invoke(char *commandName, char *resultBuf, SchemaErrorNo *errorNo, ParamVals
*params)

This NesC command is for invoking a TinySchema command. commandName is the name of the
TinySchema command. resultBuf is a pointer to the buffer the return value is supposed to be copied
into. errorNo is the return parameter for error code. ParamVals is the list of parameter values to be
passed into this TinySchema command. See the description of getAttrValue in Section 3.2.4 for all
the error codes you should handle.
command result_t invokeMsg(T0S MsgPtr msg, char *resultBuf, SchemaErrorNo *errorNo)

This NesC command is a wrapper over invoke. It first parses the TOS Msg into a command name
and a list of parameter values then calls invoke. msg.data is expected to start with the null-terminated
string for command name followed by the list of parameter values tightly packed one after the other.
This NesC command is introduced for supporting remote invocation of TinySchema commands via the
radio.
event result_t commandDone(char *commandName, char *resultBuf, SchemaErrorNo errorNo)

This is the event you are supposed to implement to handle split-phase command completion. See

the description for getAttrDone event in Section 3.2.4.

3.4 Event Related Interfaces
3.4.1 Event Data Structures

All event related data structures are defined in tinyos-1.x/tos/interfaces/Event.h. It defines the

following important data structures:
e EventDesc is for a command descriptor.
e EventDescs is for an array of command descriptors.
e EventInstance represents an instance of an event that is signaled

e EventQueue is a queue of EventInstance’s.



3.4.2 EventRegister

command result_t registerEvent(char *name, ParamList *paramList)

This NesC command registers a new TinySchema event. name is the name of the command.
paramlList is the list of parameter types that this event will be signaled with.
command result_t deleteEvent(char *name)

This NesC command deletes a registered event.

3.4.3 EventUse

command EventDescPtr getEvent(char #*name)

This NesC command looks up a TinySchema event descriptor by name. The name is case-insensitive.
NULL is returned if the event does not exist.
command EventDescPtr getEventById(uint8_t idx)

This NesC command looks up a TinySchema event descriptor by index.
command EventDescsPtr getEvents()

This NesC command returns an array of event descriptors for all the currently registered TinySchema
events.
command result t signalEvent(char *eventName, ParamVals *params)

This NesC command is for signaling a TinySchema event. eventName is the name of the TinySchema,
event. ParamVals is the list of parameter values to be passed into this TinySchema event.
command result t signalEventMsg(TO0S MsgPtr msg)

This NesC command is a wrapper over signalEvent. It first parses the TOS Msg into a event name
and a list of parameter values then calls signalEvent. msg.data is expected to start with the null-
terminated string for command name followed by the list of parameter values tightly packed one after
the other. This NesC command is introduced for supporting remote signaling of TinySchema events
via the radio.
command result_t registerEventCallback(char *eventName, char *cmdName)

This NesC command registers an event interest by associating a TinySchema command to a
TinySchema event. The TinySchema command will be invoked when the TinySchema event is sig-
naled. The maximum number of TinySchema commands that can be associated with each event is
defined in Event.h.
event result_t eventDone(char *name, SchemaErrorNo errorNo)

This NesC event is signaled upon completion of all the commands associated with the event.

4 Examples

Directories tinyos-1.x/tos/lib/Attributes and tinyos-1.x/tos/lib/Commands contain all the
ready-to-use components that implements the most common attributes and commands. These are also
the attributes and commands that are built into TinyDB. They also serve as examples of TinySchema

attribute and command implementations. The following is the list of files in these two directories and



the corresponding attributes and commands that they implement. If you want to use any of these
predefined attributes or commands in your application, simply wire the StdControl interface of these
components to Main.StdControl and the attributes or commands will be automatically registered and
ready to use.

e tinyos-1.x/tos/lib/Attributes/

— {AttrAccel,AttrAccelM}.nc defines two attributes: accel_z and accel_y for the raw ac-

celerometer readings in the X and Y axis respectively.

— {AttrGlobal,AttrGlobalM}.nc defines two attributes: nodeid and group for the node id

and group id respectively.

— {AttrMag,AttrMaghM}.nc defines two attributes: mag_x and mag.y. They are maximum
magnetometer readings in the X or Y axis at 32 samples/second since the last time you get
their values. At the same time, they also automatically adjust the X and Y potentiometers
of the magnetometer to keep the readings centered and avoid railing. These two attributes
are designed for detecting moving magnetic fields. For example, they are used in the car
tracking demo in TinyDB in which the car (with a magnet) is detected by a mote based on

spikes in the values of these two attributes.

— {AttrMic,AttrMicM}.nc defines four attributes: rawmic, noise, rawtone and tones. rawmic
is the raw microphone ADC reading. noise is the maximum microphone reading at 32
samples/second since last time the attribute is read. rawtone returns 1 if a sounder tone is
detected, 0 otherwise. tones returns the total number of tones detected at 32 samples/second

since the last time this attribute is read.
— {AttrPhoto,AttrPhotoM}.nc defines the light attribute. It returns the raw ADC reading

from the photo sensor.

— {AttrPot,AttrPotM}.nc defines the potl attribute. It returns the current potentiometer

setting (transmit power). This attribute can also be set.
— {AttrTemp,AttrTempM}.nc defines the temp attribute. It returns the raw temperature sen-

sor reading.

— {AttrVoltage,AttrVoltageM}.nc defines the voltage attribute. It returns the ADC reading

for the current battery voltage. It is an indicator of how much battery power is remaining.
e tinyos-1.x/tos/lib/Commands/

— {CommandLeds , CommandLedsM} .nc defines three commands: SetLedR(UINTS), SetLedG(UINTS)
and SetLedY(UINT8). They control the Red, Green and Yellow LEDs on a mote respec-
tively. An argument of 0 means turning the LED off, 1 means on and 2 means toggle. All

three commands return VOID.

— {CommandPot ,CommandPotM}.nc defines the SetPot(UINTS) command. It sets the poten-

tiometer value (transmit power) on a mote.

10



— {CommandReset ,CommandResetM}.nc defines the dangerous reset command. It reboots a
mote.

— {CommandSounder ,CommandSounderM} .nc defines the SetSnd(INT16) command. It turns

on the buzzer for a period specified by the argument (in milliseconds).

— {CommandAttr,CommandAttrM}.nc defines the addatir(STRING, UINTS8, UINT32) com-

mand. It dynamically registers a new constant attribute. The first argument is the name

of the attribute. The second argument is the type id for the attribute as defined in

tinyos-1.x/tos/interfaces/SchemaType.h. The third argument is the constant value

to be associated with the attribute.

11



