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Abstract 

 
In this paper we present the design of a Linux-based content switch, propose a pre-allocate 
server scheme improving the TCP delay binding, discuss the lessons learnt from the 
implementation of the content switch, and suggest system components/modules for high 
speed content switch processing. A content switch routes packets based on their headers in 
the upper layer protocols and the payload content. We discuss the processing overhead and 
the content switch rule design. Our content switch can be configured as the front end 
dispatcher of web server cluster and as a firewall. By implementing the http header 
extraction and xml tag extraction, the content switch can load balancing the requests based 
on the file extension or the text pattern in the url, and routes big purchase requests in XML 
to faster servers in e-commerce systems. The rules and their content switch rule matching 
algorithm are implemented as a module and hence can be replaced without restarting the 
system.  With additional SMTP header extraction, it can be configured as a spam mail filter 
or virus detection/removal system. 

 
Keywords: Internet Computing, Cluster Computing, Content Switch, Network Routing  

 

1 Introduction 

With the rapid increase of Internet traffic, the workload on servers is increasing dramatically.  
Nowadays, servers are easily overloaded, especially for a popular web server. One solution to 
overcome the overloading problem of the server is to build scalable servers on a cluster of servers [1, 
2].  A load balancer is used to distribute incoming requests among servers in the cluster.  Load 
balancing can be done in different network layers.  A web switch is an application level (layer 7) 
switch, which examine the headers from layer 2 all the way to the HTTP header of the incoming 
request to make the routing decisions.  By examining the HTTP header and its content, a web switch 
can provide a higher level of control over the incoming web traffic, and make decision on how 
individual web pages,  images, and media files get served from the web site. This level of load 
balancing can be very helpful if the web servers are optimized for specific functions, such as image 
serving, SSL (Secure Socket Layer) sessions or database transactions.   

By having a generic header/content extraction module and rule matching algorithm, a web 
switch can be extended as  a content switch [4,5] for  route packets including other application layer 
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protocols, such as SMTP, IMAP, POP, and RTSP. By specifying different sets of rules, the content 
switch can be easily configured as a load balancer, firewall, policy-based network switch, a spam mail 
filter, or a virus detection/removal system. 

Traditional load balancers known as Layer 4 (L4) switches examine IP, TCP, and UDP 
headers, such as IP addresses or TCP and UDP port numbers, to determine how to route packets.  
Since L4 switches are content blind, they cannot take the advantages of the content information in the 
request messages to distribute the load.   For example, many e-commerce sites use secure connections 
for transporting private information about clients.  Using SSL session IDs to maintain server 
persistence is the most accurate way to bind all a client’s connections during an SSL session to the 
same server.   A content switch can examine the SSL session ID of the incoming packets, if it belongs 
to an existing SSL session, the connection will be assigned to the same server that was involved in 
previous portions of the SSL session.  If the connection is new, the web switch assigns it to a real 
server based on the configured load balancing algorithm, such as weighted least connections and round 
robin.  Because L4 switches do not examine SSL session ID, which is in layer 5, so that they cannot 
get enough information of the web request to achieve persistent connections successfully.  Web 
switches can also achieve URL-based load balancing.  URL based load-balancing looks into incoming 
HTTP requests and, based on the URL information, forwards the request to the appropriate server 
based on predefined polices and dynamic load on the server.  

XML are proposed to be the language for describing the e-commerce requests. A web system 
for e-commerce system should be able to route requests based on the value in the specific tag of a 
XML document.  It allows the requests from a specific customer, or of different purchase amount to be 
processed differently. The capability to provide differential services is the major feature provided by 
the web switch.  Intel XML distributor is such an example, it is capable of routing the request based on 
the url and the XML tag sequence [14].   

The content switching system can achieve better performance through load balancing the 
requests over a set of specialized web servers, or achieve consistent user-perceived response time 
through persistent connections, also called sticky connections. 

1.1 Related Content switching Techniques 

Application level proxies [6,7] are in many ways functionally equivalent to content switches. 
They classify the incoming requests and match them to different predefined classes, then make the 
decision whether to forward it to the original server, or get the web page directly from the proxy server 
based on proxy server’s predefined behavior policies.  If the data are not cached, the proxy servers 
establish two TCP connections –one to the source and a separate connection to the destination.  The 
proxy server works as a bridge between the source and destination, copying data between the two 
connections. Our proposed Linux-based Content Switch (LCS) is implemented in kernel IP layer. It 
reduces the protocol processing time and provides more flexible content switching rules and 
integration with load balancing algorithms.  

Microsoft Windows2000 Network Load Balancing (NLB) [3] distributes incoming IP traffic to 
multiple copies of a TCP/IP service, such as a Web server, each running on a host within the cluster. 
NLB transparently partitions the client requests among the hosts and lets the clients access the cluster 
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using one or more “virtual” IP addresses. With NLB, the cluster hosts concurrently respond to 
different client requests, even multiple requests from the same client. 

Linux Virtual Server(LVS) is a load balancing server which is built into Linux kernel [2]. In 
the LVS server cluster, the front-end of the real servers is a load balancer, also called virtual server, 
that schedules incoming requests to different real servers and make parallel services of the cluster to 
appear as a virtual service on a single IP address. A real server can be added or removed transparently 
in the cluster. The load balancer can also detect the failures of real servers and redirect the request to 
an active real server. Our LCS content switch is based on Linux LVS code and when no content switch 
rules  match with the incoming packet, the packet is routed based on the layer 4 LVS scheduling 
policy. 

The rest of the paper is organized as follows: In Section 2, we present the basic architecture and 
modules of the Linux Content Switch.  Section 3 presents the pre-allocate server scheme for improving 
the TCP delayed binding. Section 4 discusses the problems encountered in the design of LCS and their 
solutions. System components and modules for high speed content switch processing are suggested. 
Section 5 shows the content switch rule design.  The performance results of our LCS implementation 
are presented in Section 6. Section 7 is the conclusion. 

 

2 Linux-based content switch design 

The Linux-based Content Switch (LCS) is based on the Linux 2.2-16 kernel and the related  
LVS package.  LVS is a Layer 4 load balancer which forwards the incoming request to the real server 
by examining the IP address and port number using some existing schedule algorithm. LVS source 
code is modified and extended with new content switching functions.  LCS examines the content of the 
request, e.g., URL in HTTP header and XML payload, besides its IP address and port number, and 
forwards the request to the real servers based on the predefined content switching rules. Content switch 
rules are expressed in term of a set of simple if statements. These if statements include conditions 
expressed in terms of the fields in the protocol header or pattern in the payload and branch statements 
describing the routing decisions. Detailed of the content switching rules are presented in Section 5. 

Figure 1 shows the main architecture of LCS. Here the Content Switch Schedule Control 
module is the main process of the content switch and is used to manage the packet follow. Routing 
Decision, INPUT rules, FORWARD rules and OUTPUT rules are all original modules in Linux kernel. 
They are modified to work with the Content Switch Schedule Control module. The Content switch 
Rules module is the predefined rule table. The Content switch schedule control module will use this 
information to control the flow of the packets. The Connection Hash Table is used to speed up the 
forwarding process by retrieving the real server assignment based on the packet header information. 
The LVS Configuration and Content Switch Configuration are user space tools used to define the 
content switch server clusters and the content switch rules. 

LCS uses Linux Network Address Translation (NAT) approach for routing packets between the 
client and the real server.  When an incoming packet arrives at IP layer, Routing Decision function is 
called to check if the packet is destined to local or remote host.  If the packet is for the local host, 
INPUT RULES function is called to deliver the packet to the Content Switch Schedule Control module.  
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Otherwise FORWARD RULES function is called to pass the packet to the Content Switch Schedule 
Control module. The Content Switch Schedule Control module will check the Connection Hash Table 
to see if it belongs to an existing connection.  If the packet is a new request, the Content Switch 
Schedule Control module will extract the header/content of the request and apply Content Switch Rules 
on it to choose a real server for this request.  Also a new hash table for this connection is created, and 
then FORWARD RULES function is called to forward this request to the chosen server.  If the packet is 
from an existing connection, The Content Switch Schedule Control module will call FORWARD 
RULES function to forward the packet based on the information in hash table.  

           Figure 1. LCS Architecture 

Figure 2 shows the input output processing of the content switch in IP layer of Linux Network 
Software.  cs_infromclient manages the packet from the client to the content switch; cs_infromserver 
handles the packet from the server back to the client.  
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Figure 2. Content switch functions added to IP layer in Linux network software. 
 

3 Improve TCP Delayed Binding with Pre-allocate Server Scheme 

Many upper layer protocols utilize TCP protocol for reliable orderly message delivery. The 
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server, establishes the three way handshake with the real server, and serve a bridge that relays packets 
between the two TCP connections.  This is called TCP delayed binding. 

3.1 The message exchange sequence  in TCP Delayed Binding 

Because the client established the connection with the content switch, it accepts the sequence 
number chosen by the content switch and  when the packets come from real server to client, content 
switch must change their sequence numbers to the ones that client expects. Similarly, the packets from 
client to server are also changed by content switch. By doing the packet rewriting, the content switch 
“fools” both the client and real server, and they communicate with each other without knowing the 
content switch is playing the middleman.  Detailed sequence number rewriting process is shown below 
in Figure3. 

Figure 3. Message Exchange Sequence in TCP Delay Binding. 

Step1-Step3 :  The process is the standard TCP three way handshake between the client and the 
content switch. The client and content switch commit their initial sequence numbers as CSEQ and 
DSEQ. 

Step4:   The client sends the application level request data to the content switch. The content 
switch chooses a real server based on the request data to server this request. The request data may 
contain more than one IP packet, so the content switch need to get all the IP packets before invoking 
rule matching algorithm. 

Step5-Step7:  The content switch establishes a TCP connection with the real server.  The 
content switch forwards the SYN request from the client to the server using its original initial sequence 
number CSEQ, the server commits its own initial sequence number SSEQ. 
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Step8 :  The DATA message with the request is forwarded from the content switch to the 
server.  The original sequence number is kept while the ACK sequence number is changed from 
acknowledge number of the content switch (DSEQ+1) to that of the server (SSEQ+1). 

Step9 :  For the return data from the server to the client, the sequence number needs to be 
changed to that associated with the content switch. For a large document, several packets are needed. 
Push flags in the TCP header are typically set on the follow up packets, so the client TCP process will 
deliver them immediately to the upper layer process. 

Step10:  For the ACK packet from the client to the content switch, the ACK sequence number 
is changed from the one acknowledging the content switch to that acknowledging the server.  

Delayed binding is the major technique used in the content switch design. To maintain correct 
connection between the client and the server, the content switch must adjust the sequence number in 
every packet for each direction.  This requests that all the subsequent packets go through the content 
switch and have their sequence numbers changed.  As many other existing content switch products, the 
content switch design presented in this paper uses NAT (Network Address Translation) approach. 

3.2 Design of Pre-allocate  Server Scheme 

We implemented a heuristic solution to improve the TCP delayed binding problem, where the 
client and real server mapping is pre-allocated and stored in a hash table with (hash) key as the client 
address. When a client sends a request to the content switch for the first time, there will not be any 
entry in the hash table, and the request will go via the normal data buffering and rule matching 
processing. An entry will be added to the pre-allocate hash table with the client IP address as key and 
the real server address as data. When the same client sends the next request, an entry will be found in 
the pre-allocate hash table, and the client request will be directly forwarded to the corresponding real 
server. This reduces the rule matching overhead.  

Figure 4a shows the modified delay binding in the pre-allocate scheme when the pre-allocate 
server is the right one.  Figure 4b shows the message exchange among the pre-allocate server, the right 
server, the content switch, and the client, when the guess it wrong.  Note that when the guess it right, 
the web access can be complete in six steps instead of ten steps, and there is no need for the sequence 
number modification for Step5 and Step6.  When the direct routing or IP tunnel scheme is used instead 
of NAT, the return document can be sent directly to the client and thus reduce the processing overhead 
at the content switch. 
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Figure 4a. Pre-allocate server scheme when guess it right. 
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Figure 4b. Pre-allocate server scheme when guess it wrong. 

step8 DATA(CSEQ+1)  
ACK(RSEQ+1)  

For subsequent requests, when there is a matching hash table entry found in the pre-allocate hash table, 
it may happen  that the real server specified by the matching entry may not be the correct real server 
for that request. In that case the pre-allocate scheme degenerates to the default TCP delayed binding, 
where rule matching is done for the client request.  The worst case scenario in the pre-allocate scheme 
is where the real server specified in the matching hash table entry happens to be wrong choice. Here it 
mandates that the client data are buffered as done in the default scheme. 

The content switch must examine the response from the real server specified in the matching 
hash table entry, before applying the degenerate rule matching. If the response does not contain HTTP 
response code 200, then only content switch switches to the default scheme. If the response code is 
200, we then free up the queued client request. This provide a retry mechanism for improving the 
probability of document delivery. 

In our implementation if the real server specified in the matching hash table entry and the real 
server selected via rule matching after a wrong pre-allocate guess are same, we allow the response 
from the wrongly guessed real server to be forwarded to the client. 

4 Problems and Solutions for Content Switch Design 

In this section we discuss the content switch design issues related to content switch processing 
and client request buffering. 

4.1 Handling request with multiple packets 

If the client’s request is too big to fit in one TCP segment, the content switch has to wait for all 
the segments that comprise that request before commencing the rule matching. This is especially true 
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of non-idempotent HTTP requests like PUT and POST, and for e-commerce application with large 
XML request. This further gives rise to the following sub-problems that we had to account for: 

Determine the content length 

We had to determine the content length of the variable incoming data stream in order to flag 
end of client request. The content length information of such request can be obtained from the 
"Content-Length" fields in the HTTP header. However, the value of the content length itself can span 
across multiple segments as shown in the example below: 

TCP Segment n contains: 

POST /cgi-bin/cs622/purchase.pl HTTP/1.0\r\n  
 

Referer: http://archie.uccs.edu/~acsd/lcs/xmldemo.html\r\n 
Connection: Keep-Alive\r\n  
User-Agent: Mozilla/4.75 [en] (X11; U; Linux 2.2.16-

22enterprise i686) \r\n 
Host: viva.uccs.edu\r\n  
Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, 

image/png, */*\r\n  
Accept-Encoding: gzip\r\n  
Accept-Language: en\r\n  
Accept-Charset: iso-8859-1,*,utf-8\r\n 
Content-type: application/x-www-form-urlencoded\r\n 
Content-length: 7 
TCP Segment n+1 contains: 
53\r\n 
data (753 bytes) 

As seen in the above example, the individual bytes of the content length are split across two 
consecutive TCP segments, the first segment contains 7 and the next segment contains the remaining 
two byte, i.e., 53. This is true for any field within the HTTP request header, even for the sequence of 
data bytes that form the "Content-Length" string. 

Fragmentation of application level content 

After the content length is determined, the content switch can then wait for all the packets of 
the same request. Typically, these packets are saved in different memory area.  In Linux, they are 
saved in skbuf structures linked by double link list. Each of these data structures contains the 
timestamp, IP/TCP headers, followed by the content payload. Therefore, the actual content is 
fragmented and spread out in the network buffer.  Extracting URL field in the HTTP request is easy, 
since it is in the first packet. But for extracting other meta-headers and especially the XML tag values 
in the content field of the HTTP request, the fragmentation of the TCP payload content post difficult 
challenging problem for the content switch designer.  One approach is to concatenate all individual 
non-contiguous TCP segments back to back into one coherent buffer, that can then be used for XML 
parsing, or pattern matching. Another approach is to redesign the XML parsing or pattern matching so 
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that they can work with data that spread across several segments. A specialized memory address 
mapping hardware similar to the translation look-aside cache used in virtual memory system can also 
help speed up this type of packet processing.  

The first approach requires the expensive memory copying and uses additional memory.  The 
original TCP segments are not released after the concatenation of their payload content, since once the  
real server is selected, these TCP segments will be modified and sent to the chosen real server.  The 
modification includes the destination IP address field, possibly the TCP port field, the ACK sequence 
number, and very importantly the checksum.  

While buffering client data, the content switch has to send ACK's for the segments that 
comprise the client request, otherwise the client TCP will assume the server is dead or is very slow, 
and will not send subsequent packets. This is achieved by invoking appropriate ACK sending routines 
from the IP layer of the content switch. 

For large sized (> 40K) client requests, we also observed some of the relayed segments were 
dropped by the chosen real sever. Further analysis indicate that the problem is due to the segment relay 
by the content switch is implemented in IP, instead of TCP layer.  The data sending was done 
continuously from the queued buffers without considering the window advertised by the TCP stack of 
the real server. This flooding of data caused the real server to drop some of the received TCP packets. 
It was observed that the acknowledgment number sent by real server was held constant, even though 
the content switch had emptied all buffered data. The result was that there was no response seen from 
real server, as if it had not acknowledged receipt of all data. This problem was solved by having the 
content switch keep track of the acknowledgment number. When the acknowledgment sent by real 
server was less than or equal to the sequence number of the last sent packet, the last sent packet was 
retransmitted. This retransmission helped alleviate packet flooding at the real server and ensure all 
client data are properly received. 

4.2 Handle Different Data Encoded Methods 

There are two basic ways for submitting the XML-based request to the web server.  One is to 
use the form with text input or text area input.  The other is to submit it as XML document. When 
submitting it with the form, the XML request data are encoded using the x-www-form-urlencoding 
method and the “Content-Type” meta-header will have the value of  “x-www-form-urlencoded”. When 
submitting it as XML document, the “Content-Type” meta-header will have the value of  “text/xml” 
and the content is submitted with the plain text without further encoding.  With the latter encoding 
type, all special characters like line feed (\n), carriage return (\r), left anchor (<) and right anchor (>) 
etc. retain their ASCII representation. In the former encoding type, the special characters have 
encodings like "%XX", where XX is the hexadecimal representation of ASCII value of that special 
character. For example, for the "x-www-form-urlencoded" encoding type, the values for the indicated 
special characters will be "%0A", "%0D", "%3C" and "%3E" respectively. Hence, the rule matching 
module should correctly parse the XML content of the client request depending on the content type. 

4.3 Allow Referencing Specific XML Tags 

The rule specification scheme should be flexible enough to account for exact tag name or rule 
field indicated in the rule specification. Here is an example that illustrates this point. Consider the 
XML document: 
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<purchase> 
  <customerName>CCL</customerName> 
  <customerID>111222333</customerID> 
  <item> 
     <productID>309121544</productID> 
     <unitPrice>5000</unitPrice> 
     <subTotal>50000</subTotal> 
  </item> 
  <item> 
     <productID>309121538</productID> 
     <unitPrice>200</unitPrice> 
     <subTotal>2000</subTotal> 
  </item> 
  <totalAmount>52000</totalAmount> 
</purchase> 
<purchase> 
<customerName>CDL</customerName> 
  <customerID>111222444</customerID> 
  <item> 
     <productID>30913555</productID> 
     <unitPrice>3000</unitPrice> 
     <subTotal>20000</subTotal> 
  </item> 
<totalAmount>20000</totalAmount> 
 </purchase> 

In the above XML document, some of the tags are repeated, e.g., purchase, item, totalAmount. 
Hence a rule syntax is needed to allow for selecting a particular set of tags in the rule set. Here is an 
example of a scheme that addresses this problem.  To specify a rule based on subTotal value present in 
the second item tag within the first purchase tag, the condition of the rule will be specified as  
'purchase:1.item:2.subtotal  >  5000". As another example, 'purchase:2.totalAmount < 15000' specifies 
the condition of a rule based on the totalAmount tag present within the second purchase tag. 

4.4 Handle Long Transactions in SSL and Email network services 

In our Linux-based Content Switch, the content/header extraction and rule matching are 
performed in the kernel to avoid unnecessary copying. However, we have found that for network 
services that require long computation and interface with other packages, some of the packet 
processing functions are better handled at the application level.  For example, there are a lot of 
packages, including McAfee’s uvscan and AMAVis scanmail, mutt (recombine email component), for 
detecting and removing email virus, but almost all  of them are implemented in application  level  and 
interact with the sendmail program. It will require significant effort to rewrite them as kernel modules. 
Same observations were derived on SSL processing.   

SMTP goes through long message exchange between the client and the server, where the client 
sends a sequence of messages including  HELO, MAIL FROM, RCPT TO, Data, followed by the 
actual body of the message.  The server will respond with specific code and confirmation message.  
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Therefore the important email addresses for the sender and the receiver will appear at different stages 
of the transaction.  The content switch needs to be able to store these messages in the buffer.  Once the 
related header information is extracted and rules matched, these messages will be forwarded to the real 
mail server.  For spam mail removal, the sending email address is extracted from the MAIL FROM 
message.  For incoming email load balancing, the receiving email address is extracted from the RCPT 
TO message.  Compared with SMTP, the processing of IMAP or POP is much simpler, since we only 
need to wait for the login in USER message for load balancing rule matching, but they have the same 
requirement for storing and forwarding the message sequence to the real server. 

4.5 Handle Multiple Requests in a Keep-Alive Session 

Most browsers and web servers support the keep-alive TCP connection.  It allows a web 
browser to request documents referred by the embedded references or hyper links of the original web 
page through this existing keep alive connection without going through long three way handshake. It is 
a concern that different requests from the same TCP connection are routed to different web servers 
based on their content.  The challenge here is how the content switch merges the multiple responses 
from different web servers to the client transparently using the keep alive TCP connection.  Figure 5 
shows the situation where different requests from one TCP connection go to different web servers 
through the content switch. 

Figure 5. Multiplexing Return Document into a Keep-Alive Connection 
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If the client sends http requests within one TCP connection to the content switch, then the 
content switch can route these requests to three different web servers based on their contents and it is 
possible the return documents of those request will arrive at the content switch out of order.  The 
content switch must be able to handle this situation. 

The brute force solution will be to discard the early requests. One possible solution is to buffer 
the responses of the later request at the content switch so that they return in the same order as their 
corresponding requests.  The drawback is that it significant increases the memory requirement of the 
content switch.  The other solution is to calculate the size of the return documents and adjust the 
sequence number accordingly.  It avoids the buffer requirement and the later requests will be sent with 
the starting sequence number that leaves space for those slow return documents.  The drawback here is 
that the content switch needs to have the directory information of the server and how they map the 
request into the actual path of the file system.  
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5 The Content Switching Rule Design 
5.1 LCS Content Switch Rule 

LCS rules are defined using C functions. The syntax of the rules is as follow: 

RuleLabel: if (condition) { action1} [else { action2}].  

Examples: 

R1: if (xml.purchase/totalAmount > 52000) { routeTo(server1, STICKY_IP_PORT); } 

R2: if (strcmp(xml.purchase/customerName, "CCL") = = 0) {  
        routeTo(server2, NONSTICKY); } 

R3: if (strcmp(url, "gif$") = = 0) { routeTo(server3, NONSTICKY); } 

R4: if (srcip = = “128.198.60.1” && dstip = = “128.198.192.192” &&  
       dstport = = 80) { routeTo(LBServerGroup, STICKY_IP); } 

R5: if (match(url, “xmlprocess.pl”)) { goto R6; }  

R6: if(xml.purchase/totalAmount > 5000){routeTo(hsServers, NONSTICKY);} 
       else {routTo(defaultServers, NONSTICKY); } 

The rule label allows the use of goto and makes referencing easie r.  We have implemented 
match() function for regular expression matching and xmlContentExtract() for XML tag sequence 
extraction in the content switching rule module. The rule is designed as a dynamic kernel module. So it 
can be edited at running time without recompiling the kernel. To update to a new rule set, “rmmod” is 
called to removed the current rule set, and the content switch schedule control module will call a 
default function NO_CS() to schedule the requests using round robin algorithm, weighted connection, 
or weighted least connection. The content switch uses “insmod” command to insert the new rule 
module. 

5.2 Support for Sticky Connections 

In LCS, there are three different options related to the sticky connections. These options are 
STICKY_IP_PORT, STICKY_IP and NONSTICKY. With the option STICKY_IP_PORT, if the 
condition is true, all the following packets with the same IP addresses and TCP port numbers will be 
routed to the same server directly without carrying out the rule matching process. This option will 
route all the requests in one TCP keep-alive connection to the same server. And the option STICKY_IP 
will stick all the packets with the same IP addresses to the same server. This option will route all the 
request from the same client to the same server.  The option NONSTICKY, specifies the connection to 
be a non-sticky connection, so either the request from the same connection, or the new connection all 
need to go through the rule matching for selecting the real server. 

4.3     Content Switch Rule Matching Algorithm 

Rule matching algorithm directly affects the performance of the content switch. It is related to 
the packet classification techniques [11,12.13].  In layer 4 switching, the switch only examines the IP 
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address and port number of the packet, which are in the fixed fields. So the rule matching process can 
be speed up by easily using the hash function.  In content switch, the higher layer content information 
is needed.  These information such as URL, HTTP header or XML tag are not from the fixed fields 
and have varying length. It is hard to build a hash data structure to speed the searching process.  In our 
prototype, we have observed significant packet processing time.  It is therefore crucial to improve the 
performance of the rule matching algorithm,  to emphasize the differential treatment of packets and the 
flexibility to add other functions such as spam mail filtering.  The order of the rules also affects the 
content switch performance. One way to improve the rule matching, is to set  flags based on the packet 
type and organize the rule set by checking these flag first and skip rules that do not match the packet 
type. Detecting Conflicts among rules in the rule set is a challenging and important research issue. 

6 LCS Performance Result 

Since the content switch examines the content of the request before it forwards the request data 
to the real server, it introduces more overhead than the layer 4 load balancing method.  For all the tests 
we have performed, we would like to find out what parameters affect the performance of the content 
switch. A LCS testbed was set up where a HP Vectra workstation with 240 MHz Pentium Pro 
Processor and 128 MB memory is used as the content switch, and four real servers are connected with 
the content switch in the same subnet. 

Figure 6a shows the measured response time for the rule matching process inside the content 
switch kernel when a different number of rules are used.  As shown in Figure 6a, the more rules the 
content switch has, the longer the process time.  This is because the larger number of rules, it will take 
longer time to perform the rule matching.  A more efficient algorithm will help to improve the rule 
matching performance. 
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     Figure 6a. Rule process time vs. number of rules.     Figure 6b. Rule process time vs. XML file size 

Figure 6b compares the impact of XML document processing overheads on LCS, LVS, and a 
single web server.  Here we are interested in finding the impact of TCP delay binding overhead on 
LCS, and therefore we did not configure LCS to match any rule. It indicates the TCP delay binding 
incurred very small amount of additional processing compared to the overall processing time. The 
difference between LVS and that of a single server is the redirect routing processing time. 
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Rule-matching process time vs. XML document size
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Figure 6c. Rule process time vs. XML file size. 

Figure 6c shows the impact of XML document size on LCS processing time. If the request 
contains an XML document and the rules contain conditions related to the XML tag value, the process 
time varies with the XML document size. If rules are defined to choose the real server based on XML 
tag values, the rule-matching process will need to parse an XML request to find the XML tag value.  
The XML parsing process uses recursive algorithm, so the process time increases dramatically with the 
size of the XML document.   

To evaluate the performance of the pre-allocate server scheme, a testbed with one content 
switch and two real server was set up with the following configurations: 

Machine Spec IP Address OS Web Server 

viva.uccs.edu   
P5 240MHz 128MB 

(Content Switch) 

128.198.192.192 Redhat 6.2 running 
LCS0.2 kernel based on  

Linux 2.2-16-3 

Apache 1.3.14 

ace.uccs.edu  
P5 166MHz 64MB 

(Real Server 1) 

128.198.192.198 Redhat 6.2 running 
LCS0.2 kernel based on  

Linux 2.2-16-3 

Apache 1.3.14 

vinci.uccs.edu 
P5 240 MHz 128MB   

(Real Server 2) 

128.198.192.193 Redhat 6.2 running 
LCS0.2 kernel based on  

Linux 2.2-16-3 

Apache 1.3.14 

We compared the response times of various document size between basic TCP delayed binding 
scheme and the pre-allocate scheme with the following set of series as shown in Figure 7: 

Series 1 - Basic scheme with no rule matching module inserted, i.e., using default IPVS. 

Series 2 - Basic scheme with the rule matching module inserted. 

Series 3 - Pre-allocate scheme with all hits, i.e., where all pre-allocate guesses were correct. 
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Series 4 - Pre-allocate scheme with all misses, i.e., where all pre-allocate guesses were wrong. 
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 Figure 7. Performance of Pre-allocate Server Scheme  
 

The response time represents the time difference between the time, when the first packet for the 
request was seen at the content switch and the time, when the first packet of the response from the 
"correct" real server was seen at the content switch. The document size represents the size of different 
set of HTTP POST requests used. As shown in the Figure 7 the pre-allocate server scheme with all hits 
has almost constant response time, whereas with all misses, the response time grows almost 
exponentially with document size. The comparison between series 1 and series 2 obviously shows the 
overhead of the rule matching. 

7 Conclusion 

We have presented the design and implementation of a Linux LVS-based content switch called 
LCS.  The impacts of the number of rules, the document size, and the TCP delay binding on the LCS 
performance are analyzed.  We also presented a pre-allocate server scheme to improve the TCP delay 
binding. Problems encountered during the design of this content switch are discussed and their 
solutions presented.  The performance results of the content switch with the basic TCP delayed binding 
and that of pre-allocate server scheme are presented.  The rule set is implemented as a set of simple if 
statements with labels and is compiled into a Linux kernel module.  The rule module can be 
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dynamically loaded into the LCS kernel. We also studied the impact of multiple requests of a keep-
alive connection on the content switch processing and analyzed as a set of solutions. The software 
provides a foundation for studying the network and protocol related issues in content switches and 
cluster systems. 
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