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Abstract— Speech recognition has found its application 

on various aspects of our daily lives from automatic phone 

answering service to dictating text and issuing voice 

commands to computers. In this paper, we present the 

historical background and technological advances in 

speech recognition technology over the past few decades. 

More importantly, we present the steps involved in the 

design of a speaker-independent speech recognition 

system. We focus mainly on the pre-processing stage that 

extracts salient features of a speech signal and a technique 

called Dynamic Time Warping commonly used to compare 

the feature vectors of speech signals. These techniques are 

applied for recognition of isolated as well as connected 

words spoken. We conduct experiments on MATLAB to 

verify these techniques. Finally, we design a simple ‘Voice-

to-Text’ converter application using MATLAB.  

 

Index Terms—Dynamic Time Warping, DFT, Pre-Processing  

I. INTRODUCTION 

 

Language is man's most important means of communication 

and speech its primary medium. Speech provides an 

international forum for communication among researchers in 

the disciplines that contribute to our understanding of the 

production, perception, processing, learning and use. Spoken 

interaction both between human interlocutors and between 

humans and machines is inescapably embedded in the laws and 

conditions of Communication, which comprise the encoding 

and decoding of meaning as well as the mere transmission of 

messages over an acoustical channel. Here we deal with this 

interaction between the man and machine through synthesis 

and recognition applications. The paper dwells on the speech 

technology and conversion of speech into analog and digital 

waveforms which is understood by the machines. Speech 

recognition, or speech-to-text, involves capturing and 

digitizing the sound waves, converting them to basic language 

units or phonemes, constructing words from phonemes, and 

contextually analyzing the words to ensure correct spelling for 

words that sound alike. Speech Recognition is the ability of a 

computer to recognize general, naturally flowing utterances 

from a wide variety of users. It recognizes the caller's answers 

to move along the flow of the call. 

 

 
 

Early attempts to design systems for automatic speech 

recognition were mostly guided by the theory of acoustic-

phonetics, which describes the phonetic elements of speech 

(the basic sounds of the language) and tries to explain how 

they are acoustically realized in a spoken utterance. These 

elements include the phonemes and the corresponding place 

and manner of articulation used to produce the sound in 
various phonetic contexts. For example, in order to produce a  

 
  Fig. 1 A speech recognition system model. 

 

steady vowel sound, the vocal cords need to vibrate (to excite 

the vocal tract), and the air that propagates through the vocal 

tract results in sound with natural modes of resonance similar 

to what occurs in an acoustic tube. These natural modes of 

resonance, called the formants or formant frequencies, are 

manifested as major regions of energy concentration in the 

speech power spectrum. Soon the focus was directed towards 

the design of a speaker-independent system that could deal 

with the acoustic variability intrinsic in the speech signals 

coming from many different talkers, often with notably 

different regional accents. This led to the creation of a range of 

speech clustering algorithms for creating word and sound 

reference patterns (initially templates but ultimately statistical 

models) that could be used across a wide range of talkers and 

accents. Furthermore, research to understand and to control the 

acoustic variability of various speech representations across 

talkers led to the study of a range of spectral distance measures 

and statistical modeling techniques that produced sufficiently 

rich representations of the utterances from a vast population. 

 

In this paper, we present how a basic speaker independent 

speech recognition system is designed. Figure 1 shows a 

simplified model of a speech recognition system. First, we 

present the historical background and technological advances 

in speech recognition technology. Next, we describe the 

acoustic pre-processing step that aids in extracting the most 

valuable information contained in a speech signal. Then, we 

present an algorithm called Dynamic Time Warping used to 

recognize spoken words by comparing their feature vectors 
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with a database of representative feature vectors.  We conduct 

experiments in MATLAB to verify acoustic pre-processing 

algorithms including DFT (Discrete Fourier Transform), MEL 

ceptral transformation and pattern recognition algorithm 

(Dynamic Time Warping). We also build a simple Voice-To-

Text converter application using MATLAB.  

 

The structure of this paper is as follows. Section 2 reviews the 

history of speech recognition technology and its applications. 

Section 3 presents the acoustic pre-processing step commonly 

used in any speech recognition system. Section 4 describes the  

Dynamic Time Warping algorithm. Section 5 presents the 

experimental results obtained using MATLAB. Section 6 

concludes the paper.  

II. HISTORY AND  APPLICATIONS 

 

The first speech recognizer appeared in 1952 and consisted 

of a device for the recognition of single spoken digits. Another 

early device was the IBM Shoebox, exhibited at the 1964 New 

York World's Fair. Speech recognition technology has also 

been a topic of great interest to a broad general population 

since it became popularized in several blockbuster movies of 

the 1960‟s and 1970‟s, most notably Stanley Kubrick‟s 

acclaimed movie “2001: A Space Odyssey”. In this movie, an 
intelligent computer named “HAL” spoke in a natural 

sounding voice and was able to recognize and understand 

fluently spoken speech, and respond accordingly. This 

anthropomorphism of HAL made the general public aware of 

the potential of intelligent machines. In the famous Star Wars 

saga, George Lucas extended the abilities of intelligent 

machines by making them mobile as well as intelligent and the 

droids like R2D2 and C3PO were able to speak naturally, 

recognize and understand fluent speech, and move around and 

interact with their environment, with other droids, and with the 

human population at large. In 1988, in the technology 

community, Apple Computer created a vision of speech 

technology and computers for the year 2011, titled 

“Knowledge Navigator”, which defined the concepts of a 

Speech User Interface (SUI) and a Multimodal User Interface 

(MUI) along with the theme of intelligent voice-enabled 
agents. This video had a dramatic effect in the technical 

community and focused technology efforts, especially in the 
area of visual talking agents. 

Throughout the course of development of such systems, 

knowledge of speech production and perception was used in 

establishing the technological foundation for the resulting 

speech recognizers. Major advances, however, were brought 

about in the 1960‟s and 1970‟s via the introduction of 

advanced speech representations based on LPC analysis and 

cepstral analysis methods, and in the 1980‟s through the 

introduction of rigorous statistical methods based on hidden 

Markov models. All of this came about because of significant 

research contributions from academia, private industry and the 

government. As the technology continues to mature, it is clear 

that many new applications will emerge and become part of 

our way of life – thereby taking full advantage of machines 

that are partially able to mimic human speech capabilities. 

Figure 2 shows the milestones achieved in speech recognition 

technology over the past 40 years.  

 

In the 1990‟s great progress was made in the development of 

software tools that enabled many individual research programs 

all over the world. As systems became more sophisticated 

 

Fig. 2 Milestones in speech recognition technology.  

(many large vocabulary systems now involve tens of thousands 

of phone unit models and millions of parameters), a well-

structured baseline software system was indispensable for 

further research and development to incorporate new concepts 

and algorithms. The system that was made available by the 

Cambridge University team (led by Steve Young), called the 

Hidden Markov Model Tool Kit (HTK) [51], was (and 

remains today as) one of the most widely adopted software 

tools for automatic speech recognition research. It applies 

statistical classification technique for speech recognition. Such 

techniques aim to find a model of the speech generation 

process for each word itself instead of storing samples of its 

output. If, for example, we would have a general stochastic 

model for the generation of feature vectors corresponding to a 

given word, then we could calculate how good a given 

utterance fits to our model. If we calculate a fit–value for each 

model of our vocabulary, then we can assign the unknown 

utterance to the model which best fits to the utterance. The 

HMM (Hidden Markov Model) is modeling a stochastic 

process defined by a set of states and transition probabilities 

between those states, where each state describes a stationary 

stochastic process and the transition from one state to another 

state describes how the process changes its characteristics in 

time. Each state of the HMM can model the generation (or 

emission) of the observed symbols using a stationary 

stochastic emission process. For a given observation (vector) 

however, we do not know in which state the model has been 

when emitting that vector. The underlying stochastic process is 

therefore ”hidden” from the observer. 
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Today, speech recognition applications include voice dialing 

(e.g., "Call home"), call routing (e.g., "I would like to make a 

collect call"), domestic appliance control, search (e.g., find a 

podcast where particular words were spoken), simple data 

entry (e.g., entering a credit card number), preparation of 

structured documents (e.g., a radiology report), speech-to-text 

processing (e.g., word processors or emails), and aircraft 

(usually termed Direct Voice Input). One of the most notable 

domains for the commercial application of speech recognition 

in the United States has been health care and in particular the 

work of the medical transcriptionist (MT). Other domains of 

Speech Recognition applications are Military, Telephony, 

People with disabilities, Telematics, Hands-free computing, 

Home automation, etc.  Speech recognition softwares such as  

CMU Sphinx, Julius and Simon are freely available. Some 

proprietary softwares available in market are AT&T 

WATSON, HTK (copyrighted by Microsoft), Voice Finger 

(for Windows Vista and Windows 7), Dragon 

NaturallySpeaking from Nuance Communications (utilized 

Hidden Markov Models), e-Speaking (for Windows XP) and 

IBM ViaVoice. 

III. ACOUSTIC PRE-PROCESSING 

 

When producing speech sounds, the air flow from a speaker 

lungs first passes the glottis and then throat and mouth. 

Depending on which speech sound you articulate, the speech 

signal can be excited in three possible ways: 

 

 
Fig. 3.1 A simple model of speech production. 

 

 voiced excitation The glottis is closed. The air 

pressure forces the glottis to open and close 

periodically thus generating a periodic pulse train 

(triangle–shaped). This ”fundamental frequency” 

usually lies in the range from 80Hz to 350Hz. 

 unvoiced excitation The glottis is open and the air 

passes a narrow passage in the throat or mouth. This 

results in a turbulence which generates a noise signal. 

The spectral shape of the noise is determined by the 

location of the narrowness. 

 transient excitation A closure in the throat or mouth 

will raise the air pressure. By suddenly opening the 

closure the air pressure drops down immediately. 

(”plosive burst”)  

 

With some speech sounds these three kinds of excitation occur 

in combination. The spectral shape of the speech signal is 

determined by the shape of the vocal tract (the pipe formed by 

your throat, tongue, teeth and lips). By changing the shape of 

the pipe (and in addition opening and closing the air flow 

through your nose) you change the spectral shape of the speech 

signal, thus articulating different speech sounds.  

A. A Simple Model of Speech Production 

 

The production of speech can be separated into two parts: 

Producing the excitation signal and forming the spectral shape. 

Thus, we can draw a simplified model of speech production as 

shown in Figure 3. This model works as follows: Voiced 

excitation is modeled by a pulse generator which generates a 

pulse train (of triangle–shaped pulses) with its spectrum given 

by P(f). The unvoiced excitation is modeled by a white noise 

generator with spectrum N(f). To mix voiced and unvoiced 

excitation, one can adjust the signal amplitude of the impulse 

generator (v) and the noise generator (u). The output of both 

generators is then added and fed into the box modeling the 

vocal tract and performing the spectral shaping with the 

transmission function H(f). The emission characteristics of the 

lips is modeled by R(f). Hence, the spectrum S(f) of the speech 

signal is given as:  

 

 
 

To influence the speech sound, we have the following 

parameters in our speech production model: 

 

 the mixture between voiced and unvoiced excitation 

(determined by v and u) 

 the fundamental frequency (determined by P(f))      

 the spectral shaping (determined by H(f)) 

 the signal amplitude (depending on v and u) 

 

These are the technical parameters describing a speech signal. 

To perform speech recognition, the parameters given above 

have to be computed from the time signal (this is called speech 

signal analysis or ”acoustic preprocessing”) and then 

forwarded to the speech recognizer. For the speech recognizer, 

the most valuable information is contained in the way the 

spectral shape of the speech signal changes in time. To reflect 

these dynamic changes, the spectral shape is determined in 

short intervals of time, e.g., every 10 ms. By directly 

computing the spectrum of the speech signal, the fundamental 

frequency would be implicitly contained in the measured 

spectrum (resulting in unwanted ”ripples” in the spectrum). 

Figure 3.2 shows the time signal of the vowel /a:/ and figure. 

3.3 shows the logarithmic power spectrum of the vowel 

computed via FFT.  

 

..Eq. 1 
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  Fig. 3.2 Time signal of the vowel /a:/ (fs = 11kHz, length 

= 100ms). The high peaks in the time signal are caused by the 

pulse train P(f) generated by voiced excitation. 

 

 
  Fig. 3.3 Log power spectrum of the vowel /a:/ (fs = 

11kHz, N = 512). The ripples in the spectrum are caused by 

P(f). 

 

B. Cepstral Transformation 

 

As shown above, the direct computation of the power spectrum 

from the speech signal results in a spectrum containing 

”ripples” caused by the excitation spectrum X(f). Depending 

on the implementation of the acoustic preprocessing however, 

special transformations are used to separate the excitation 

spectrum X(f) from the spectral shaping of the vocal tract H(f). 

Thus, a smooth spectral shape (without the ripples), which 

represents H(f) can be estimated from the speech signal. Most 

speech recognition systems use the so–called mel frequency 

cepstral coefficients (MFCC) and its first (and sometimes 

second) derivative in time to better reflect dynamic changes. 

Since the transmission function of the vocal tract H(f) is 

multiplied with the spectrum of the excitation signal X(f), we 

had those unwanted ”ripples” in the spectrum. For the speech 

recognition task, a smoothed spectrum is required which  

should represent H(f) but not X(f). To cope with this problem, 

cepstral analysis is used. If we look at Equation 1, we can 

separate the product of spectral functions into the interesting 

vocal tract spectrum and the part describing the excitation and 

emission properties: 

 

 
 

We can now transform the product of the spectral functions to 

a sum by taking the logarithm on both sides of the equation: 

 
 

This holds also for the absolute values of the power spectrum 

and also for their squares: 

 

 
 

In figure 3.3 we see an example of the log power spectrum, 

which contains unwanted ripples caused by the excitation 

signal U(f) = X(f) · R(f). In the log–spectral domain we could 

now subtract the unwanted portion of the signal, if we knew 

|U(f)|
2
 exactly. But all we know is that U(f) produces the 

”ripples”, which now are an additive component in the log–

spectral domain, and that if we would interpret this log–

spectrum as a time signal, the ”ripples” would have a ”high 

frequency” compared to the spectral shape of |H(f)|. To get rid 

of the influence of U(f), one would have to get rid of the 

”high-frequency” parts of the log–spectrum (remember, we are 

dealing with the spectral coefficients as if they would represent 

a time signal). This would be a kind of low–pass filtering. 

The filtering can be done by transforming the log–spectrum 

back into the time–domain (in the following, FT 
−1

 denotes the 

inverse Fourier transform): 

 

 
 

The inverse Fourier transform brings us back to the time–

domain (d is also called the delay or quefrency), giving the so–

called cepstrum (a reversed ”spectrum”). Figure 3.4 shows the 

result of the inverse DFT applied on the log power spectrum 

shown in fig. 3.3. The peak in the cepstrum reflects the ripples 

of the log power spectrum. The low–pass filtering of our 

energy spectrum can now be done by setting the higher-valued 

coefficients of ceptrum to zero and then transforming back into 

the frequency domain. The process of filtering in the cepstral 

domain is also called liftering. In figure 3.4, all coefficients 

left of the vertical line were set to zero and the resulting signal 

was transformed back into the frequency domain, as shown in 

fig. 3.5. One can clearly see that this results in a ”smoothed” 

version of the log power spectrum if we compare figures 3.3 

and 3.5. 

 

Fig. 3.4 Cepstrum of the vowel /a:/ (fs = 11kHz, N = 512). 

The ripples in the spectrum result in a peak in the cepstrum. 
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Fig. 3.5 Power spectrum of the vowel /a:/ after cepstral 

smoothing. All but the first 32 cepstral coefficients were set to 

zero before transforming back into the frequency domain. 

C. Mel Cepstrum 

 

As was shown in perception experiments, the human ear does 

not show a linear frequency resolution but builds several 

groups of frequencies and integrates the spectral energies 

within a given group. Furthermore, the mid-frequency and 

bandwidth of these groups are non–linearly distributed. The 

non–linear warping of the frequency axis can be modeled by 

the so–called mel-scale shown in Figure 3.6. The frequency 

groups are assumed to be linearly distributed along the mel-

scale. The mel–frequency fmel can be computed from the 

frequency f as follows: 

 
 

 
Fig. 3.6 The mel frequency scale. 

 

 

The human ear has high frequency resolution in low–frequency 

parts of the spectrum and low frequency resolution in the 

high–frequency parts of the spectrum. The coefficients of the 

power spectrum of a speech signal can be transformed to 

reflect the frequency resolution of the human ear. A common 

way to do this is to use K triangle–shaped windows in the 

spectral domain to build a weighted sum over those power 

spectrum coefficients which lie within the window. 

 

In analogy to computing the cepstrum, we now take the  

logarithm of the mel power spectrum (instead of the power 

spectrum itself) and transform it into the quefrency domain to 

compute the mel cepstrum. The mel ceptral coefficients are 

used directly as feature vectors representing a speech signal for 

further processing in the speech recognition system instead of 

transforming them back to the frequency domain. 

IV. DYNAMIC TIME WARPING 

 

A speech signal is represented by a series of feature vectors 

which are computed every 10ms. A whole word will comprise 

dozens of those vectors, and we know that the number of 

vectors (the duration) of a word will depend on how fast a 

person is speaking. In speech recognition, we have to classify 

not only single vectors, but sequences of vectors. Lets assume 

we would want to recognize a few command words or digits. 

For an utterance of a word w which is TX vectors long, we will 

get a sequence of vectors X= {x0, x1, . . . , xTX−1} from the 

acoustic preprocessing stage. What we need here is a way to 

compute a ”distance” between this unknown sequence of 

vectors X and known sequences of vectors W = {w0,w1, . . . 

,wTW} which are prototypes for the words we want to 

recognize. 

 

The main problem is to find the optimal assignment between 

the individual vectors of  unequal vector sequence X and W . 

In Fig. 4.1 we can see two sequences X and W which consist 

of six and eight vectors, respectively. The sequence W was 

rotated by 90 degrees, so the time index for this sequence runs 

from the bottom of the sequence to its top. The two sequences 

span a grid of possible assignments between the vectors. Each 

path through this grid (as the path shown in the figure) 

represents one possible assignment of the vector pairs. For 

example, the first vector of X is assigned the first vector of W, 

the second vector of X is assigned to the second vector of ˜W, 

and so on. Fig. 4.1 shows as an example the following path P 

given by the sequence of time index pairs of the vector 

sequences (or the grid point indices, respectively): 

 
 
The length LP of path P is determined by the maximum of the 

number of vectors contained in X and W . The assignment 

between the time indices of W and X as given by P can be 

interpreted as ”time warping” between the time axes of Wand 

X . In our example, the vectors x2, x3 and x4 were all assigned 

to w2, thus warping the duration of w2 so that it lasts three time 

indices instead of one. By this kind of time warping, the 

different lengths of the vector sequences can be compensated. 

For the given path P, the distance measure between the vector 

sequences can now be computed as the sum of the distances 

between the individual vectors. 
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A. Finding an Optimal Path 

 

Fortunately, it is not necessary to compute all possible paths P 

and corresponding distances to find the optimum. Out of the 

huge number of theoretically possible paths, only a fraction is 

reasonable for our purposes. We know that both sequences of 

vectors represent feature vectors measured in short time 

intervals. Therefore, we might want to restrict the time 

warping to reasonable boundaries: The first vectors of X and 

W should be assigned to each other as well as their last 

vectors. For the time indices in between, we want to avoid any 

giant leap backward or forward in time, but want to restrict the 

time warping just to the ”reuse” of the preceding vector(s) to 

locally warp the duration of a short segment of speech signal. 

With these restrictions, we can draw a diagram of possible 

”local” path alternatives for one grid point and its possible 

predecessors (of course, many other local path diagrams are 

possible): 

 
Note that Fig. 4.2 does not show the possible extensions of the 

path from a given point but the possible predecessor paths for 

a given grid point. We will soon get more familiar with this 

way of thinking. As we can see, a grid point (i, j) can have the 

following predecessors: 

 (i − 1, j) : keep the time index j of X while the time 

index of W is incremented 

 (i − 1, j − 1) : both time indices of X and W are 

incremented 

 (i, j − 1) : keep of the time index i of W while the time 

index of X is incremented 

All possible paths P which we will consider as possible 

candidates for being the optimal path Popt can be constructed 

as a concatenation of the local path alternatives as described 

above. To reach a given grid point (i, j) from (i−1, j− 1) , the 

diagonal transition involves only the single vector distance at 

grid point (i, j) as opposed to using the vertical or horizontal 

transition, where also the distances for the grid points (i − 1, j) 

or (i, j − 1) would have to be added. To compensate this effect, 

the local distance d( wi, xj) is added twice when using the 

diagonal transition. Now that we have defined the local path 

alternatives, we will use Bellman‟s Principle to search the 

optimal path Popt. Applied to our problem, Bellman‟s Principle 

states the following: 

If Popt is the optimal path through the matrix of grid points 

beginning at (0, 0) and ending at (TW −1, TX −1), and the 

grid point (i, j) is part of path Popt, then the partial path 

from (0, 0) to (i, j) is also part of Popt. 

 

From that, we can construct a way of iteratively finding our 

optimal path Popt. According to the local path alternatives 

diagram we chose, there are only three possible predecessor 

paths leading to a grid point (i, j): The partial paths from 

(0, 0) to the grid points (i − 1, j), (i − 1, j − 1) and (i, j − 1) ). 

Let‟s assume we would know the optimal paths (and therefore 

the accumulated distance δ(.) along that paths) leading from 

(0, 0) to these grid points. All these path hypotheses are 

possible predecessor paths for the optimal path leading from 

(0, 0) to (i, j). Then we can find the (globally) optimal path 

from (0, 0) to grid point (i, j) by selecting exactly the one path 

hypothesis among our alternatives which minimizes the 

accumulated distance δ(i, j) of the resulting path from (0, 0) to 

(i, j). The optimization we have to perform is as follows: 

 

 
By this optimization, it is ensured that we reach the grid point 

(i, j) via the optimal path beginning from (0, 0) and that 

therefore the accumulated distance δ(i, j) is the minimum 

among all possible paths from (0, 0) to (i, j). 

 

Fig. 4.3 shows the iteration through the matrix beginning with 

the start point (0, 0). Filled points are already computed, 

empty points are not. The dotted arrows indicate the possible 

path hypotheses over which the optimization (4.6) has to be 

performed. The solid lines show the resulting partial paths  
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after the decision for one of the path hypotheses during the 

optimization step. Once we reached the top–right corner of our 

matrix, the accumulated distance δ(TW − 1, TX −1) is the 

distance D( W , X ) between the vector sequences. The 

optimal path is known only after the termination of the 

algorithm, when we have made the last recombination for the 

three possible path hypotheses leading to the top–right grid 

point (TW −1, TX −1). Once this decision is made, the optimal 

path can be found by reversely following all the local decisions 

down to the origin (0, 0). This procedure is called 

backtracking. 

 

B. Recognition of Isolated Words 

 

While the description of the DTW classification algorithm 

might let us think that one would compute all the distances 

sequentially and then select the minimum distance, it is more 

useful in practical applications to compute all the distances 

between the unknown vector sequence and the class prototypes 

in parallel. This is possible since the DTW algorithm needs 

only the values for time index t and (t−1) and therefore there is 

no need to wait until the utterance of the unknown vector 

sequence is completed. Instead, one can start with the 

recognition process immediately as soon as the utterance 

begins (we will not deal with the question of how to recognize 

the start and end of an utterance here). To do so, we have to 

reorganize our search space a little bit. First, lets assume 

the total number of all prototypes over all classes is given by 

M. If we want to compute the distances to all M prototypes 

simultaneously, we have to keep track of the accumulated 

distances between the unknown vector sequence and the 

prototype sequences individually. Hence, instead of the 

column (or two columns, depending on the implementation)  

 
 Fig. 4.4 Classification task redefined as finding the optimal 

path among all prototype words 

 

we used to hold the accumulated distance values for all grid 

points, we now have to provide M columns during the DTW 

procedure. Now we introduce an additional ”virtual” grid point 

together with a specialized local path alternative for this point: 

The possible predecessors for this point are defined to be the 

upper–right grid points of the individual grid matrices of the 

prototypes. In other words, the virtual grid point can only be 

reached from the end of each prototype word, and among all 

the possible prototype words, the one with the smallest 

accumulated distance is chosen. By introducing this virtual 

grid point, the classification task itself (selecting the class with 

the smallest class distance) is integrated into the framework of 

finding the optimal path. Now all we have to do is to run the 

DTW algorithm for each time index j and along all columns of 

all prototype sequences. At the last time slot (TW − 1) we 

perform the optimization step for the virtual grid point, i.e, the 

predecessor grid point to the virtual grid point is chosen to be 

the prototype word having the smallest accumulated distance. 

Note that the search space we have to consider is spanned by 

the length of the unknown vector sequence on one hand and 

the sum of the length of all prototype sequences of all classes 

on the other hand. Figure 4.4 shows the individual grids for the 

prototypes (only three are shown here) and the selected 

optimal path to the virtual grid point. The backtracking 

procedure can of course be restricted to keeping track of the 

final optimization step when the best predecessor for the 

virtual grid point is chosen. The classification task is then 

performed by assigning the unknown vector sequence to the 
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very class to which the prototype belongs whose word end grid 

point was chosen. 

 

C. Recognition of Connected Words 

 

When we need to recognize a sequence of words (like a credit 

card number or telephone number) the classification task can 

be divided into two different subtasks: The segmentation of the 

utterance, i.e., finding the boundaries between the words and 

the classification of the individual words within their 

boundaries. As one can imagine, the number of possible 

combinations of words of a given vocabulary together with the 

fact that each word may widely vary in its length provides for a 

huge number of combinations to be considered during the 

classification. Fortunately, there is a solution for the problem, 

which is able to find the word boundaries and to classify the 

words within the boundaries in one single step. If we want to 

apply the DP algorithm to our new task, we will first have to 

define the search space for our new task. For simplicity, let‟s 

assume that each word of our vocabulary is represented by 

only one prototype, which will make the notation a bit easier 

for us. An unknown utterance of a given length TX will contain 

several words out of our vocabulary, but we do not know 

which words these are and at what time index they begin or 

end. Therefore, we will have to match the utterance against all 

prototypes and we will have to test for all possible word ends 

and word beginnings. The optimal path we want to find with 

our DP algorithm must therefore be allowed to run through a 

search space which is spanned by the set of all vectors of all 

prototypes in one dimension and by the vector sequence of the 

unknown utterance in the other dimension, as is shown in Fig. 

4.5.  

 
  Fig 4.5 DTW Algorithm for Connected Word 

Recognition  

 

Now we have to modify our definition of local path 

alternatives for the first vector of each prototype: The first 

vector of a prototype denotes the beginning of the word. In the 

case of isolated word recognition, the grid point corresponding 

to that vector was initialized in the first column with the 

distance between the first vector of the prototype and the first 

vector of the utterance. During the DP, i.e., while we were 

moving from column to column, this grid point had only one 

predecessor, it could only be preceded by the same grid point 

in the preceding column (the ”horizontal” transition), 

indicating that the first vector of the prototype sequence was 

warped in time to match the next vector of the unknown 

utterance. For connected word recognition however, the grid 

point corresponding to the first vector of a prototype has more 

path alternatives: It may either select the same grid point in the 

preceding column (this is the ”horizontal” transition, which we 

already know), or it may select every last grid point (word end,  

is) of all prototypes (including the prototype itself ) of the 

preceding column as a possible predecessor for between–word 

path recombination. In this case, the prototype word under 

consideration is assumed to start at the current time index and 

the word whose word end was chosen is assumed to end at the 

time index before. Fig. 4.6 shows the local path alternatives for 

the first grid point of the column associated with a prototype. 

By allowing these additional path alternatives, we allow the 

optimal path to run through several words in our search space, 

where a word boundary can be found at those times at which 

the path jumps from the last grid point of a prototype column 

to the first grid point of a prototype column. 

 
 

 
Fig. 4.6 Local path alternatives of the first grid point of a 

column 
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V. EXPERIMENTS AND RESULTS 

 

The acoustic pre-processing and dynamic time warping 

techniques were implemented and verified in MATLAB. We 

used Audacity software to record speech with 32 bit mono 

channel encoding and 44 kHz sampling frequency. The 

sampled speech data was extracted from the audio file using a 

MATLAB function „wavread(audiofilename)‟. Figures 5.1,5.2 

and 5.3 compare the power spectrum of various isolated words 

recorded. They illustrate that speech signals associated with 

same word recorded at different times may contain different 

ripples in the power spectrum (due to fundamental frequency), 

but the spectral shaping is approximately the same.  Whereas, 

speech signals associated with different words show different 

spectral shaping as well. Thus, we verify that spectral shaping 

of a speech signal is a significant feature that can be utilized in 

designing a speech recognition system. Figure 5.4 show that 

the feature distance obtained by using Dynamic Time Warping 

algorithm is minimum for the same words recorded at different 

times, as compared to the distance between different isolated 

words.  

  

 

 
 

Fig 5.1 Power Spectrum Comparison between isolated words 

„hello‟ and „hello‟.
 

 

 

 

Fig 5.2 Power Spectrum Comparison between isolated words 

„hello‟ and „computer‟. 

 

 

 

Fig 5.3 Power Spectrum Comparison between isolated words 

„hello‟ and „library‟. 

 

 
 

Fig 5.4 MATLAB result of DTW algorithm for isolated word 

recognition. 

 

Next, we repeated the same experiments but this time for 

connected words as shown in Figures 5.5, 5.6, 5.7 and 5.8.  

As expected, the results verified the effectiveness of pre-

processing and Dynamic Time Warping in recognizing 

connected words as well. Furthermore, as shown in Figure 5.5, 

these techniques are capable of speaker-independent speech 

recognition. The words “welcome home” recorded in both 

male and female voices, were still recognized by applying 

these techniques. 

 

Finally, we built a simple „Voice-to-Text‟ converter 

application using MATLAB. This application recognizes 

spoken digits and displays them to the user. It is speaker 

independent and simple to use. It uses MATLAB‟s 

wavrecord() function to record speech and extract the sampled 

speech signal data. The data thus obtained is pre-processed 

using the techniques described before and the features 

obtained after pre-processing is compared with a database of 

feature vectors representing spoken digits in English. The 

comparison is performed using Dynamic Time Warping 

technique.  
 

 

 
 

Fig 5.5 Power Spectrum Comparison between connected 

words „welcome home‟ (male voice) and „welcome home‟ 

(female voice). 
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Fig 5.6 Power Spectrum Comparison between connected 

words „welcome home‟ and „welcome back‟. 

 

 

 

Fig 5.7 Power Spectrum Comparison between connected 

words „welcome home‟ and „computer science‟. 

 

 
 

Fig 5.8 MATLAB result of DTW algorithm for connected 

word recognition. 
 

VI. CONCLUSION 

 

In this paper, we presented the various aspects of speech 

recognition technology including historical background, 

technological advances made over past few decades, and more 

specifically dwelled on the steps involved in designing a 

speech recognition system. We focused on the acoustic pre-

processing technique used to extract salient features of a 

speech signal and a Dynamic Time Warping technique used to 

efficiently compare the feature vectors of speech signals. We 

implemented and verified these techniques using MATLAB. 

Furthermore, we developed a simple „Voice-to-Text‟ 

conversion application using MATLAB.  
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