
Maté: A Tiny Virtual Machine for TinyOS

Philip Levis and Neil Patel
pal@cs.berkeley.edu

Version 1.1
August 21, 2003

Contents

1 Introduction 3

2 Bombilla 3
2.1 Architecture, Instruction Set, and Data Types . 3
2.2 Capsules and Execution . 5
2.3 Simple Programs . 6
2.4 Capsule Injector . 6
2.5 Synchronization . 6

2.5.1 Model . 7
2.5.2 Bombilla Implementation . 7

2.6 Viral Programming . 8
2.7 Error State . 8

3 Maté 9
3.1 Component Architecture . 9
3.2 Service Proxies . 10
3.3 Instruction Examples . 11

3.3.1 Error Checking . 11
3.3.2 Split Phase Operations . 13
3.3.3 Embedded Operands . 13

3.4 Contexts . 14

4 Customizing Maté 14
4.1 Customizing CapsuleInjector . 15

2

Figure 1: Bombilla Architecture and Execution Model: Capsules, Contexts, and Stacks

1 Introduction

Maté is a tiny bytecode interpreter that runs on top of TinyOS. Because it presents a high-level communication-
centric interface, Maté’s programs are very short; combined with a safe execution environment, this makes
mote reprogramming rapid and error-free. Programs can self-propagate through a network; this makes re-
programming mostly autonomous, as once a self-propagating capsule is introduced, it will eventually install
itself over the entire network.

Maté has multiple execution contexts; each runs in response to an event, and they can interleave at
instruction granularity. Maté prevents race conditions by implicitly locking all shared state that is used; as
every resource is statically named and Maté programs are short, the set of required locks can be quickly
determined with a full program analysis. Program writers can explicitly yield or release locks to improve
parallelism.

One goal of Maté is to provide a programming interface to motes that is much simpler than TinyOS; a
sense-and-send program can be as few as six instructions in Maté, and Maté’s error detection mechanisms
can help novice programmers find the bugs in their programs.

Maté is a architecture for constructing application specific virtual machines. Using the architecture,
developers can easily change instruction sets, execution events, and VM subsystems. The first half of
this document presents Bombilla, a specific instance of a Maté VM that is part of the standard TinyOS
distribution, explaining it as a complete system. The second half explains the Maté architecture, shows how
Bombilla is an instance of Maté, and gives examples on how Bombilla can be used as a template to build
other virtual machines.

2 Bombilla

Bombilla is a set of TinyOS components that sit on top of several system components, including sensors,
the network stack, and non-volatile storage (the “logger”)1. Code is broken in capsules of 24 instructions,
each of which is a single byte long; larger programs can be composed of multiple capsules. In addition
to bytecodes, capsules contain identifying and version information. Each Bombilla context has two stacks:
an operand stack and a return address stack. Most instructions operate solely on the operand stack, but
a few instructions control program flow and several have embedded operands. There are three execution
contexts that can run concurrently at instruction granularity. Bombilla provides both a built-in ad-hoc
routing algorithm (the send instruction) as well as mechanisms for writing new ones (the sendr instruction).

2.1 Architecture, Instruction Set, and Data Types

Bombilla instructions hide the asynchrony (and oft-resulting race conditions) of TinyOS programming. For
example, when the send instruction is issued, Bombilla calls a command in the ad-hoc routing component

1Support for the logger is currently not implemented, due to the pending addition of a new logger interface in TinyOS.

3

basic 00iiiiii i = instruction
m-class 010iixxx i = instruction, x = argument
v-class 011ixxxx i = instruction, x = argument
j-class 10ixxxxx i = instruction, x = argument
x-class 11xxxxxx i = instruction, x = argument

Figure 2: Bombilla Instruction Formats

to send a packet. Bombilla suspends the context until a message send complete event is received, at which
point it resumes execution. By doing this, Bombilla does not need to manage message buffers – the capsule
will not resume until the network component is done with the buffer. Similarly, when the sense instruction
is issued, Bombilla requests data from the sensor TinyOS component and suspends the context until the
component returns data with an event. This synchronous model makes application level programming much
simpler and far less prone to bugs than dealing with asynchronous event notifications. Additionally, Bombilla
efficiently uses the resources provided by TinyOS; during a split-phase operation, Bombilla does nothing on
behalf of the calling context, allowing TinyOS to put the CPU to sleep or use it freely.

Bombilla is a stack-based architecture. This allows a concise instruction set; most instructions do not have
to specify operands, as they exist on the operand stack. There are five classes of Bombilla instructions: basic,
m-class, j-class, v-class, and x-class. Figure 2 shows the instruction formats for each class. Basic instructions
include such operations as arithmetic, halting, and activating the LEDs on a mote. m-class instructions
access message headers; they can only be executed within the message send and receive contexts. v-class
instructions access the 16 word Bombilla heap. j-class instructions are the two jump instructions, for loops
and conditionals. The one x-class instructions is pushc (push constant). All instruction classes except basic
have embedded operands..

Bombilla’s three principal execution contexts, illustrated in Figure
1, correspond to three events: clock timers, message receptions and message send requests. Inheriting

from languages such as FORTH, each context has two stacks, an operand stack and a return address stack.
The former is used for all instructions handling data, while the latter is used for subroutine calls. The
operand stack has a maximum depth of 16 while the call stack has a maximum depth of 8. We have found
this more than adequate for programs we have written.

There is an additional context, the “once” context. Unlike other contexts, which run their capsules many
times, this context only runs its capsule once, when it is installed; this allows a user to initialize state, adjust
constants, or perform other operations that only need a single execution.

There are three operands types: values, sensor readings, and buffers. Some instructions can only operate
on certain types. For example, the putled instruction expects a value on the top of the operand stack.
However, many instructions are polymorphic. For example, the add instruction can be used to add any
combination of the types, with different results. Adding buffers results in appending the data in the second
operand onto the first operand. Adding a value to a message appends the value to the message data payload.
Sensor readings can be turned into values with the cast instruction.

Sensor readings are typed, and cannot be modified. For example, in order to take an average over a set
of readings, each reading must be first be converted to a value; these values can then be averaged. Many
instructions (e.g. inv) automatically cast sensor readings to values. This ensures that a sensor reading
variable has some meaning; otherwise, it could express some arbitrary quantity. Adding two sensor readings
of the same type (e.g. magnetometer X-axis) produces a value, and adding two sensor readings of different
values is an error.

Buffers are also typed, and can hold up to ten values. A buffer can only hold elements of one type,
whether they be values or a certain sensor type. An empty buffer has no type; the first element added will
set the type of the buffer. Buffers have several access instructions, including bhead (copy of the first element
of the buffer onto the operand stack), byank (pull the nth element out of the buffer and push it into the
operand stack), and bsorta (sort the elements in ascending order.

There is a 16 word heap shared among the context. It can be accessed with the setvar and getvar
instructions, which have a 4-bit embedded operand.. This allows the separate contexts to communicate
shared state (e.g. sensor readings).

4

getvar 0 # Get heap variable 0
pushc 1 # Push one onto operand stack
add # Add the one to the stored counter
copy # Copy the new counter value
setvar 0 # Set heap variable 0
pushc 7
and # Take bottom three bits of counter
putled # Set the LEDs to these three bits
halt

Figure 3: Bombillacnt to leds – Shows the bottom 3 bits of a counter on mote LEDs

pushc 1 # Push one on the operand stack
sense # Read sensor 1 (light)
copy # Copy the sensor reading
getvar 0 # Get previous sent reading

inv # Invert previous reading
add # Current - previous sent value
copy # 2 copies of difference on top of stack
pushc 32 #

gt # Is current 32 greater than previous?
swap # Swap result with copy
pushc 32 #
inv #

lt # Is current 32 less than previous?
or # Either 32> or 32<
jumps 15 # Jump to send
halt

copy # Copy new value
setvar 0 # Set current
bpush0 # Push buffer 0 onto stack
bclear # Clear its contents

add # Add current reading to buffer
send # Send buffer
halt

Figure 4: Bombilla Program to Read Light Data and Send a Packet on Reading Change

2.2 Capsules and Execution

Bombilla programs are broken up into capsules of up to 24 instructions. This limit allows a capsule to fit
into a single TinyOS packet. By making capsule reception atomic, Bombilla does not need to buffer partial
capsules, which conserves RAM. Every code capsule includes type and version information. Bombilla defines
two types of code capsules: context capsules, which are the root execution of a context, and subroutine
capsules, which can be called from context capsules or other subroutine capsule. Subroutine capsules allow
programs to be more complex than what fits in a single capsule. Applications invoke and return from
subroutines using the call and return instructions. There are names for up to 215 subroutines; to keep
Bombilla’s RAM requirements small, its current implementation has only four.

Bombilla begins execution in response to an event – a timer going
off, a packet being received, or a packet being sent. Each of these events has a capsule and an execution

context. Control jumps to the first instruction of the capsule and executes until it reaches the halt in-
struction. These three contexts can run concurrently. Each instruction is executed as a TinyOS task, which
allows execution interleaving at an instruction granularity. Additionally, underlying TinyOS components
can operate concurrently with Bombilla instruction processing. When a subroutine is called, the return
address (capsule, instruction number) is pushed onto a return address stack and control jumps to the first
instruction of the subroutine. When a subroutine returns, it pops an address off the return stack and jumps
to the appropriate instruction.

The packet receive and clock capsules execute in response to external events; in contrast, the packet send
capsule executes in response to the sendr instruction. As sendr will probably execute a number of Bombilla
instructions in addition to sending a packet, it can be a lengthy operation. Therefore, when sendr is issued,

5

Figure 5: CapsuleInjector GUI

Bombilla copies the message buffer onto the send context operand stack and schedules the send context to
run. Once the message has been copied, the calling context can resume execution. The send context executes
concurrently to the calling context, preparing a packet and later sending it. This frees up the calling context
to handle subsequent events – in the case of the receive context, this is very important.

The constrained addressing modes of Bombilla instructions ensure a context cannot access the state
of a separate context. Every push and pop on the operand and return value stack has bound checks to
prevent overrun and underrun. As there is only a single shared variable, heap addressing is not a problem.
Unrecognized instructions result in simple no-ops. All bounds are always checked – the only way two contexts
can share state is through gets and sets. Nefarious capsules can at worst clog a network with packets –
even in this case, a newer capsule will inevitably be heard. By providing such a constrained execution
environment and providing high-level abstractions to services such as the network layer, Bombilla ensures
that it is resilient to buggy or malicious capsules.

2.3 Simple Programs

The Bombilla program in Figure 3 maintains a counter that increments on each clock tick. The bottom
three bits of the counter are displayed on the three mote LEDs. The counter is kept as a value which persists
at the top of the stack across invocations. This program could alternatively been implemented by using
gets and sets to modify the shared variable. This code recreates one of the simplest TinyOS applications,
cnt to leds, implemented in seven bytes.

The Bombilla program in Figure 4 reads the light sensor on every clock tick. If the sensor value differs
from the last sent value by more than a given amount (32 in this example), the program sends the data
using Bombilla’s built-in ad-hoc routing system. This program is 24 bytes long, fitting in a single capsule.

2.4 Capsule Injector

A tool is included in the TinyOS release to aid in the writing of
Bombilla programs: net.tinyos.vm asm.CapsuleInjector.
CapsuleInjector provides an interface for writing assembly programs and sending them to a mote

connected to a PC; if the capsule is marked self-forwarding, it will then start propagating into the network.
One must set the destination mote ID of the capsule packet (important when using a GenericBase) and

the version number of the capsule. Version numbers are explained in Section 2.6; Bombilla only installs a
capsule if its version number is higher than the one it currently has.

If the program has an error (e.g. an unknown instruction), CapsuleInjector does not send out a packet.

2.5 Synchronization

Bombilla interleaves the execution of its contexts at instruction granularity. The presence of a 16-word
shared heap means that if different contexts communicate or share variables (e.g. an aggregated sensor
reading), race conditions can easily occur. As the program running on a mote is the combination of possibly
forwarding capsules, applications can go through transient states of partial installation, making programmer
efforts (e.g. a spin loop) ineffectual.

6

Bombilla therefore uses an implicit locking scheme, so that programmers are assured that there will be no
race conditions in their programs. Experienced programmers can relax the locking requirements to improve
parallelism.

2.5.1 Model

The Bombilla sychronization model is based on five abstractions: handlers, invocations, resources, scheduling
points and sequences. We describe how we discover the resources used by an invocation, and how invocation
communicate their resource requirements to the runtime system.

A handler is a function that is executed in response to some event. An invocation represents a particular
execution of a handler in response to an event. At any time, invocations are in one of four states: waiting
(for resources), suspended (waiting for an operation to complete), ready (can execute), running (executing).
We say that an invocation that is ready or running is active.

A resource is a shared piece of state that a handler requires access to – examples are a variable, a disk
arm, or a sensor. Resources can only be held by invocations.

A handler contains a number of scheduling points at which it can be suspended and gain or lose resources
(and resources cannot be acquired anywhere but at scheduling points). Scheduling points are the handler’s
entry and exit points, and some subset of its operations which we call scheduled operations. An invocation
goes through two states during execution of a scheduled operation: first, the invocation is suspended awaiting
the completion of the operation; second, the invocation is waiting for the resources it wishes to gain to become
available. Either of these two phases may be trivial: a yield operation completes immediately but may wait
for some resources, a message send does not complete immediately but, if it is not waiting for any resources,
will not wait. A sequence is any code path between two scheduling points which does not include another
scheduling point.

The model for resource acquisition and release is as follows: before an invocation can start execution,
it must acquire all resources it will need during its lifetime. At each subsequent scheduling point, the
invocation can release a set R of resources before suspending execution, and acquire a set A of resources
before resuming. To prevent deadlock, we require A ⊆ R (we prove below that this condition is sufficient for
building deadlock-free schedulers). Finally, when an invocation exits it must release all held resources. Note
that we do not guarantee any atomicity between two invocations of the same handler.

To preserve safety, the static analysis of a handler’s resource usage and the runtime system must guarantee
that an invocation holds all resources at the time(s) at which they are accessed and that the intersection of
the resources held by any two invocations is empty. We restrict our invocation model to considering a static
number of resources, and require operations to explicitly name the resources they use so that we can easily
analyse handlers at compile (or load) time. Resource discovery must be conservative to preserve correctness.

2.5.2 Bombilla Implementation

We implemented this syncronization model in Bombilla. Each Bombilla context is an invocation, and capsules
are implicitly broken up into sequences. Bombilla maintains two queues of invocations: ready and waiting.
Whenever Bombilla installs a new capsule, it performs a static full-program analysis to generate the acquire
sets of its invocation start points. Without requiring any annotation from a programmer, Bombilla runs
invocations atomically while allowing parallelism. Programmers can improve the degree of parallelism by
yielding resources at scheduling points.

Bombilla invocations are broken into sequences by scheduling point instructions. When a context executes
one of these instructions, the Bombilla runtime examines the current release set of the issuing context and
releases the locks on the indicated resources. Bombilla then checks the waiting queue to see if any contexts
have been made runnable by the release of these locks. When the scheduling point instruction completes,
Bombilla checks the acquire set of the context to see if it can be made active; if so, the context acquires its
locks and Bombilla places it on the ready queue. If the context cannot be made active, Bombilla places it
on the waiting queue.

Bombilla defines its scheduling point instructions to be those that trigger split-phase operations in
TinyOS. This includes acquiring sensor data (sense), sending packets (send, sendr, uart), and accessing
non-volatile flash memory storage (logr, logw, logwl). Additionally, there is a yield instruction, which
is effectively a split-phase operation that immediately completes. Locks are added to a context’s release set

7

pushc 3 # pushc 3

unlock # Add lock 3 to R,A unlockb # Add locks 0,1 to R,A

pushc 2 # pushc 12

punlock # Add lock 2 to R punlockb # Add locks 2,3 to R

sense # Yield sense # Yield

Figure 6: Sample Bombilla Unlocking

with the unlock instruction – by default, the set is empty. unlock also adds the lock to the context’s acquire
set. For a lock to be released, but not re-acquired, a context much use the punlock (unlock permanent)
instruction. The unlock and punlock instructions affect individual locks, enumerated by an operand; the
unlockb and punlockb instructions use the operand as a bitmask for locks to be released. Locks are not
released until a scheduling-point instruction is executed. Figure 6 contains two sample Bombilla instruction
sequences that demonstrate resource unlocking.

Release and acquire sets are atomically handled by Bombilla. A context does not acquire any locks in
its acquire set unless it can acquire all of them, and acquires them atomically. Similarly, release sets are
released atomically. This, combined with monotonically decreasing lock sets, ensures the system is deadlock
free.

2.6 Viral Programming

Bombilla code capsules can be marked “forwarding.” Capsules marked forwarding are automatically for-
warded by the viral propagation subsystem (BVirus) of the VM.

The first implementation of the VM had an explicit caspule forwarding system (the forw instruction);
experimental results showed this to be a terrible idea, as programs could very easily saturate the network
unknowingly. We therefore adopted this simple probabilistic model. It is by no means perfect; for example,
even if every mote in the network is running the same capsule, they will continue to forward it indefinitely.

Every capsule has a version number. When Bombilla hears a capsule broadcast, it checks if the capsule
is newer than the one currently installed; if so, Bombilla halts execution of that context and installs the new
capsule.

Our first implementation of the VM had an explicit caspule forwarding system (the forw instruction);
experimental results showed this to be a terrible idea, as programs could very easily saturate the network
unknowingly. We therefore adopted this simple probabilistic model. It is by no means perfect; for example,
even if every mote in the network is running the same capsule, they will continue to forward it indefinitely.

Currently, Bombilla uses a density-adjusting algorithm; every mote maintains a time interval of length
τ , and picks a random point t in tau in which to transmit a summary of capsule versions. If the mote hears
an identical version summary before t, it suppresses its transmission. This mechanism controls the number
of version summaries sent within a cell during any time period tau, keeping it to a small constant. The
algorithm also scales tau to achieve low overhead when the network is stable and high reprogramming rates
when there is new code. When a node hears a version summary with older capsules than it has, it broadcasts
the needed capsules.

2.7 Error State

Bombilla has an error state, which can help users debug their programs. If a program triggers an error
(for example, by trying to add incompatible sensor readings, or by overflowing the operand stack), Bombilla
halts execution on all contexts. Then, every second, it blinks all of the LEDs and sends a packet containing
debugging information over the UART. The packet contains the offending context identifier, the capsule
it was executing, the instruction that caused the error, and the error code. Error codes can be found in
Bombilla.h. They are:

typedef enum {
BOMB_ERROR_TRIGGERED = 0,
BOMB_ERROR_INVALID_RUNNABLE = 1,
BOMB_ERROR_STACK_OVERFLOW = 2,
BOMB_ERROR_STACK_UNDERFLOW = 3,
BOMB_ERROR_BUFFER_OVERFLOW = 4,
BOMB_ERROR_BUFFER_UNDERFLOW = 5,

8

BOMB_ERROR_INDEX_OUT_OF_BOUNDS = 6,
BOMB_ERROR_INSTRUCTION_RUNOFF = 7,
BOMB_ERROR_LOCK_INVALID = 8,
BOMB_ERROR_LOCK_STEAL = 9,
BOMB_ERROR_UNLOCK_INVALID = 10,
BOMB_ERROR_QUEUE_ENQUEUE = 11,
BOMB_ERROR_QUEUE_DEQUEUE = 12,
BOMB_ERROR_QUEUE_REMOVE = 13,
BOMB_ERROR_QUEUE_INVALID = 14,
BOMB_ERROR_RSTACK_OVERFLOW = 15,
BOMB_ERROR_RSTACK_UNDERFLOW = 16,
BOMB_ERROR_INVALID_ACCESS = 17,
BOMB_ERROR_TYPE_CHECK = 18,
BOMB_ERROR_INVALID_TYPE = 19,
BOMB_ERROR_INVALID_LOCK = 20,
BOMB_ERROR_INVALID_INSTRUCTION = 21

} BombillaErrorCode;

The Bombilla error packet has the following payload:

typedef struct BombillaErrorMsg {
uint8_t context;
uint8_t reason;
uint8_t capsule;
uint8_t instruction;

} BombillaErrorMsg;

3 Maté

Bombilla is an instance of the Maté virtual machine. Maté’s architecture has many similarities to TinyOS;
the core of the VM is a simple component that schedules contexts to execute. nesC wiring allows developers
to easily customize and change the VM contexts, instructions, and subsystems.

3.1 Component Architecture

The core Maté component, BombillaEngine, receives requests from contexts to be scheduled and executes
them at a granularity of up to a single Maté instruction. The contexts themselves, the instruction set, and
the VM services are all separate from the VM scheduler.

A TinyOS component provides every Maté instruction. While most instruction components implement
only one instruction, some implement several related instructions. For example, the shared memory access
instructions, getvar and setvar, are both provided by a single component; it’s unlikely that only one
of the two would ever be needed. Instruction components provide the BombillaBytecode interface, and
BombillaEngine uses that interface with an 8-bit parameter: each instruction is a single byte. The set of
instruction components wired to BombillaEngine specifies the instruction set.

To be specific, this is the interface signature of BombillaEngine:

configuration BombillaEngine {
provides {
interface StdControl;
command result_t computeInstruction(BombillaContext* context);
command result_t executeContext(BombillaContext* context);

interface BombillaContextComm;
}
uses interface BombillaBytecode as Bytecode[uint8_t bytecode];

}

and this is a snippet of Bombilla’s configuration:

9

configuration AbstractMate {}
implementation {
components BombillaEngine as VM;
components OPhalt, OPputled, OPcopy, OPadd, OPland, OPlor, OPlnot;

...

VM.Bytecode[OPhalt] -> OPhalt;
VM.Bytecode[OPputled] -> OPputled;
VM.Bytecode[OPadd] -> OPadd;
VM.Bytecode[OPcopy] -> OPcopy;
VM.Bytecode[OPland] -> OPland;
VM.Bytecode[OPlor] -> OPlor;
VM.Bytecode[OPlnot] -> OPlnot;

...
}

The bytecode wirings use the name of a bytecode twice, as a component and as a constant from an enum.
For example, VM.Bytecode[OPadd] − > OPadd; means “wire the OPadd component to the instance of
Bytecode specified by the enum constant OPadd.” The constant is specified in Bombilla.h.

something similar is done for contexts
By encapsulating instructions into components, TinyOS allocates storage only for used systems. For

example, the sense instruction keeps some state on the sensor being sampled and maintains a wait queue of
contexts. Similarly, subroutine capsules are part of the call instruction; if a VM can’t call the subroutines,
there’s no need to waste RAM on them.

3.2 Service Proxies

Instructions often need to use several VM subsystems; for example, almost every instruction manipulates
the operand stack, requiring a component that provides the BombillaStacks interface. This raises the
issue of where these wirings are made. On one hand, wiring at the top-level configuration is laborious:
up to 256 instructions, with 2-3 used interfaces each, leads to a very large file. On the other, wiring at
the instruction component level makes consistency difficult: it’s possible that two instructions wire in two
different implementations of a VM service.

To solve this problem, every instruction is a configuration, but instead of wiring used interfaces to a
specific component, they’re wired to proxy configurations, such as BStacksProxy. Every instruction has a
module, e.g. OPhaltM, and a configuration, e.g. OPhalt. The configuration wires all of the module’s used
interfaces to these proxies. For example, every instruction modules that uses the BombillaStacks interface
has a configuration that has something like:

Instr.BombillaStacks -> BStacksProxy;

These proxy configurations are simple “pass-through” configurations. For example:

configuration BStacksProxy {
provides {
interface BombillaStacks;
interface BombillaTypes;

}
}
implementation {}

They do not actually provide a service; instead, they represent a single, common wiring point for all users
of that service. Then, the top-level VM configuration can pick an implementation of that service and wire
it to the proxy:

configuration AbstractMate{}
implementation {
components BStacks, BStacksProxy;

10

BStacksProxy.BombillaStacks -> BStacks;
BStacksProxy.BombillaTypes -> BStacks;

}

This abstraction is necessary for when there are multiple versions of a service, and a single implementation
needs to be chosen for the entire VM. For example, there are two providers of BombillaLocks: BLocks and
BLocksSafe. The former is a fast and efficient implementation, while the latter performs additional checks
in case callers have errors in their logic (e.g., unlocking locks they do not hold). The implementation can be
changed by modifying a single line in the VM configuration.

3.3 Instruction Examples

Every instruction component must provide the BombillaBytecode interface, which the BombillaEngine
calls when it reaches the associated opcode in a program. Perhaps the simplest Bombilla instruction is pop,
which pops an operand off the operand stack. This is the complete code for the OPpopM module:

includes Bombilla;
includes BombillaMsgs;

module OPpopM {
provides interface BombillaBytecode;
uses interface BombillaStacks as Stacks;

}

implementation {

command result_t BombillaBytecode.execute(uint8_t instr,
BombillaContext* context,
BombillaState* state) {

dbg(DBG_USR1, "VM (%i): Popping top operand off of stack. \n", context->which);
call Stacks.popOperand(context);
return SUCCESS;

}
}

Its configuration (OPpop) is:

includes Bombilla;
includes BombillaMsgs;

configuration OPpop {
provides interface BombillaBytecode;

}

implementation {
components OPpopM, BStacksProxy;

BombillaBytecode = OPpopM;

OPpopM.Stacks -> BStacksProxy;
}

3.3.1 Error Checking

Most of the Maté service components automatically perform checks; for example, if BStacks is told to pop
off an empty stack, it triggers an error condition (BOMB STACK UNDERFLOW). Error conditions are triggered
through the BErrorProxy component. Sometimes, however, instructions have additional checks; for example,
the bfull instruction takes a buffer as an operand. If the top operand is not a buffer, it triggers an error
condition.

11

includes Bombilla;
includes BombillaMsgs;

module OPbfullM {
provides interface BombillaBytecode;
uses interface BombillaStacks as Stacks;
uses interface BombillaTypes as Types;

}

implementation {

command result_t BombillaBytecode.execute(uint8_t instr,
BombillaContext* context,
BombillaState* state) {

BombillaStackVariable* arg = call Stacks.popOperand(context);
dbg(DBG_USR1, "VM (%i): Checking if buffer full.\n", (int)context->which);

if (!call Types.checkTypes(context, arg, BOMB_VAR_B)) {return FAIL;}
call Stacks.pushOperand(context, arg);
call Stacks.pushValue(context, (arg->buffer.var->size == BOMB_BUF_LEN)? 1: 0

);
return SUCCESS;

}
}

If Types.checkTypes() fails, it triggers an error condition in the calling context. The final parameter is
a bitmask of valid types: BOMB VAR B for buffer, BOMB VAR S for sensor, and BOMB VAR V for value. These can
be combined; for example, (BOMB VAR B | BOMB VAR V) will succeed for buffers or values.

Error conditions can also be triggered explicitly. For example, the comparison instructions gte, gt,
lt, lte, eq all require two operands of the same type. The code for gte is as follows:

module OPgteM {
provides interface BombillaBytecode;
uses interface BombillaStacks as Stacks;
uses interface BombillaError;

}

implementation {

command result_t BombillaBytecode.execute(uint8_t instr,
BombillaContext* context,
BombillaState* state) {

BombillaStackVariable* arg1 = call Stacks.popOperand(context);
BombillaStackVariable* arg2 = call Stacks.popOperand(context);

if ((arg1->type == BOMB_VAR_V) &&
(arg2->type == BOMB_VAR_V)) {

call Stacks.pushValue(context, arg2->value.var > arg1->value.var);
}
else if ((arg1->type == BOMB_VAR_S) &&

(arg2->type == BOMB_VAR_S) &&
(arg1->sense.type == arg2->sense.type)) {

call Stacks.pushValue(context, arg2->sense.var > arg1->sense.var);
}
else {
call BombillaError.error(context, BOMB_ERROR_INVALID_TYPE);
return FAIL;

}
return SUCCESS;

}
}

where BombillaError.error is explicitly called at the end.

12

3.3.2 Split Phase Operations

Generally, instructions that merely manipulate operands are fairly simple, as the examples above show.
Instructions that encapsulate split-phase operations (such as sense and send) are a bit more complex, as
these instructions cause contexts to block. As split-phase operations are scheduling points, they can also
yield locks.

The basic pseudocode for a scheduling point instruction is this:

if another context is using the resource
put caller on wait queue

else if underlying resource is busy
put caller on wait queue

else
start split-phase operation
set context state to appropriate value
set active context as one executing operation
call Synch.releaseLocks
call Synch.yieldContext

Synch.releaseLocks() releases all of the locks a context has set to yield with, for example, the unlock or
punlock instructions. Synch.yieldContext() then takes the context off the run queue, and checks if there
are any contexts made runnable by yielded locks. Putting a caller on a wait queue also requires restoring it
to its state before it executed this instruction, so it can retry later.

The corresponding event of the split-phase operation is then responsible for resuming the blocked context,
and pulling a waiting context off the wait queue.

if no active context
return

put active context in run state
call Synch.resume
make any necessary operand stack operations
clear active context
if wait queue is not empty

dequeue context from wait queue
call Synch.resume

The second Synch.resume will cause the waiting context to execute its next instruction, which will be
the one that executes the split-phase operation.

For examples of this logic, look at OPsense and OPsend.

3.3.3 Embedded Operands

Some instructions, such as pushc, have embedded operands. Instruction components that expect embedded
operands have a number at the end of their name, specifying the bit width of the expected value. For
example, OPcall2 says that the call instruction expects two bits of operand, while OPpushc6 says that
pushc expects six. These instructions take up more than one slot in a VM’s instruction set. For example,

VM.Bytecode[OPcall0] -> OPcall2;
VM.Bytecode[OPcall0+1] -> OPcall2;
VM.Bytecode[OPcall0+2] -> OPcall2;
VM.Bytecode[OPcall0+3] -> OPcall2;

The code of call then reads:

13

command result_t BombillaBytecode.execute(uint8_t instr,
BombillaContext* context,
BombillaState* state) {

dbg(DBG_USR1, "VM (%i): Calling subroutine %hhu\n", (int)context->which, (ui
nt8_t)(instr & 0x3));
call Stacks.pushReturnAddr(context);
context->capsule = &(state->capsules[instr & 0x3]);
context->pc = 0;
return SUCCESS;

}

3.4 Contexts

Maté contexts are essentially what is described in the Bombilla section; they have two stacks, etc. Making
each instruction a component allows a user to customize the VM instruction set. Contexts follow a similar
model: each context is a separate component, which is wired to BombillaEngine. The component handles
the event that triggers the context, and sets it runnable. The context component is responsible for both
the context state and the context capsule; as with instructions, this means the VM only needs memory for
contexts that are used. Bombilla has four contexts: clock, send, receive, and once. These implementations
can be used as templates for new contexts.

The viral propagation subsystem, BVirusProxy, requires that components register capsules with it when
the VM boots. This allows it to easily generate version vectors and install new code. When new code is
installed, all running contexts must halt and reset.

4 Customizing Maté

The easiest way to customize Maté is to start from a working VM and modify it. For example, let’s say
your application needs to take square roots; implementing this in an instruction is much more efficient than
trying to code it in Maté bytecodes.

The first step is to write the OPsqrt component. sqrt pops a single value operand off the stack,
takes its square root, and pushes the result back onto the stack. This component provides one interface,
BombillaBytecode, uses two: BombillaStacks to push and pop, and BombillaTypes to check that the top
of the stack is a value.

The resulting signature for the module is:

includes BombillaMsgs;

module OPsqrtM {
provides interface BombillaBytecode;
uses {
interface BombillaStacks as Stacks;
interface BombillaTypes as Types;

}
}

The component only implements one function, execute:

implementation {

command result_t BombillaBytecode.execute(uint8_t instr,
BombillaContext* context,
BombillaState* state) {

BombillaStackVariable* arg = call Stacks.popOperand(context);
dbg(DBG_USR1, "VM (%i): Taking squart root of top of stack.\n", (int)context->which);
if (!call Types.checkTypes(context, arg, BOMB_VAR_V)) {return FAIL;}
arg->value.var = (int16_t)sqrt(arg->value.var)
call Stacks.pushOperand(context, arg);
return SUCCESS;

}
}

14

The module needs a configuration, which wires it to the appropriate proxies:

includes Bombilla;
includes BombillaMsgs;

configuration OPsqrt {
provides interface BombillaBytecode;

}
implementation {
components OPsqrtM, BStacksProxy;

BombillaBytecode = OPinvM;
OPsqrtM.Stacks -> BStacksProxy;
OPsqrtM.Types -> BStacksProxy;

}

The OPsqrt component is now a functioning instruction. The final step is to include it in the VM. There
are two steps to this: the first is to define the opcode value of the instruction (probably replacing another
instruction), and the second is to wire it to the VM.

The first is accomplished by modifying the application’s BombillaOpcodes.h. In this case, we’ll remove
the cpull instruction. Do this by changing the line OPcpull = 0x11 to OPsqrt = 0x11. Then, in the top-
level VM configuration, remove the component OPcpull, adding OPsqrt, and the line VM.Bytecode[OPcpull]
-> OPcpull;, replacing it with VM.Bytecode[OPcpull] -> OPsqrt;

Now, when BombillaEngine encounters the opcode 0x11, it will execute the square root instruction.

4.1 Customizing CapsuleInjector

By default, CapsuleInjector uses the Bombilla configuration for its opcodes and contexts. Changing
contexts and capsule options requires changing CapsuleInjector’s code, but the instruction set can be
changed with much less work.

CapsuleInjector uses the java class BombillaConstants to assemble instructions to binary opcodes.
BombillaConstants is automatically generated using ncg; if you change the .h file that BombillaConstants
is generated from, then CapsuleInjector will recognize a different set of instructions.

CapsuleInjector recognizes constants whose name begins with OP as opcodes. For example, when it
reads the instruction jumpc from a program, it looks for a constant named OPjumpc and translates it to the
corresponding value.

15

