

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 1

LCS: a Linux-based Content Switch

C. Edward Chow, Weihong Wang, and Chandra Prakash
Department of Computer Science

Univ. of Colorado at Colorado Springs
Colorado Springs, CO 80933-7150, USA

Tel: (719) 262-3110
Fax: (719) 262-3369

Email: {chow, wwang, cprakash}@cs.uccs.edu

Abstract

In this paper we present the design of a Linux-based content switch, propose a pre-allocate
server scheme improving the TCP delay binding, discuss the lessons learnt from the
implementation of the content switch, and suggest system components/modules for high
speed content switch processing. A content switch routes packets based on their headers in
the upper layer protocols and the payload content. We discuss the processing overhead and
the content switch rule design. Our content switch can be configured as the front end
dispatcher of web server cluster and as a firewall. By implementing the http header
extraction and xml tag extraction, the content switch can load balancing the requests based
on the file extension or the text pattern in the url, and routes big purchase requests in XML
to faster servers in e-commerce systems. The rules and their content switch rule matching
algorithm are implemented as a module and hence can be replaced without restarting the
system. With additional SMTP header extraction, it can be configured as a spam mail filter
or virus detection/removal system.

Keywords: Internet Computing, Cluster Computing, Content Switch, Network Routing

1 Introduction

With the rapid increase of Internet traffic, the workload on servers is increasing dramatically.
Nowadays, servers are easily overloaded, especially for a popular web server. One solution to
overcome the overloading problem of the server is to build scalable servers on a cluster of servers [1,
2]. A load balancer is used to distribute incoming requests among servers in the cluster. Load
balancing can be done in different network layers. A web switch is an application level (layer 7)
switch, which examine the headers from layer 2 all the way to the HTTP header of the incoming
request to make the routing decisions. By examining the HTTP header and its content, a web switch
can provide a higher level of control over the incoming web traffic, and make decision on how
individual web pages, images, and media files get served from the web site. This level of load
balancing can be very helpful if the web servers are optimized for specific functions, such as image
serving, SSL (Secure Socket Layer) sessions or database transactions.

By having a generic header/content extraction module and rule matching algorithm, a web
switch can be extended as a content switch [4,5] for route packets including other application layer

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 2

protocols, such as SMTP, IMAP, POP, and RTSP. By specifying different sets of rules, the content
switch can be easily configured as a load balancer, firewall, policy-based network switch, a spam mail
filter, or a virus detection/removal system.

Traditional load balancers known as Layer 4 (L4) switches examine IP, TCP, and UDP
headers, such as IP addresses or TCP and UDP port numbers, to determine how to route packets.
Since L4 switches are content blind, they cannot take the advantages of the content information in the
request messages to distribute the load. For example, many e-commerce sites use secure connections
for transporting private information about clients. Using SSL session IDs to maintain server
persistence is the most accurate way to bind all a client’s connections during an SSL session to the
same server. A content switch can examine the SSL session ID of the incoming packets, if it belongs
to an existing SSL session, the connection will be assigned to the same server that was involved in
previous portions of the SSL session. If the connection is new, the web switch assigns it to a real
server based on the configured load balancing algorithm, such as weighted least connections and round
robin. Because L4 switches do not examine SSL session ID, which is in layer 5, so that they cannot
get enough information of the web request to achieve persistent connections successfully. Web
switches can also achieve URL-based load balancing. URL based load-balancing looks into incoming
HTTP requests and, based on the URL information, forwards the request to the appropriate server
based on predefined polices and dynamic load on the server.

XML are proposed to be the language for describing the e-commerce requests. A web system
for e-commerce system should be able to route requests based on the value in the specific tag of a
XML document. It allows the requests from a specific customer, or of different purchase amount to be
processed differently. The capability to provide differential services is the major feature provided by
the web switch. Intel XML distributor is such an example, it is capable of routing the request based on
the url and the XML tag sequence [14].

The content switching system can achieve better performance through load balancing the
requests over a set of specialized web servers, or achieve consistent user-perceived response time
through persistent connections, also called sticky connections.

1.1 Related Content switching Techniques

Application level proxies [6,7] are in many ways functionally equivalent to content switches.
They classify the incoming requests and match them to different predefined classes, then make the
decision whether to forward it to the original server, or get the web page directly from the proxy server
based on proxy server’s predefined behavior policies. If the data are not cached, the proxy servers
establish two TCP connections –one to the source and a separate connection to the destination. The
proxy server works as a bridge between the source and destination, copying data between the two
connections. Our proposed Linux-based Content Switch (LCS) is implemented in kernel IP layer. It
reduces the protocol processing time and provides more flexible content switching rules and
integration with load balancing algorithms.

Microsoft Windows2000 Network Load Balancing (NLB) [3] distributes incoming IP traffic to
multiple copies of a TCP/IP service, such as a Web server, each running on a host within the cluster.
NLB transparently partitions the client requests among the hosts and lets the clients access the cluster

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 3

using one or more “virtual” IP addresses. With NLB, the cluster hosts concurrently respond to
different client requests, even multiple requests from the same client.

Linux Virtual Server(LVS) is a load balancing server which is built into Linux kernel [2]. In
the LVS server cluster, the front-end of the real servers is a load balancer, also called virtual server,
that schedules incoming requests to different real servers and make parallel services of the cluster to
appear as a virtual service on a single IP address. A real server can be added or removed transparently
in the cluster. The load balancer can also detect the failures of real servers and redirect the request to
an active real server. Our LCS content switch is based on Linux LVS code and when no content switch
rules match with the incoming packet, the packet is routed based on the layer 4 LVS scheduling
policy.

The rest of the paper is organized as follows: In Section 2, we present the basic architecture and
modules of the Linux Content Switch. Section 3 presents the pre-allocate server scheme for improving
the TCP delayed binding. Section 4 discusses the problems encountered in the design of LCS and their
solutions. System components and modules for high speed content switch processing are suggested.
Section 5 shows the content switch rule design. The performance results of our LCS implementation
are presented in Section 6. Section 7 is the conclusion.

2 Linux-based content switch design

The Linux-based Content Switch (LCS) is based on the Linux 2.2-16 kernel and the related
LVS package. LVS is a Layer 4 load balancer which forwards the incoming request to the real server
by examining the IP address and port number using some existing schedule algorithm. LVS source
code is modified and extended with new content switching functions. LCS examines the content of the
request, e.g., URL in HTTP header and XML payload, besides its IP address and port number, and
forwards the request to the real servers based on the predefined content switching rules. Content switch
rules are expressed in term of a set of simple if statements. These if statements include conditions
expressed in terms of the fields in the protocol header or pattern in the payload and branch statements
describing the routing decisions. Detailed of the content switching rules are presented in Section 5.

Figure 1 shows the main architecture of LCS. Here the Content Switch Schedule Control
module is the main process of the content switch and is used to manage the packet follow. Routing
Decision, INPUT rules, FORWARD rules and OUTPUT rules are all original modules in Linux kernel.
They are modified to work with the Content Switch Schedule Control module. The Content switch
Rules module is the predefined rule table. The Content switch schedule control module will use this
information to control the flow of the packets. The Connection Hash Table is used to speed up the
forwarding process by retrieving the real server assignment based on the packet header information.
The LVS Configuration and Content Switch Configuration are user space tools used to define the
content switch server clusters and the content switch rules.

LCS uses Linux Network Address Translation (NAT) approach for routing packets between the
client and the real server. When an incoming packet arrives at IP layer, Routing Decision function is
called to check if the packet is destined to local or remote host. If the packet is for the local host,
INPUT RULES function is called to deliver the packet to the Content Switch Schedule Control module.

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 4

Otherwise FORWARD RULES function is called to pass the packet to the Content Switch Schedule
Control module. The Content Switch Schedule Control module will check the Connection Hash Table
to see if it belongs to an existing connection. If the packet is a new request, the Content Switch
Schedule Control module will extract the header/content of the request and apply Content Switch Rules
on it to choose a real server for this request. Also a new hash table for this connection is created, and
then FORWARD RULES function is called to forward this request to the chosen server. If the packet is
from an existing connection, The Content Switch Schedule Control module will call FORWARD
RULES function to forward the packet based on the information in hash table.

 Figure 1. LCS Architecture

Figure 2 shows the input output processing of the content switch in IP layer of Linux Network
Software. cs_infromclient manages the packet from the client to the content switch; cs_infromserver
handles the packet from the server back to the client.

Transport Layer

Ip_input

Ip_forward Ip_output

DATALINK Layer

cs_infromclient

cs_infromserver
local remote

input output

Figure 2. Content switch functions added to IP layer in Linux network software.

3 Improve TCP Delayed Binding with Pre-allocate Server Scheme

Many upper layer protocols utilize TCP protocol for reliable orderly message delivery. The
TCP connection will be established via a three way handshake, and the client will not deliver the upper
layer information until the three way handshake is complete. The content switch then selects the real

Content Switch
 Schedule
Control Module

Routing
Decision

INPUT RULES
OUTPUT RULES

FORWARD RULES

Content
Switch
 Rules

Connection
 Hash table

 LVS
Configuration

 Content Switch
 Configuration

User space

Kernel space

Incoming packet Outgoing packet

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 5

server, establishes the three way handshake with the real server, and serve a bridge that relays packets
between the two TCP connections. This is called TCP delayed binding.

3.1 The message exchange sequence in TCP Delayed Binding

Because the client established the connection with the content switch, it accepts the sequence
number chosen by the content switch and when the packets come from real server to client, content
switch must change their sequence numbers to the ones that client expects. Similarly, the packets from
client to server are also changed by content switch. By doing the packet rewriting, the content switch
“fools” both the client and real server, and they communicate with each other without knowing the
content switch is playing the middleman. Detailed sequence number rewriting process is shown below
in Figure3.

Figure 3. Message Exchange Sequence in TCP Delay Binding.

Step1-Step3 : The process is the standard TCP three way handshake between the client and the
content switch. The client and content switch commit their initial sequence numbers as CSEQ and
DSEQ.

Step4: The client sends the application level request data to the content switch. The content
switch chooses a real server based on the request data to server this request. The request data may
contain more than one IP packet, so the content switch need to get all the IP packets before invoking
rule matching algorithm.

Step5-Step7: The content switch establishes a TCP connection with the real server. The
content switch forwards the SYN request from the client to the server using its original initial sequence
number CSEQ, the server commits its own initial sequence number SSEQ.

client Content switch server

step1

step2

step3

step4

step5

step6

step7

step8

step9

step10

SYN(CSEQ)

SYN(DSEQ)
ACK(CSEQ+1)

ACK(DSEQ+1)

DATA(CSEQ+1)
ACK(DSEQ+1)

SYN(CSEQ)

SYN(SSEQ)
ACK(CSEQ+1)

ACK(SSEQ+1)

DATA(CSEQ+1)
ACK(SSEQ+1)

DATA(SSEQ+1)
ACK(CSEQ+lenR+1)

DATA(DSEQ+1)
ACK(CSEQ+lenR+1)

ACK(SSEQ+lenD+1)ACK(DSEQ+lenD+1)

lenR:size of http request
lenD:size of return document

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 6

Step8 : The DATA message with the request is forwarded from the content switch to the
server. The original sequence number is kept while the ACK sequence number is changed from
acknowledge number of the content switch (DSEQ+1) to that of the server (SSEQ+1).

Step9 : For the return data from the server to the client, the sequence number needs to be
changed to that associated with the content switch. For a large document, several packets are needed.
Push flags in the TCP header are typically set on the follow up packets, so the client TCP process will
deliver them immediately to the upper layer process.

Step10: For the ACK packet from the client to the content switch, the ACK sequence number
is changed from the one acknowledging the content switch to that acknowledging the server.

Delayed binding is the major technique used in the content switch design. To maintain correct
connection between the client and the server, the content switch must adjust the sequence number in
every packet for each direction. This requests that all the subsequent packets go through the content
switch and have their sequence numbers changed. As many other existing content switch products, the
content switch design presented in this paper uses NAT (Network Address Translation) approach.

3.2 Design of Pre-allocate Server Scheme

We implemented a heuristic solution to improve the TCP delayed binding problem, where the
client and real server mapping is pre-allocated and stored in a hash table with (hash) key as the client
address. When a client sends a request to the content switch for the first time, there will not be any
entry in the hash table, and the request will go via the normal data buffering and rule matching
processing. An entry will be added to the pre-allocate hash table with the client IP address as key and
the real server address as data. When the same client sends the next request, an entry will be found in
the pre-allocate hash table, and the client request will be directly forwarded to the corresponding real
server. This reduces the rule matching overhead.

Figure 4a shows the modified delay binding in the pre-allocate scheme when the pre-allocate
server is the right one. Figure 4b shows the message exchange among the pre-allocate server, the right
server, the content switch, and the client, when the guess it wrong. Note that when the guess it right,
the web access can be complete in six steps instead of ten steps, and there is no need for the sequence
number modification for Step5 and Step6. When the direct routing or IP tunnel scheme is used instead
of NAT, the return document can be sent directly to the client and thus reduce the processing overhead
at the content switch.

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 7

Client Content Switch Pre -allocate Server

step1

step2

step3

step5

step6

SYN(SSEQ)
ACK(CSEQ+1)

SYN(CSEQ)

ACK(SSEQ+1)

DATA(CSEQ+1)
ACK(SSEQ+1)

SYN(CSEQ)

SYN(SSEQ)
ACK(CSEQ+1)

ACK(SSEQ+1)

DATA(SSEQ+1)
ACK(CSEQ+LenR+1)

DATA(SSEQ+1)
ACK(CSEQ+lenR+1)

ACK(SSEQ+lenD+1) ACK(SSEQ+LenD+1)

lenR: size of http request

lenD: size of return document

step4 DATA(CSEQ+1)
ACK(SSEQ+1)

Figure 4a. Pre-allocate server scheme when guess it right.

Client Content Switch Pre- allocate Server

step4

SYN(SSEQ)
ACK(CSEQ+1)

SYN(CSEQ)

ACK(SSEQ+1)

DATA(CSEQ+1)
ACK(SSEQ+1)

step1

step2

step3

SYN(CSEQ)

SYN(SSEQ)
ACK(CSEQ+1)

ACK(SSEQ+1)

lenR: size of http request
lenD: size of return document

FIN (CSEQ+1)

step9

step10

DATA(RSEQ+1)
ACK(CSEQ+LenR+1)

DATA(RSEQ+1)
ACK(CSEQ+lenR+1)

ACK(RSEQ+lenD+1) ACK(RSEQ+LenD+1)

Right Server

step5

step6

step7

SYN(CSEQ)

SYN(RSEQ)
ACK(CSEQ+1)

ACK(RSEQ+1)

Figure 4b. Pre-allocate server scheme when guess it wrong.

step8 DATA(CSEQ+1)
ACK(RSEQ+1)

For subsequent requests, when there is a matching hash table entry found in the pre-allocate hash table,
it may happen that the real server specified by the matching entry may not be the correct real server
for that request. In that case the pre-allocate scheme degenerates to the default TCP delayed binding,
where rule matching is done for the client request. The worst case scenario in the pre-allocate scheme
is where the real server specified in the matching hash table entry happens to be wrong choice. Here it
mandates that the client data are buffered as done in the default scheme.

The content switch must examine the response from the real server specified in the matching
hash table entry, before applying the degenerate rule matching. If the response does not contain HTTP
response code 200, then only content switch switches to the default scheme. If the response code is
200, we then free up the queued client request. This provide a retry mechanism for improving the
probability of document delivery.

In our implementation if the real server specified in the matching hash table entry and the real
server selected via rule matching after a wrong pre-allocate guess are same, we allow the response
from the wrongly guessed real server to be forwarded to the client.

4 Problems and Solutions for Content Switch Design

In this section we discuss the content switch design issues related to content switch processing
and client request buffering.

4.1 Handling request with multiple packets

If the client’s request is too big to fit in one TCP segment, the content switch has to wait for all
the segments that comprise that request before commencing the rule matching. This is especially true

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 8

of non-idempotent HTTP requests like PUT and POST, and for e-commerce application with large
XML request. This further gives rise to the following sub-problems that we had to account for:

Determine the content length

We had to determine the content length of the variable incoming data stream in order to flag
end of client request. The content length information of such request can be obtained from the
"Content-Length" fields in the HTTP header. However, the value of the content length itself can span
across multiple segments as shown in the example below:

TCP Segment n contains:

POST /cgi-bin/cs622/purchase.pl HTTP/1.0\r\n

Referer: http://archie.uccs.edu/~acsd/lcs/xmldemo.html\r\n
Connection: Keep-Alive\r\n
User-Agent: Mozilla/4.75 [en] (X11; U; Linux 2.2.16-

22enterprise i686) \r\n
Host: viva.uccs.edu\r\n
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,

image/png, */*\r\n
Accept-Encoding: gzip\r\n
Accept-Language: en\r\n
Accept-Charset: iso-8859-1,*,utf-8\r\n
Content-type: application/x-www-form-urlencoded\r\n
Content-length: 7
TCP Segment n+1 contains:
53\r\n
data (753 bytes)

As seen in the above example, the individual bytes of the content length are split across two
consecutive TCP segments, the first segment contains 7 and the next segment contains the remaining
two byte, i.e., 53. This is true for any field within the HTTP request header, even for the sequence of
data bytes that form the "Content-Length" string.

Fragmentation of application level content

After the content length is determined, the content switch can then wait for all the packets of
the same request. Typically, these packets are saved in different memory area. In Linux, they are
saved in skbuf structures linked by double link list. Each of these data structures contains the
timestamp, IP/TCP headers, followed by the content payload. Therefore, the actual content is
fragmented and spread out in the network buffer. Extracting URL field in the HTTP request is easy,
since it is in the first packet. But for extracting other meta-headers and especially the XML tag values
in the content field of the HTTP request, the fragmentation of the TCP payload content post difficult
challenging problem for the content switch designer. One approach is to concatenate all individual
non-contiguous TCP segments back to back into one coherent buffer, that can then be used for XML
parsing, or pattern matching. Another approach is to redesign the XML parsing or pattern matching so

UCCS-CS-Tech-Report 2002-1 8/2002

 Page 9

that they can work with data that spread across several segments. A specialized memory address
mapping hardware similar to the translation look-aside cache used in virtual memory system can also
help speed up this type of packet processing.

The first approach requires the expensive memory copying and uses additional memory. The
original TCP segments are not released after the concatenation of their payload content, since once the
real server is selected, these TCP segments will be modified and sent to the chosen real server. The
modification includes the destination IP address field, possibly the TCP port field, the ACK sequence
number, and very importantly the checksum.

While buffering client data, the content switch has to send ACK's for the segments that
comprise the client request, otherwise the client TCP will assume the server is dead or is very slow,
and will not send subsequent packets. This is achieved by invoking appropriate ACK sending routines
from the IP layer of the content switch.

For large sized (> 40K) client requests, we also observed some of the relayed segments were
dropped by the chosen real sever. Further analysis indicate that the problem is due to the segment relay
by the content switch is implemented in IP, instead of TCP layer. The data sending was done
continuously from the queued buffers without considering the window advertised by the TCP stack of
the real server. This flooding of data caused the real server to drop some of the received TCP packets.
It was observed that the acknowledgment number sent by real server was held constant, even though
the content switch had emptied all buffered data. The result was that there was no response seen from
real server, as if it had not acknowledged receipt of all data. This problem was solved by having the
content switch keep track of the acknowledgment number. When the acknowledgment sent by real
server was less than or equal to the sequence number of the last sent packet, the last sent packet was
retransmitted. This retransmission helped alleviate packet flooding at the real server and ensure all
client data are properly received.

4.2 Handle Different Data Encoded Methods

There are two basic ways for submitting the XML-based request to the web server. One is to
use the form with text input or text area input. The other is to submit it as XML document. When
submitting it with the form, the XML request data are encoded using the x-www-form-urlencoding
method and the “Content-Type” meta-header will have the value of “x-www-form-urlencoded”. When
submitting it as XML document, the “Content-Type” meta-header will have the value of “text/xml”
and the content is submitted with the plain text without further encoding. With the latter encoding
type, all special characters like line feed (\n), carriage return (\r), left anchor (<) and right anchor (>)
etc. retain their ASCII representation. In the former encoding type, the special characters have
encodings like "%XX", where XX is the hexadecimal representation of ASCII value of that special
character. For example, for the "x-www-form-urlencoded" encoding type, the values for the indicated
special characters will be "%0A", "%0D", "%3C" and "%3E" respectively. Hence, the rule matching
module should correctly parse the XML content of the client request depending on the content type.

4.3 Allow Referencing Specific XML Tags

The rule specification scheme should be flexible enough to account for exact tag name or rule
field indicated in the rule specification. Here is an example that illustrates this point. Consider the
XML document:

UCCS-CS-Tech-Report 2002-1 8/2002

 Page
10

<purchase>
 <customerName>CCL</customerName>
 <customerID>111222333</customerID>
 <item>
 <productID>309121544</productID>
 <unitPrice>5000</unitPrice>
 <subTotal>50000</subTotal>
 </item>
 <item>
 <productID>309121538</productID>
 <unitPrice>200</unitPrice>
 <subTotal>2000</subTotal>
 </item>
 <totalAmount>52000</totalAmount>
</purchase>
<purchase>
<customerName>CDL</customerName>
 <customerID>111222444</customerID>
 <item>
 <productID>30913555</productID>
 <unitPrice>3000</unitPrice>
 <subTotal>20000</subTotal>
 </item>
<totalAmount>20000</totalAmount>
 </purchase>

In the above XML document, some of the tags are repeated, e.g., purchase, item, totalAmount.
Hence a rule syntax is needed to allow for selecting a particular set of tags in the rule set. Here is an
example of a scheme that addresses this problem. To specify a rule based on subTotal value present in
the second item tag within the first purchase tag, the condition of the rule will be specified as
'purchase:1.item:2.subtotal > 5000". As another example, 'purchase:2.totalAmount < 15000' specifies
the condition of a rule based on the totalAmount tag present within the second purchase tag.

4.4 Handle Long Transactions in SSL and Email network services

In our Linux-based Content Switch, the content/header extraction and rule matching are
performed in the kernel to avoid unnecessary copying. However, we have found that for network
services that require long computation and interface with other packages, some of the packet
processing functions are better handled at the application level. For example, there are a lot of
packages, including McAfee’s uvscan and AMAVis scanmail, mutt (recombine email component), for
detecting and removing email virus, but almost all of them are implemented in application level and
interact with the sendmail program. It will require significant effort to rewrite them as kernel modules.
Same observations were derived on SSL processing.

SMTP goes through long message exchange between the client and the server, where the client
sends a sequence of messages including HELO, MAIL FROM, RCPT TO, Data, followed by the
actual body of the message. The server will respond with specific code and confirmation message.

UCCS-CS-Tech-Report 2002-1 8/2002

 Page
11

Therefore the important email addresses for the sender and the receiver will appear at different stages
of the transaction. The content switch needs to be able to store these messages in the buffer. Once the
related header information is extracted and rules matched, these messages will be forwarded to the real
mail server. For spam mail removal, the sending email address is extracted from the MAIL FROM
message. For incoming email load balancing, the receiving email address is extracted from the RCPT
TO message. Compared with SMTP, the processing of IMAP or POP is much simpler, since we only
need to wait for the login in USER message for load balancing rule matching, but they have the same
requirement for storing and forwarding the message sequence to the real server.

4.5 Handle Multiple Requests in a Keep-Alive Session

Most browsers and web servers support the keep-alive TCP connection. It allows a web
browser to request documents referred by the embedded references or hyper links of the original web
page through this existing keep alive connection without going through long three way handshake. It is
a concern that different requests from the same TCP connection are routed to different web servers
based on their content. The challenge here is how the content switch merges the multiple responses
from different web servers to the client transparently using the keep alive TCP connection. Figure 5
shows the situation where different requests from one TCP connection go to different web servers
through the content switch.

Figure 5. Multiplexing Return Document into a Keep-Alive Connection

.

..

client
uccs.jpg

rocky.mid

home. gif

Index.htm

Content
Switch

server1

server2

server9

If the client sends http requests within one TCP connection to the content switch, then the
content switch can route these requests to three different web servers based on their contents and it is
possible the return documents of those request will arrive at the content switch out of order. The
content switch must be able to handle this situation.

The brute force solution will be to discard the early requests. One possible solution is to buffer
the responses of the later request at the content switch so that they return in the same order as their
corresponding requests. The drawback is that it significant increases the memory requirement of the
content switch. The other solution is to calculate the size of the return documents and adjust the
sequence number accordingly. It avoids the buffer requirement and the later requests will be sent with
the starting sequence number that leaves space for those slow return documents. The drawback here is
that the content switch needs to have the directory information of the server and how they map the
request into the actual path of the file system.

UCCS-CS-Tech-Report 2002-1 8/2002

 Page
12

5 The Content Switching Rule Design
5.1 LCS Content Switch Rule

LCS rules are defined using C functions. The syntax of the rules is as follow:

RuleLabel: if (condition) { action1} [else { action2}].

Examples:

R1: if (xml.purchase/totalAmount > 52000) { routeTo(server1, STICKY_IP_PORT); }

R2: if (strcmp(xml.purchase/customerName, "CCL") = = 0) {
 routeTo(server2, NONSTICKY); }

R3: if (strcmp(url, "gif$") = = 0) { routeTo(server3, NONSTICKY); }

R4: if (srcip = = “128.198.60.1” && dstip = = “128.198.192.192” &&
 dstport = = 80) { routeTo(LBServerGroup, STICKY_IP); }

R5: if (match(url, “xmlprocess.pl”)) { goto R6; }

R6: if(xml.purchase/totalAmount > 5000){routeTo(hsServers, NONSTICKY);}
 else {routTo(defaultServers, NONSTICKY); }

The rule label allows the use of goto and makes referencing easie r. We have implemented
match() function for regular expression matching and xmlContentExtract() for XML tag sequence
extraction in the content switching rule module. The rule is designed as a dynamic kernel module. So it
can be edited at running time without recompiling the kernel. To update to a new rule set, “rmmod” is
called to removed the current rule set, and the content switch schedule control module will call a
default function NO_CS() to schedule the requests using round robin algorithm, weighted connection,
or weighted least connection. The content switch uses “insmod” command to insert the new rule
module.

5.2 Support for Sticky Connections

In LCS, there are three different options related to the sticky connections. These options are
STICKY_IP_PORT, STICKY_IP and NONSTICKY. With the option STICKY_IP_PORT, if the
condition is true, all the following packets with the same IP addresses and TCP port numbers will be
routed to the same server directly without carrying out the rule matching process. This option will
route all the requests in one TCP keep-alive connection to the same server. And the option STICKY_IP
will stick all the packets with the same IP addresses to the same server. This option will route all the
request from the same client to the same server. The option NONSTICKY, specifies the connection to
be a non-sticky connection, so either the request from the same connection, or the new connection all
need to go through the rule matching for selecting the real server.

4.3 Content Switch Rule Matching Algorithm

Rule matching algorithm directly affects the performance of the content switch. It is related to
the packet classification techniques [11,12.13]. In layer 4 switching, the switch only examines the IP

UCCS-CS-Tech-Report 2002-1 8/2002

 Page
13

address and port number of the packet, which are in the fixed fields. So the rule matching process can
be speed up by easily using the hash function. In content switch, the higher layer content information
is needed. These information such as URL, HTTP header or XML tag are not from the fixed fields
and have varying length. It is hard to build a hash data structure to speed the searching process. In our
prototype, we have observed significant packet processing time. It is therefore crucial to improve the
performance of the rule matching algorithm, to emphasize the differential treatment of packets and the
flexibility to add other functions such as spam mail filtering. The order of the rules also affects the
content switch performance. One way to improve the rule matching, is to set flags based on the packet
type and organize the rule set by checking these flag first and skip rules that do not match the packet
type. Detecting Conflicts among rules in the rule set is a challenging and important research issue.

6 LCS Performance Result

Since the content switch examines the content of the request before it forwards the request data
to the real server, it introduces more overhead than the layer 4 load balancing method. For all the tests
we have performed, we would like to find out what parameters affect the performance of the content
switch. A LCS testbed was set up where a HP Vectra workstation with 240 MHz Pentium Pro
Processor and 128 MB memory is used as the content switch, and four real servers are connected with
the content switch in the same subnet.

Figure 6a shows the measured response time for the rule matching process inside the content
switch kernel when a different number of rules are used. As shown in Figure 6a, the more rules the
content switch has, the longer the process time. This is because the larger number of rules, it will take
longer time to perform the rule matching. A more efficient algorithm will help to improve the rule
matching performance.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0 20000 40000 60000 80000 100000

Document Size (Bytes)

T
im

e
U

se
d

 (
se

co
n

d
s)

CS(10R)

LVS

Single

Rule-matching process time vs. number of rules

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

100 1000 10000 100000

Number of rules

Ti
m

e
(M

ic
ro

-s
ec

on
ds

)

 Figure 6a. Rule process time vs. number of rules. Figure 6b. Rule process time vs. XML file size

Figure 6b compares the impact of XML document processing overheads on LCS, LVS, and a
single web server. Here we are interested in finding the impact of TCP delay binding overhead on
LCS, and therefore we did not configure LCS to match any rule. It indicates the TCP delay binding
incurred very small amount of additional processing compared to the overall processing time. The
difference between LVS and that of a single server is the redirect routing processing time.

UCCS-CS-Tech-Report 2002-1 8/2002

 Page
14

Rule-matching process time vs. XML document size

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

XML File Size (Bytes)

T
im

e
(M

ic
ro

-s
ec

o
n

d
s)

Figure 6c. Rule process time vs. XML file size.

Figure 6c shows the impact of XML document size on LCS processing time. If the request
contains an XML document and the rules contain conditions related to the XML tag value, the process
time varies with the XML document size. If rules are defined to choose the real server based on XML
tag values, the rule-matching process will need to parse an XML request to find the XML tag value.
The XML parsing process uses recursive algorithm, so the process time increases dramatically with the
size of the XML document.

To evaluate the performance of the pre-allocate server scheme, a testbed with one content
switch and two real server was set up with the following configurations:

Machine Spec IP Address OS Web Server

viva.uccs.edu
P5 240MHz 128MB

(Content Switch)

128.198.192.192 Redhat 6.2 running
LCS0.2 kernel based on

Linux 2.2-16-3

Apache 1.3.14

ace.uccs.edu
P5 166MHz 64MB

(Real Server 1)

128.198.192.198 Redhat 6.2 running
LCS0.2 kernel based on

Linux 2.2-16-3

Apache 1.3.14

vinci.uccs.edu
P5 240 MHz 128MB

(Real Server 2)

128.198.192.193 Redhat 6.2 running
LCS0.2 kernel based on

Linux 2.2-16-3

Apache 1.3.14

We compared the response times of various document size between basic TCP delayed binding
scheme and the pre-allocate scheme with the following set of series as shown in Figure 7:

Series 1 - Basic scheme with no rule matching module inserted, i.e., using default IPVS.

Series 2 - Basic scheme with the rule matching module inserted.

Series 3 - Pre-allocate scheme with all hits, i.e., where all pre-allocate guesses were correct.

UCCS-CS-Tech-Report 2002-1 8/2002

 Page
15

Series 4 - Pre-allocate scheme with all misses, i.e., where all pre-allocate guesses were wrong.

Plot of response time vs document size

0
20000
40000
60000
80000

100000
120000
140000
160000
180000
200000
220000
240000
260000
280000
300000
320000
340000
360000
380000
400000
420000
440000
460000
480000
500000

0 10000 20000 30000 40000

bytes

m
ic

ro
se

co
n

d
s

Series1

Series2

Series3

Series4

 Figure 7. Performance of Pre-allocate Server Scheme

The response time represents the time difference between the time, when the first packet for the
request was seen at the content switch and the time, when the first packet of the response from the
"correct" real server was seen at the content switch. The document size represents the size of different
set of HTTP POST requests used. As shown in the Figure 7 the pre-allocate server scheme with all hits
has almost constant response time, whereas with all misses, the response time grows almost
exponentially with document size. The comparison between series 1 and series 2 obviously shows the
overhead of the rule matching.

7 Conclusion

We have presented the design and implementation of a Linux LVS-based content switch called
LCS. The impacts of the number of rules, the document size, and the TCP delay binding on the LCS
performance are analyzed. We also presented a pre-allocate server scheme to improve the TCP delay
binding. Problems encountered during the design of this content switch are discussed and their
solutions presented. The performance results of the content switch with the basic TCP delayed binding
and that of pre-allocate server scheme are presented. The rule set is implemented as a set of simple if
statements with labels and is compiled into a Linux kernel module. The rule module can be

UCCS-CS-Tech-Report 2002-1 8/2002

 Page
16

dynamically loaded into the LCS kernel. We also studied the impact of multiple requests of a keep-
alive connection on the content switch processing and analyzed as a set of solutions. The software
provides a foundation for studying the network and protocol related issues in content switches and
cluster systems.

8 References
[1] High Performance Cluster Computing: Architectures and Systems, Vol. 1&2, by Rajkumar
Buyya (Editor), May 21, 1999, Prentice Hall.
[2] “Linux Virtual Server”, http://www.linuxvirtualserver.org.
[3] “Windows 2000 clustering Technologies: Cluster Service Architecture”, Microsoft White Paper,
2000. http://www.microsoft.com.
[4] George Apostolopoulos, David Aubespin, Vinod Peris, Prashant Pradhan, Debanjan Saha, “
Design, Implementation and Performance of a Content-Based Switch”, Proc. Infocom2000, Tel Aviv,
March 26 - 30, 2000, http://www.ieee- infocom.org/2000/papers/440.ps
[5] Gregory Yerxa and James Hutchinson, “Web Content Switching”,
http://www.networkcomputing.com.
[6] M. Leech and D. Koblas. SOCKS Protocol Version 5. IETF Request for Comments 1928, April
1996.
[7] D. Maltz and P. Bhagwat. Application Layer Proxy Performance Using TCP Splice. IBM
Technical Report RC-21139, March 1998.
[8] “Release Notes for Cisco Content Engine Software”. http://www.cisco.com”.
[9] “Network-Based Application Recognition Enhancements”. http://www.cisco.com.
[10] F5 BIG IP, http://www.f5.com/f5products/bigip/bigipwhitepapers.html.
[11] CISCO Content Services Switch Configuration guide,
http://www.cisco.com/univercd/cc/td/doc/product /webscale/css/css_410/advcfggd/index.htm.
[12] “Foundry ServIron Installation and Configuration Guide,” May 2000.r
[13] http://www.foundrynetworks.com/techdocs/SI/index.html
[14] “Intel IXA API SDK 4.0 for Intel PA 100,”
http://www.intel.com/design/network/products/software/ixapi.htm and
http://www.intel.com/design/ixa/whitepapers/ixa.htm#IXA_SDK.
[15] Anja Feldmann S. Muthukrishnan “Tradeoffs for Packet Classification”, Proceedings of Gigabit
Networking Workshop GBN 2000, 26 March 2000 - Tel Aviv, Israel
http://www.comsoc.org/socstr/techcom/tcgn/conference/gbn2000/anja-paper.pdf
[16] Pankaj Gupta and Nick McKcown, “Packet Classification on Multiple Fields”, Proc. Sigcomm,
September 1999, Harvard University.
http://www-cs-students.Stanford.edu/~pankaj/paps/sig99.pdf
[17] V. Srinivasan S. Suri G. Varghese, “Packet Classification using Tuple Space Search”, Proc.
Sigcomm99, August 30 - September 3, 1999, Cambridge United States, Pages 135 - 146
http://www.acm.org/pubs/articles/proceedings/comm/316188/p135-srinivasan/p135-srinivasan.pdf

