
Linux Virtual Server for Scalable Network Services

Wensong Zhang
National Laboratory for Parallel & Distributed Processing

Changsha, Hunan 410073, China
wensong@linuxvirtualserver.org, http://www.LinuxVirtualServer.org/

Abstract

This paper describes the motivation, design, internal im-
plementation of Linux Virtual Server. The goal of Linux
Virtual Server is to provide a basic framework to build
highly scalable and highly available network services us-
ing a large cluster of commodity servers. The TCP/IP
stack of Linux kernel is extended to support three IP load
balancing techniques, which can make parallel services
of different kinds of server clusters to appear as a ser-
vice on a single IP address. Scalability is achieved by
transparently adding or removing a node in the cluster,
and high availability is provided by detecting node or
daemon failures and reconfiguring the system appropri-
ately.

1 Introduction

With the explosive growth of the Internet, Internet
servers must cope with greater demands than ever. The
potential number of clients that a server must support
has dramatically increased, some hot sites have already
received hundreds of thousands of simultaneous client
connections. With the increasing number of users and
the increasing workload, companies often worry about
how their systems grow over time. Furthermore, rapid
response and 24x7 availability are mandatory require-
ments for the mission-critical business applications, as
sites compete for offering users the best access expe-
rience. Therefore, the requirements for hardware and
software solution to support highly scalable and highly
available services can be summarized as follows:

� Scalability, when the load offered to the service in-
creases, system can be scaled to meet the require-
ment.

� 24x7 availability, the service as a whole must be
available 24x7, despite of transient partial hardware

and software failures.

� Manageability, although the whole system may be
physically large, it should be easy to manage.

� Cost-effectiveness, the whole system must be eco-
nomical to afford and expand.

A single server is usually not sufficient to handle this
aggressively increasing load. The server upgrading pro-
cess is complex, and the server is a single point of fail-
ure. The higher end the server is upgraded to, the much
higher cost we have to pay.

Clusters of servers, connected by a fast network, are
emerging as a viable architecture for building highly
scalable and highly available services. This type of
loosely coupled architecture is more scalable, more cost-
effective and more reliable than a tightly coupled mul-
tiprocessor system. However, a number of challenges
must be addressed to make a cluster of servers function
effectively for scalable network services.

Linux Virtual Server [22] is our solution to the require-
ments. Linux Virtual Server is a software tool that di-
rects network connections to multiple servers that share
their workload, which can be used to build highly scal-
able and highly available services. Prototypes of Linux
Virtual Server have already been used to build many
sites of heavy load on the Internet, such as Linux por-
tal www.linux.com, sourceforge.net and UK National
JANET Web Cache Services.

Linux Virtual Server directs network connections to the
different servers according to scheduling algorithms and
makes parallel services of the cluster to appear as a vir-
tual service on a single IP address. Client applications
interact with the cluster as if it were a single server. The
clients are not affected by interaction with the cluster
and do not need modification. Scalability is achieved by
transparently adding or removing a node in the cluster.
High availability is provided by detecting node or dae-
mon failures and reconfiguring the system appropriately.

2 System Architecture Overview

In this section we present a system architecture for build-
ing highly scalable and highly available network ser-
vices on clusters. The three-tier architecture of LVS il-
lustrated in Figure 1 includes:

� Load balancer, is the front end to the service as
seen by the outside world. The load balancer di-
rects network connections from clients who know
a single IP address for services, to a set of servers
that actually perform the work.

� Server pool, consits of a cluster of servers that im-
plement the autual services, such as web, ftp, mail,
dns, and so on.

� Backend storage, provides the shared storage for
the servers, so that it is easy for servers to keep the
same content and provide the same services.

Figure 1: The 3-tier Architecture of Linux Virtual Server

The load balancer handles incoming connections using
IP load balancing techniques, it selects servers from the
server pool, maintains the state of concurrent connec-
tions and forwards packets, and all the work is per-
formed inside the kernel, so that the handling overhead
of the load balancer is low. Therefore, the load balancer
can handle much larger number of connections than a
general server, thus a load balancer can schedule a large

number of servers and it will not be a bottleneck of the
whole system soon.

The server nodes in the above architecture may be repli-
cated for either scalability or high availablity. Scalability
is achieved by transparently adding or removing a node
in the cluster. When the load to the system saturates the
capacity of existing server nodes, more server nodes can
be added to handle the increasing workload. Since the
dependence of most network services is often not high,
the aggregate performance should scale linearly with the
number of nodes in the system, before the load balancer
becomes a new bottleneck of the system. Since the com-
modity servers are used as building blocks, the perfor-
mance/cost ratio of the whole systemis as high as that of
commodity servers.

One of the advantages of a clustered system is that it
has hardware and software redundancy. High availabil-
ity can be provided by detecting node or daemon fail-
ures and reconfiguring the system appropriately so that
the workload can be taken over by the remaining nodes
in the cluster. We usually have cluster monitor dae-
mons running on the load balancer to monitor the health
of server nodes, if a server node cannot be reached by
ICMP ping or there is no response of the service in the
specified period, the monitor will remove or disable the
server in the scheduling table of the load balancer, so
that the load balancer will not schedule new connections
to the failed one and the failure of server nodes can be
masked.

Now, the load balancer may become a single failure
point of the whole system. In order to prevent the failure
of the load balancer, we need setup a backup of the load
balancer. Two heartbeat daemons run on the primary and
the backup, they heartbeat the health message through
heartbeat channels such as serial line and UDP periodi-
cally. When the heartbeat daemon on the backup cannot
hear the health message from the primary in the specified
time, it will use ARP spoofing (gratutious ARP) to take
over the virtual IP address to provide the load-balancing
service. When the primary recovers from its failure,
there are two methods. One is that the primary becomes
to the backup of the functioning load balancer; the other
is that the daemon receives the health message from the
primary and releases the virtual IP address, and the pri-
mary will take over the virtual IP address. However, the
failover or the takeover of the primary will cause the es-
tablished connection in the state table lost in the current
implementation, which will require the clients to send
their requests again.

The backend storage is usually provided by is distributed
fault-tolerant file systems, such as GFS [16], Coda [1]
or Intermezzo [5]. These systems also take care of avail-
ability and scalability issue of file system accesses. The
server nodes access the distributed file system like a lo-
cal file system. However, multiple identical applications
running on different server nodes may access a shared
resource concurrently, any conflitcing action by the ap-
plications must be reconciled so that the resource re-
mains in a consistent state. Thus, there needs a dis-
tributed lock manager (internal of the distributed file sys-
tem or external) so that application developers can easily
program to coordinate concurrent access of applications
running on different nodes.

3 IP Load Balancing Techniques

Since the IP load balancing techniques have good scal-
ability, we patch the Linux kernel (2.0 and 2.2) to
support three IP load balancing techniques, LVS/NAT,
LVS/TUN and LVS/DR. The box running Linux Vir-
tual Server act as a load balancer of network connections
from clients who know a single IP address for a service,
to a set of servers that actually perform the work. In gen-
eral, real servers are idential, they run the same service
and they have the same set of contents. The contents
are either replicated on each server’s local disk, shared
on a network file system, or served by a distributed file
system. We call data communication between a client’s
socket and a server’s socket connection, no matter it
talks TCP or UDP protocol. The following subsections
describe the working principles of three techniques and
their advantages and disadvantages.

3.1 Linux Virtual Server via NAT

Due to the shortage of IP address in IPv4 and some se-
curity reasons, more and more networks use private IP
addresses which cannot be used on the Internet. The
need for network address translation arises when hosts
in internal networks want to access or to be accessed on
the Internet. Network address translation relies on the
fact that the headers of packets can be adjusted appro-
priately so that clients believe they are contacting one IP
address, but servers at different IP addresses believe they
are contacted directly by the clients. This feature can be
used to build a virtual server, i.e. parallel services at the
different IP addresses can appear as a virtual service on
a single IP address.

Figure 2: Architecture of LVS/NAT

The architecture of Linux Virtual Server via NAT is il-
lustrated in Figure 2. The load balancer and real servers
are interconnected by a switch or a hub. The workflow of
LVS/NAT is as follows: When a user accesses a virtual
service provided by the server cluster, a request packet
destined for virtual IP address (the IP address to accept
requests for virtual service) arrives at the load balancer.
The load balancer examines the packet’s destination ad-
dress and port number, if they are matched for a virtual
service according to the virtual server rule table, a real
server is selected from the cluster by a scheduling algo-
rithm, and the connection is added into the hash table
which records connections. Then, the destination ad-
dress and the port of the packet are rewritten to those of
the selected server, and the packet is forwarded to the
server. When an incoming packet belongs to an estab-
lished connection, the connection can be found in the
hash table and the packet will be rewritten and forwarded
to the right server. When response packets come back,
the load balancer rewrites the source address and port
of the packets to those of the virtual service. When a
connection terminates or timeouts, the connection record
will be removed in the hash table.

3.2 Linux Virtual Server via IP Tunneling

IP tunneling (IP encapsulation) is a technique to encap-
sulate IP datagram within IP datagram, which allows
datagrams destined for one IP address to be wrapped and
redirected to another IP address. This technique can be
used to build a virtual server that the load balancer tun-

nels the request packets to the different servers, and the
servers process the requests and return the results to the
clients directly, thus the service can still appear as a vir-
tual service on a single IP address.

Figure 3: Architecture of LVS/TUN

The architecture of Linux Virtual Server via IP tunnel-
ing is illustrated in Figure 3. The real servers can have
any real IP address in any network, and they can be geo-
graphically distributed, but they must support IP tunnel-
ing protocol and they all have one of their tunnel devices
configured with VIP.

The workflow of LVS/TUN is the same as that of
LVS/NAT. In LVS/TUN, the load balancer encapsulates
the packet within an IP datagram and forwards it to a dy-
namically selected server. When the server receives the
encapsulated packet, it decapsulates the packet and finds
the inside packet is destined for VIP that is on its tunnel
device, so it processes the request, and returns the result
to the user directly.

3.3 Linux Virtual Server via Direct Routing

This IP load balancing approach is similar to the one im-
plemented in IBM’s NetDispatcher. The architecture of
LVS/DR is illustrated in Figure 4. The load balancer and
the real servers must have one of their interfaces phys-
ically linked by an uninterrupted segment of LAN such
as a HUB/Switch. The virtual IP address is shared by
real servers and the load balancer. All real servers have
their loopback alias interface configured with the virtual

IP address, and the load balancer has an interface con-
figured with the virtual IP address to accept incoming
packets.

Figure 4: Architecture of LVS/DR

The workflow of LVS/DR is the same as that of
LVS/NAT or LVS/TUN. In LVS/DR, the load balancer
directly routes a packet to the selected server, i.e. the
load balancer simply changes the MAC address of data
frame to that of the server and retransmits it on the
LAN. When the server receives the forwarded packet,
the server finds that the packet is for the address on its
loopback alias interface and processes the request, fi-
nally returns the result directly to the user. Note that
real servers’ interfaces that are configured with virtual
IP address should not do ARP response, otherwise there
would be a collision if the interface to accept incoming
traffic for VIP and the interfaces of real servers are in the
same network.

Table 1: the comparison of LVS/NAT, LVS/TUN and
LVS/DR

LVS/NAT LVS/TUN LVS/DR
Server any tunneling non-arp dev

server network private LAN/WAN LAN
server number low (10˜20) high (100) high (100)
server gateway load balancer own router own router

3.4 Advantages and Disadvantages

The characteristics of three IP load balancing techniques
are summarized in Table 1.

� Linux Virtual Server via NAT

In LVS/NAT, real servers can run any operating sys-
tem that supports TCP/IP protocol, and only one IP
address is needed for the load balancer and private
IP addresses can be used for real servers.

The disadvantage is that the scalability of LVS/NAT
is limited. The load balancer may be a bottleneck
of the whole system when the number of server
nodes increase to around 20 which depends on the
throughout of servers, because both request and re-
sponse packets need to be rewritten by the load bal-
ancer. Supposing the average length of TCP pack-
ets is 536 Bytes and the average delay of rewrit-
ing a packet is around 60us on the Pentium proces-
sor (this can be reduced a little by using of faster
processor), the maximum throughout of the load
balancer is 8.93 Mbytes/s. The load balancer can
schedule 15 servers if the average throughout of
real servers is 600KBytes/s.

� Linux Virtual Server via IP tunneling

For most Internet services (such as web service)
that request packets are often short and response
packets usually carry large amount of data, a
LVS/TUN load balancer may schedule over 100
general real servers and it won’t be the bottleneck
of the system, because the load balancer just di-
rects requests to the servers and the servers reply
the clients directly. Therefore, LVS/TUN has good
scalability. LVS/TUN can be used to build a vir-
tual server that takes huge load, extremely good to
build a virtual proxy server because when the proxy
servers receive requests, they can access the Inter-
net directly to fetch objects and return them to the
clients directly.

However, LVS/TUN requires servers support IP
Tunneling protocol. This feature has been tested
with servers running Linux. Since the IP tunnel-
ing protocol is becoming a standard of all operating
systems, LVS/TUN should be applicable to servers
running other operating systems.

� Linux Virtual Server via Direct Routing

Like LVS/TUN, a LVS/DR load balancer processes
only the client-to-server half of a connection, and
the response packets can follow separate network
routes to the clients. This can greatly increase the
scalability of virtual server.

Compared to LVS/TUN, LVS/DR doesn’t have tun-
neling overhead , but it requires the server OS has
loopback alias interface that doesn’t do ARP re-
sponse, the load balancer and each server must be

directly connected to one another by a single unin-
terrupted segment of a local-area network.

3.5 Implemention Issues

The system implementation of Linux Virtual Server is il-
lustrated in Figure 5. The “VS Schedule & Control Mod-
ule” is the main module of LVS, it hooks two places at IP
packet traversing inside kernel in order to grab/rewrite IP
packets to support IP load balancing. It looks up the “VS
Rules” hash table for new connections, and checks the
“Connection Hash Table” for established connections.
The “IPVSADM” user-space program is to administra-
tor virtual servers, it uses setsockopt function to modify
the virtual server rules inside the kernel, and read the
virtual server rules through /proc file system.

Figure 5: Implementation of LVS

The connection hash table is designed to hold mil-
lions of concurrent connections, and each connection
entry only occupies 128 bytes effective memory in the
load balancer. For example, a load balancer of 256
Mbytes free memory can have two million concurrent
connections. The hash table size can be adapted by
users according to their applications, and the client �
��������� �		�
��� ���� � is used as hash key so that
hash collision is very low. Slow timer is ticked every
second to collect stale connections.

LVS implements ICMP handling for virtual services.
The incoming ICMP packets for virtual services will be
forwarded to the right real servers, and outgoing ICMP
packets from virtual services will be altered and sent out
correctly. This is important for error and control noti-
fication between clients and servers, such as the patch
MTU discovery.

LVS implements three IP load balancing techniques.

They can be used for different kinds of server clus-
ters, and they can also be used together in a single
cluster, for example, packets are forwarded to some
servers through LVS/NAT method, some servers through
LVS/DR, and some geographically distributed servers
through LVS/TUN.

4 Connection Scheduling

We have implemented four scheduling algorithms for
selecting servers from the cluster for new connec-
tions: Round-Robin, Weighted Round-Robin, Least-
Connection and Weighted Least-Connection. The first
two algorithms are self-explanatory, because they don’t
have any load information about the servers. The last
two algorithms count active connection number for each
server and estimate their load based on those connection
numbers.

4.1 Round-Robin Scheduling

Round-robin scheduling algorithm directs the network
connections to the different servers in the round-robin
manner. It treats all real servers as equals regardless of
number of connections or response time. Although the
round-robin DNS works in this way, there are quite dif-
ferent. The round-robin DNS resolves the single domain
to the different IP addresses, the scheduling granularity
is per host, and the caching of DNS hinder the algorithm
take effect, which will lead to significant dynamic load
imbalance among the real servers. The scheduling gran-
ularity of virtual server is per connection, and it is more
superior to the round-robin DNS due to fine scheduling
granularity.

4.2 Weighted Round-Robin Scheduling

The weighted round-robin scheduling can treat the real
servers of different processing capacities. Each server
can be assigned a weight, an integer that indicates its
processing capacity, the default weight is 1. The WRR
scheduling works as follows:

Assuming that there is a list of real servers �
��� �� ���� ����, an index � is the last selected server
in , the variable �� is current weight. The variables �
and �� are first initialized to zero. If all � ��� � �,

there are no available servers, all the connection for vir-
tual server are dropped.

while (1) {
if (i == 0) {

cw = cw - 1;
if (cw <= 0) {

set cw the maximum weight of S;
if (cw == 0) return NULL;

}
} else i = (i + 1) mod n;
if (W(Si) >= cw) return Si;

}

In the WRR scheduling, all servers with higher weights
receives new connections first and get more connec-
tions than servers with lower weights, servers with equal
weights get an eaqual distribution of new connections.
For example, the real servers A,B,C have the weights
4,3,2 respectively, then the scheduling sequence can be
AABABCABC in a scheduling period (mod sum(Wi)).
The WRR is efficient to schedule request, but it may still
lead to dynamic load imbalance among the real servers
if the load of requests vary highly.

4.3 Least-Connection Scheduling

The least-connection scheduling algorithm directs net-
work connections to the server with the least number of
active connections. This is one of dynamic scheduling
algorithms, because it needs to count active connections
for each server dynamically. At a virtual server where
there is a collection of servers with similar performance,
the least-connection scheduling is good to smooth distri-
bution when the load of requests vary a lot, because all
long requests will not be directed to a single server.

At a first look, the least-connection scheduling can also
perform well even if servers are of various processing
capacities, because the faster server will get more net-
work connections. In fact, it cannot perform very well
because of the TCP’s TIME WAIT state. The TCP’s
TIME WAIT is usually 2 minutes, in which a busy web
site often get thousands of connections. For example, the
server A is twice as powerful as the server B, the server
A has processed thousands of requests and kept them
in the TCP’s TIME WAIT state, but but the server B is
slow to get its thousands of connections finished and still
receives new connections. Thus, the least-connection
scheduling cannot get load well balanced among servers
with various processing capacities.

4.4 Weighted Least-Connection Scheduling

The weighted least-connection scheduling is a super-
set of the least-connection scheduling, in which a per-
formance weight can be assigned to each server. The
servers with a higher weight value will receive a larger
percentage of active connections at any time. The vir-
tual server administrator can assign a weight to each real
server, and network connections are scheduled to each
server in which the percentage of the current number of
active connections for each server is a ratio to its weight.

The weighted least-connections scheduling works as fol-
lows: supposing there is n real servers, each server i has
weight �� (i=1,..,n) and active connections� � (i=1,..,n),
all connection number S is the sum of �� (i=1,..,n), the
network connection will be directed to the server j, in
which

�������� � ������������� (i=1,..,n)

Since the S is a constant in this lookup, there is no need
to divide �� by S, it can be optimized as

����� � ���������� (i=1,..,n)

Since there is no floats in Linux kernel mode, the com-
parison of ����� � ����� is changed to �� ��� �
�� ��� because all weights are larger than zero.

4.5 Connection Affinity

Up to now, we have assumed that each network connec-
tion is independent of every other connection, so that
each connection can be assigned to a server indepen-
dently of any past, present or future assignments. How-
ever, there are times that two connections from the same
client must be assigned to the same server either for
functional or for performance reasons.

FTP is an example for a functional requirement for con-
nection affinity. The client establishs two connections
to the server, one is a control connection (port 21) to
exchange command information, the other is a data con-
nection (usually port 20) to transfer bulk data. For active
FTP, the client informs the server the port that it listens
to, the data connection is initiated by the server from
the server’s port 20 to the client’s port. Linux Virtual

Server could examine the packet coming from clients
for the port that client listens to, and create any entry
in the hash table for the coming data connection. But
for passive FTP, the server tells the clients the port that it
listens to, the client initiates the data connection to that
port of the server. For the LVS/TUN and the LVS/DR,
Linux Virtual Server is only on the client-to-server half
connection, so it is imposssible for Linux Virtual Server
to get the port from the packet that goes to the client
directly.

SSL (Secure Socket Layer) is an example of a proto-
col that has connection affinity between a client and a
server for performance reasons. When a SSL connec-
tion is made, port 443 for secure Web servers and port
465 for secure mail server, a key for the connection must
be chosen and exchanged. Since it is time-consuming to
negociate and generate the SSL key, the successive con-
nections from the same client can also be granted by the
server in the life span of the SSL key.

Our current solution to client affinity is to add persis-
tent port handling. When a client first accesses the ser-
vice marked persistent, the load balancer will create a
connection template between the given client and the se-
lected server, then create an entry for the connection in
the hash table. The template expires in a configurable
time, and the template won’t expire if it has its controlled
connections. Before the template expires, the connec-
tions for any port from the client will send to the right
server according to the template. Although the persistent
port may cause slight load imbalance among servers be-
cause its scheduling granularity is per host, it is a good
solution to connection affinity.

5 Cluster Management

Cluster management is a serious concern for LVS sys-
tems of many nodes. First, the cluster management
should make it easier for system administrators to setup
and manage the clusters, such as adding more machines
earlier to improve the throughput and replacing them
when they break. Second, the management software can
provide self-configuration with respect to different load
distribution and self-heal with node/service failure and
recovery. We presents some representative solutions of
cluster management for LVS, definitely there must be
lots of other solutions.

5.1 Piranha

Piranha [20] is the clustering products from Red Hat
Inc., which is shipped in Red Hat Linux 6.1 distribution
or later. Piranha includes the LVS kernel patch, cluster
monitor daemons and GUI administrative tools.

The nanny daemon is to monitor server nodes and the
corresponding services in the cluster, and the pulse dae-
mon is to control the nanny daemons and handle failover
between two load balancers. The pulse daemon forks
one nanny daemon for each real server. When the nanny
daemon cannot receive the response from the server
node and the service in the specified time, it will re-
move the server from the scheduling table in the kernel.
The nanny daemon also adapts server weight with re-
spect to server nodes in order to avoid the server is over-
loaded. When the nanny finds the server load is higher
than normal value, it will decrease the server weight in
the scheduling table in the kernel, so that the server will
receive less connections, vice versa.

5.2 lvs-gui + heartbeat + ldirectord

The lvs-gui [13] enables the configuration of servers
running The LVS kernel patches, at this stage lvs-gui
only supports the configuration of LVS/DR. The “heart-
beat” [17] provides heartbeats (periodical communica-
tion) among server nodes. The “ldirectord” written by
Jacob Rief is a daemon to monitor and administer real
servers in a cluster of load balanced virtual servers.

The server failover is handled as follows: The ldirectord
daemon is running on the load balancer, and one ldirec-
tord daemon monitors all the real servers of a virtual ser-
vice at a regular interval. If a real server fails, it will be
removed from that list, and it will be added back if the
server recovers.

The load balancer failover is processed as follows: the
heartbeat daemons run on both the primary load balancer
and the backup, they heartbeat the message each other
through the UDP and/or serial line periodically. When
the heartbeat daemon of the backup cannot hear the mes-
sage from the primary in the specified time, it will ac-
tivate the fake [12] to take over the virtual IP address
to provide the load-balancing service; when it receives
the message from the primary later, it will deactivate the
fake to release the virtual IP address, and the primary
will take over the virtual IP address.

5.3 mon + heartbeat

The “mon” [19] is a general-purpose resource moni-
toring system, which can be extended to monitor net-
work service availability and server nodes. The mon
service modules such as fping.monitor, http.monitor,
ldap.monitor and so on can be used to monitor ser-
vices on the real servers. An alert was written to re-
move/add an entry in the scheduling table while detect-
ing the server node or daemon is down/up. Therefore,
the load balancer can automatically mask service dae-
mons or servers failure and put them into service when
they are back. The heartbeat is used to handle failover
between two load balancers too.

6 Alternative Approaches

In the client/server applications, one end is the client, the
other end is the server, and there may be a proxy in the
middle. Based on this scenario, we can see that there are
many ways to dispatch requests to a cluster of servers in
the different levels. Existing request dispatching tech-
niques can be classified into the following categories:

� The client-side approach

Berkeley’s Smart Client [21] suggests that the ser-
vice provide an applet running at the client side.
The applet makes requests to the cluster of servers
to collect load information of all the servers, then
chooses a server based on that information and
forwards requests to that server. The applet tries
other servers when it finds the chosen server is
down. However, these client-side approaches are
not client-transparent, they requires modification of
client applications, so they cannot be applied to all
TCP/IP services. Moreover, they will potentially
increase network traffic by extra querying or prob-
ing.

� The server-side Round-Robin DNS approach

The NCSA scalable web server is the first prototype
of a scalable web server using the Round-Robin
DNS approach [14, 15, 6]. The RRDNS server
maps a single name to the different IP addresses
in a round-robin manner so that the different clients
will access the different servers in the cluster for
the ideal situation and load is distributed among
the servers. However, due to the caching nature of
clients and hierarchical DNS system, it easily leads

to dynamic load imbalance among the servers, thus
it is not easy for a server to handle its peak load.
The TTL(Time To Live) value of a name mapping
cannot be well chosen at RR-DNS, with small val-
ues the RR-DNS will be a bottleneck, and with high
values the dynamic load imbalance will get even
worse. Even the TTL value is set with zero, the
scheduling granularity is per host, different client
access pattern may lead to dynamic load imbalance,
because some clients (such as a proxy server) may
pull lots of pages from the site, and others may just
surf a few pages and leave. Futhermore, it is not so
reliable, when a server node fails, the clients who
maps the name to the IP address will find the server
is down, and the problem still exists even if they
press ”reload” or ”refresh” button in the browsers.

� The server-side application-level scheduling ap-
proach

EDDIE [7] , Reverse-proxy [18] and SWEB [4] use
the application-level scheduling approach to build
a scalable web server. They all forward HTTP re-
quests to different web servers in the cluster, then
get the results, and finally return them to the clients.
However, this approach requires to establish two
TCP connections for each request, one is between
the client and the load balancer, the other is be-
tween the load balancer and the server, the delay
is high. The overhead of dealing HTTP requests
and replies in the application-level is high. Thus
the application-level load balancer will be a new
bottleneck soon when the number of server nodes
increases.

� The server-side IP-level scheduling approaches

Berkeley’s MagicRouter [3] and Cisco’s Lo-
calDirector [2] use the Network Address Transla-
tion approach similar to the NAT approach used in
Linux Virtual Server. However, the MagicRouter
doesn’t survive to be a useful system for others, the
LocalDirector is too expensive, and they only sup-
port part of TCP protocol.

IBM’s TCP router [9] uses the modified Network
Address Translation approach to build scalable web
server on IBM scalable Parallel SP-2 system. The
TCP router changes the destination address of the
request packets and forwards the chosen server, that
server is modified to put the TCP router address
instead of its own address as the source address
in the reply packets. The advantage of the modi-
fied approach is that the TCP router avoids rewrit-
ing of the reply packets, the disadvantage is that
it requires modification of the kernel code of ev-
ery server in the cluster. NetDispatcher [10] , the

successor of TCP router, directly forwards packets
to servers that is configured with router address on
non arp-exported interfaces. The approach, similar
to the LVS/DR in Linux Virtual Server, has good
scalability, but NetDispatcher is a very expensive
commercial product.

ONE-IP [8] requires that all servers have their own
IP addresses in a network and they are all config-
ured with the same router address on the IP alias
interfaces. Two dispatching techniques are used,
one is based on a central dispatcher routing IP
packets to different servers, the other is based on
packet broadcasting and local filtering. The advan-
tage is that the rewriting of response packets can
be avoided. The disadvantage is that it cannot be
applied to all operating systems because some op-
erating systems will shutdown the network inter-
face when detecting IP address collision, and the
local filtering also requires modification of the ker-
nel code of server.

7 Conclusions and Future Work

Linux Virtual Server extends the TCP/IP stack of Linux
kernel (2.0 and 2.2) to support three IP load balanc-
ing techniques, LVS/NAT, LVS/TUN and LVS/DR. Cur-
rently, four scheduling algorithms have been developed
to meet different application situations. Scalability is
achieved by transparently adding or removing a node in
the cluster. High availability is provided by detecting
node or daemon failures and reconfiguring the system
appropriately. The solutions require no modification to
either the clients or the servers, and they support most
of TCP and UDP services. Linux Virtual Server is de-
signed for handling millions of concurrent connections.
With many open source development efforts, LVS-based
systems are becoming easy to use. Prototypes of LVS
have already been used to build highly loaded real-life
Internet sites.

Limitations of current LVS are as follows. Since LVS
just supporting IP load balancing techniques, it cannot
do content-based scheduling to different servers, but re-
quires that servers provide the same services so that new
connections can be assigned to any server. The failover
or takeover of the primary load balancer to the backup
will cause the established connection in the state table
lost, which will require the clients to send their requests
again to access the services.

In the future, we would like to port the LVS stuff un-

der the NetFilter framework in kernel 2.3 or 2.4. We
would like to develop TCP redirector daemon inside the
kernel, since it is performed inside the kernel, its scala-
bility should not much behind that of IP load balancing
techniques, but we will get a lot of flexibility, we can
parse requests and do content-based scheduling, and we
can explore higher degrees of fault-tolerance; transac-
tion and logging process [11] would be tried to add in
the load balancer so that the load balancer can restart the
request on another server and the client need not send the
request again. We would also like to implement kernel
daemons like kflushd to transfer connection state from
the primary load balancer to the backup periodically, so
that state of existing connections will not be lost when
the primary fails over or takes over. Finally, we would
like to move IP load balancing (and TCP load balanc-
ing) stuff to the Linux Cluster Infrastructure proposed
by Stephen Tweedie as load balancing components.

Acknowledgements

We would like to thank Julian Anastasov for his bug
fixes, suggestions and smart comments to the LVS code.
Thanks must go to many other contributors to the Linux
Virtual Server project too.

References

[1] The coda project. CMU Coda Team, 1987-now.
http://www.coda.cs.cmu.edu/.

[2] Cisco local director. Cisco Systems, Inc., 1998.
http://www.cisco.com/warp/public/751/lodir/index.html.

[3] E. Anderson, D. Patterson, and E. Brewer. The
magicrouter: an application of fast packet interposing.
http://www.cs.berkeley.edu/ eanders/magicrouter/, May
1996.

[4] D. Andresen, T. Yang, and O. H. Ibarra. Towards
a scalable distributed www server on workstation
clusters. In Proc. of 10th IEEE Intl. Symp. Of Paral-
lel Processing (IPPS’96), pages 850–856, Arpil 1996.
http://www.cs.ucsb.edu/Research/rapid sweb/SWEB.html.

[5] P. Braam and et al. The intermezzo project. http://inter-
mezzo.org/, 1999-now.

[6] T. Brisco. Dns support for load balancing.
http://www.ietf.org/rfc/rfc1794.txt, April 1995. RFC
1794.

[7] A. Dahlin, M. Froberg, J. Walerud, and P. Win-
roth. Eddie: A robust and scalable internet server.
http://www.eddieware.org/, 1998 - now.

[8] O. P. Damani, P. E. Chung, and Y. Huang. One-ip: Tech-
niques for hosting a service on a cluster of machines.
http://www.cs.utexas.edu/users/damani/, August 1997.

[9] D. Dias, W. Kish, R. Mukherjee, and R. Tewari. A scal-
able and highly available server. In COMPCON 1996,
pages 85–92, 1996.

[10] G. Goldszmidt and G. Hunt. Net-
dispatcher: A tcp connection router.
http://www.ics.raleigh.ibm.com/netdispatch/, May
1997.

[11] J. Gray and T. Reuter. Transaction Processing Concepts
and Techniques. Morgan Kaufmann, 1994.

[12] S. Horman. Creating redundant linux servers. In
The 4th Annual LinuxExpo Conference, May 1998.
http://vergenet.net/linux/fake/.

[13] S. Horman and C. Haitzler. lvs-gui: Gui for the linux
virtual servers. http://www.vergenet.net/linux/lvs-gui/,
2000.

[14] E. D. Katz, E. D. Katz, and R. McGrath. A scalable
http server: The ncsa prototype. Computer Networks
and ISDN Systems, pages 155–163, May 1994.

[15] T. T. Kwan, R. E. McGrath, and D. A. Reed. Ncsa’s
world wide web server: Design and performance. IEEE
Computer, pages 68–74, November 1995.

[16] K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erick-
son, E. Nygaard, C. J. Sabol, S. R. Soltis, D. C. Tei-
gland, and M. T. O’Keefe. A 64-bit, shared disk file
system for linux. In The 6th IEEE Mass Storage Systems
Symposium jointed with the 7th NASA Goddard Confer-
ence on Mass Storage Systems & Technologies, 1999.
http://www.globalfilesystem.org/.

[17] A. Robertson and et al. High-availability linux project.
http://www.linux-ha.org/, 1998-now.

[18] R. S.Engelschall. Load balancing your web site:
Practical approaches for distributing http traf-
fic. Web Techniques Magazine, 3(5), May 1998.
http://www.webtechniques.com/.

[19] J. Trocki. mon: Service monitoring daemon.
http://www.kernel.org/software/mon/, 1998-now.

[20] M. Wangsmo. White paper: Piranha
- load-balanced web and ftp clusters.
http://www.redhat.com/support/wpapers/piranha/,
1999.

[21] C. Yoshikawa, B. Chun, P. Eastharn, A. Vahdat, T. An-
derson, and D. Culler. Using smart clients to build
scalable services. In USENIX’97 Proceedings, 1997.
http://now.cs.berkeley.edu/.

[22] W. Zhang and et al. Linux virtual server project.
http://www.LinuxVirtualServer.org/, 1998-now.

