
Using Session Initiation Protocol to build Context-Aware
VoIP Support for Multiplayer Networked Games

Aameek Singh
Georgia Insitute of Technology

Atlanta, GA
aameek@cc.gatech.edu

Arup Acharya
IBM T.J.Watson Research Center

Hawthorne, NY
arup@us.ibm.com

ABSTRACT
Multiplayer networked games are the trend of the day. Re-
ceiving a major boost from various commercial ventures like
Microsoft Xbox r© [19] and Sony Playstation r© [13], the net-
worked gaming industry is set to grow dramatically. These
multiplayer games allow geographically dispersed and pos-
sibly distant players to participate in a single game. In or-
der to provide interaction amongst players in such environ-
ments, text messaging and recently, real-time voice inter-
action through VoIP is used. However, such interactions
are mostly out-of-band (not based on game contexts), user-
initiated and limited in operability, failing to exploit the
entire potential and functionality of VoIP.

In this paper, we present mechanisms and design of a pro-
totype that allows game-context based VoIP communication
between players. Thus, in addition to allowing players to
talk to each other to coordinate teammates and activities
(through a static team-based audio conference) as in some
of the current systems, it supports communication among
players based on shared contexts like the same physical lo-
cation or room within the gaming environment. We use the
Session Initiation Protocol (SIP) [14] to realize VoIP and
describe mechanisms for building network gaming services
using SIP. We also propose a sophisticated gaming scenario,
in which VoIP is used to relay information about another
player’s distance and location with respect to the recipient,
e.g. players farther away sound farther away.

CATEGORIES AND SUBJECT DESCRIPTORS

C.2.2 [Network Protocols]: Applications

GENERAL TERMS: Design

KEYWORDS: SIP, VoIP, context-aware, gaming

1. INTRODUCTION
The area of networked gaming has been growing steadily.

With increasing network speeds and better infrastructural
support, it is now possible to have players in opposite parts
of the world participating in a single game. Various online
services like Xbox Live [19], GameSpy Arcade [8], OMGN [11]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04 Workshops, Aug. 30+Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-942-X/04/0008 ...$5.00.

and other independent game server hosts have been increas-
ingly becoming popular. One of the important features of
a good multiplayer game is the ability of players to interact
with each other. Till recently, it was limited to only the
game based mechanisms like shooting. The use of instant
messaging (IM) technology allowed players to send IMs to
other players in the game, e.g., to coordinate with a team-
mate or to talk trash to an opponent.

The recent upsurge in Voice over IP (VoIP), primarily
through better networking support and the development of
an efficient and increasingly acceptable Session Initiation
Protocol (SIP), brought about another valuable addition to
the whole environment. Now instead of sending text mes-
sages, users can send and receive real-time voice. This al-
lows for team members to continuously talk to each other
and thus strategize and coordinate activites on the fly. This
is achieved using VoIP conferencing (similar to regular tele-
phone conferencing) and making teammates or all players
participants of the conference. However, this mode of inter-
action is still limited in many ways.

– Game Context Independent: First and foremost, such
inter-player interaction is game-context independent.
This means that a player, Bob will always be talk-
ing to another player, Alice even when Bob is fighting
daemons miles inside the earth’s crust while Alice is
tackling aliens lighyears into the space. The gaming
experience can be extensively improved if the interac-
tion allows for taking the game-context into consid-
eration, thus allowing players only in the same game
room to interact, for example.

– Requirements for User Initiation: The underlying VoIP
support is static in nature, requiring user initiation to
change any current environment. For example, the
switch from one audio conference to another, if al-
lowed, requires the user to perform actions like pushing
certain buttons on gaming console, whereas it is desir-
able to provide seamless transitions from one confer-
ence context to another.

– Operability: Many of the VoIP technologies being used
bind users to particular consoles/audio devices, whereas
it would be much better to allow a user to use any kind
of VoIP device.

In this paper, we try to overcome these issues and also try
to create a futuristic gaming environment. Specifically,

1. We describe the design and implementation of SIP
based VoIP mechanisms to perform tighter coupling of

98

voice communication with the game environment. We
achieve this by enabling the game server (for a central-
ized scenario) to do SIP communication with a VoIP
conference server or by directly enabling game clients
to do this communication. We also discuss possible
gaming and conferencing architectures.

2. Our framework provides for seamless switching of con-
ferences based on gaming-contexts, without requiring
any user involvement in the process. In addition, using
SIP allows us to use a multitude of audio devices, thus
uncoupling the game from the audio console.

3. We also present means of achieving “adhoc” on-the-
fly audio conferencing, which is responsible for the dy-
namic nature of audio sessions. Using such a feature
allows us to extend gaming by allowing a group of par-
ticipants to engage in a conference on-the-fly.

4. We also propose a sophisticated gaming environment,
which performs an even closer integration by using en-
hanced audio mixing and provides much more accurate
simulation of the real world scenarios.

2. SIP AND VOIP
VoIP refers to the technology that enables sending voice

data over the IP network. The traditional Public Switched
Telephone Network (PSTN) has a different backbone of in-
frastructure than the IP based internet, we are familiar with,
and is only used to transmit audio data. On the other
hand, VoIP enables transmission of audio on the IP net-
work itself, which otherwise is primarily used to transmit
data. This integration presents great opportunities for both
service providers and consumers. While VoIP has various
advantages like lower costs, greater consumer control and
location flexibility, its typical problems have been Quality of
Service (QoS) and standardization. However recently, with
better infrastructure support, increasing network speeds and
emergence of a widely acceptable and efficient protocol - SIP,
VoIP is beginning to show its true potential.

SIP is an HTTP like protocol, which distinguishes be-
tween the process of a session establishment and the ac-
tual session. The session between two user agents (UAs)
is established using SIP signaling mechanisms which involve
sending an INVITE, an OK response and an ACK to the re-
sponse [14]. These messages contain user parameters (using
Session Description Protocol - SDP) for choosing appropri-
ate IP address and port which will be used for actual data
transmission as part of the session. This path for data is typ-
ically called media path, though any kind of data (even other
than multimedia) can be transmitted. The IP/port combi-
nation can be for any networked device like an IP phone,
game console or a PC. Typically, the media data is sent
using RTP and signaling is accomplished using either TCP
or UDP. The ability of a UA to accept certain encoding
mechanisms is also negotiated through SDP as part of the
signaling messages. Any of these parameters can be changed
using the RE-INVITE message, which is identical to the IN-
VITE message except that it can occur within an existing
session. The session is terminated by using a BYE and an
OK message. In addition, SIP allows UAs to refer a UA to
another by using the REFER message. This instructs the
UA to establish a session with the referred UA.

The UAs are identified by SIP URLs, which is a unique
HTTP-like URL of the form user@host, for example,

sip:aameek@gatech.edu. The mapping of the SIP URL to
the appropriate physical UA device is done using interme-
diate SIP proxies, location and redirect servers, which form
an overlay network. All UAs REGISTER with a SIP regis-
trar server (can be at the SIP proxy itself), which main-
tains the address of the UA device. Then, all requests
for the SIP URL are routed to the appropriate device for
that particular UA. An extension of SIP also supports SUB-
SCRIBE/NOTIFY mechanisms, in which UAs subscribe to
certain events at another UA and can be notified whenever
that event occurs. We refer the reader to [14] for more intri-
cate details about SIP. The overall architecture of such an
environment is shown in Figure-1 [17]. SIP was our auto-
matic choice for VoIP because of its simple yet functionally
rich design and its widespread acceptance.

�����������

	
��
	�������

��������������
���
����
����
��������������������������������������

Figure 1: SIP based VoIP Architecture

3. ARCHITECTURE
In this section, we will first discuss audio conferencing ar-

chitectures using SIP based VoIP. Then, we describe the in-
tegration of gaming infrastructure with this underlying con-
ferencing architecture. Note that this section only explains
the components involved in the infrastructure and broad in-
teractions between the various components. The protocol
details and workflows will be discussed in Section-4.

3.1 SIP based Conferencing
The goal of audio conferencing is to allow multiple users

to communicate in a group. Similar to regular PSTN con-
ference, it means that every participant hears voices of all
other participants. This indicates the need of a media mixer,
which can mix (combine) voice signals from a set of users
into a single signal for the recipient. Thus, for each par-
ticipant the mixer will mix the voice signals of every other
participant and transmit a single cumulative signal. The
media is exchanged between the mixer and the participant
on the media path of the SIP session. Audio mixing can be
achieved both by specialized hardware devices or software
mixers. There are various commercial off-the-shelf mixers
available today like [3] and many of them are SIP enabled.
They can perform SIP signaling and have specific provisions
within SIP (like particular arguments within an INVITE
message) for setting up resources for audio conferences.

In addition to the mixer, we also use a conference server

(CS), which maintains state information about various par-
ticipants and conferences. The CS is the controlling agent
reponsible for setting up sessions for every participant in-
cluding establishing the media paths of the participants with

99

the mixer. Using SIP, a conference is also identified by a SIP
URL and in order to join a particular conference, a UA will
send an INVITE for that URL which leads to the CS adding
the participant into the conference. In our framework, the
UAs do SIP signaling (establishing, changing, terminating
sessions etc.) only with the CS, while sending and receiving
media from the mixer. This allows greater control at the
CS, leading to better integration with gaming (as explained
later). Note that it is also possible for the conference server
to initiate a conference-join, thus inviting a particular UA to
a conference (by sending the INVITE message). The pro-
cess of the CS inviting a UA into a conference is called a
dial-out. The overall conferencing architecture is shown in
Figure-2, also showing various kinds of client devices which
can be used as SIP UAs. We will discuss the exact SIP
workflows involved in setting up a conference in Section-4.
It is noteworthy to mention that there exist alternative ar-
chitectures like those based on decentralized conferencing [5,
10]. We opt to demonstrate our ideas using the centralized
server model for ease in exposition, though the ideas can be
applied to other conferencing architectures.

 �����������
	��
���

�����

��� ��� ���

�����������

	���
	���������

�	��������� 	���������

��������������
����������������

���������

Figure 2: Multiuser Conferencing

Using SIP as the vehicle for facilitating the context-aware
VoIP support provides excellent interoperability allowing
users with distinct audio devices to participate in a mul-
tiplayer game. For example, it is easily conceivable for the
user to play a game, with the client hosted on a PDA and
doing the voice interaction using a mobile phone interfaced
through a SIP gateway (many providers provide such IP-
PSTN gateways).

3.1.1 Adhoc Conferencing: URL Routing
In our architecture, a conference is identified by a valid

SIP URL of the form sip:conf-id@conf-server, where conf-id

is a unique identifier. The CS registers this conference URL
with the SIP proxy and the SIP lookup mechanism allows
user requests, to join a particular conference, to be routed
to the CS. Typically resources can be reserved with the CS
for a future conference to be held at a specific time. This
allows the CS to register the conference URL with the SIP
proxies, thus setting up appropriate routing of requests for
that conference. Additionally, an interesting property of SIP
proxies enables us to create adhoc on-the-fly conferences. An
adhoc conference is one, in which users do not reserve re-
sources in advance, rather, come up with a conference URL
on-the-fly and invite participants into the conference. As
described later, adhoc conferencing plays a key role in pro-
viding context aware VoIP and in addition, provides very
interesting means of interaction in multiplayer gaming. The
challenge in creating such conferences is to provide a mech-

anism in which the conference request, an INVITE message
for the conference URL, is correctly routed to the CS, even
when there is no exact entry at SIP proxies for that par-
ticular URL. This is achieved using a feature which allows
SIP proxies to be configured to route SIP requests based on
domain names of the SIP URL (the CS in this case), when
the exact URL is not registered. Therefore, even when the
conference URL is not registered with the proxy, a message
of the form sip:conf-id@conf-server is routed to the CS. The
CS can then look up its current state information and act
appropriately. If the conference does not exist, it can cre-
ate a new conference, add the initiator as a participant and
reserve resources with the mixer. In order for the CS to
distinguish between contexts, it is important for each con-
ference to have a unique URL1.

3.2 Integration with Gaming Infrastructure
There has been significant amount of research on mul-

tiplayer networked gaming infrastructures [2, 7, 15, 1, 6].
The models primarily fall into two categories – (i) central-
ized, and (ii) decentralized gaming. In this subsection, we
present integration mechanisms for both the models.

3.2.1 Centralized Gaming
In centralized multiplayer gaming, there is a game server

(GS), which maintains the entire game state. Players have
local clients which are primarily responsible for displaying
their game state and to communicate with the game server.
The game client notifies the game server of any move/action
the player takes and the game server is responsible for noti-
fying every other appropriate2 client of that move. The GS
is also responsible for the entry and exit of players. Clearly
scalability and reliability are critical issues for such an infras-
tructure. It has been tough to scale up the infrastructure
for large scale multiplayer games and it always remains a
single point of failure. However, it has many advantages as
well. For example, it is much easier to set up a game server
and coordinate between all the players. In addition, such an
infrastructure has much lower risks of cheating.

To provide context-aware VoIP support, we need to be
able to couple the game server with the conference server.
The GS would now also need to maintain state about the
players’ audio sessions (which conference they are in) and
appropriately coordinate with the CS whenever there is a
need to adjust. This information can be derived from other
game state parameters like location, teammates’ position,
shared contexts or can be an independent policy coded in the
GS. We refer to this as the audio session policy. An example
of a location based policy is that the gaming arena is divided
into zones and every player in the same zone is a participant
of a particular conference. When a player joins the game,
the GS can set up its conference with the CS (depending
upon the zone it joins in). Also, when a player changes its
zone, the GS identifies it based on location parameters sent
in the game state and automatically switches the conference
to the one for the new zone. The switching is done using
certain SIP signaling which provides a seamless transition.
We discuss these workflows in detail in the next section.

1The uniqueness of a URL can be guaranteed by using a
system policy like a number appended to the username or
global numbering
2It is possible that some move does not effect a particular
client at all. The GS does not need to notify that client

100

Recall that the media path would finally be set up with
a media mixer; so the path for the entire connection would
include of interaction of the game client with the GS, the GS
with the CS, the CS with the mixer and finally the client’s
audio device with the mixer. The architecture is shown in
Figure-3.

������ ���	��
��� ���
��
������	��� �����

��� ����

�!

��
����"�$#
%# �
&
��� �

�'� (���
�� � ��(
�������

�'

Figure 3: Centralized Gaming Architecture

Notice that the GS and the CS act as SIP back-to-back
UAs3. This might slow down the control mechanism for
heavily loaded game and conference servers. There are two
possible ways in which this design can be optimized:

1. Merge CS and Mixer: If the mixer is dedicated to a
single CS, it is feasible to integrate the mixer with
the CS. This would allow using faster communication
mechanisms between the two as opposed to network
communication using SIP in the current architecture.

2. Merge GS and CS: Another possible alternative is for
the GS to perform the functionalities of the CS as well.
This would be especially useful for dedicated gaming
services. Merging the GS and CS allows a closer in-
tegration of the two thus making to easy to maintain
the game state and the audio session states in close
proximity.

The choice of the optimization would vary with the needs
of the application. For example, a dedicated mixer for a
CS can be merged with the CS thus reducing the control
hops, while it might be infeasible to do this if the mixer is
shared across various conference servers. Also, the second
choice would be infeasible if the CS is not dedicated to the
gaming service only or if the gaming service decides not to
complicate the GS, by utilizing a distinct CS.

3.2.2 Decentralized Gaming
As mentioned earlier, centralized gaming has scalability

and reliability issues. There have been many decentralized
gaming architectures proposed [2, 6, 9]. In general, the ba-
sic idea of decentralized gaming is to allow each client to
communicate with every other appropriate client and the
updates are exchanged using such direct interaction. In this
scenario, the clients are aware of all the gaming rules and
policies, which earlier were enforced by the GS. Using similar
semantics, we code the audio-session policy within the game
clients. Now, the clients will need to communicate with the
CS themselves i.e. based on the policy and the game state of
the clients, they perform SIP signaling with the CS, appro-
priately setting up their audio sessions. Again let us look at

3A B2B UA is a logical entity that receives requests from
one party as a UA Server (UAS), responds to them by gener-
ating requests for another party, thus acting as a UA Client
(UAC), and also maintains state information.

an example of a location based policy. In decentralized ar-
chitectures the clients are made aware of the division of the
arena into the zones. Thus whenever the client changes its
zone, it updates its audio session within the game context.
The architecture for such a scenario is shown in Figure-4
and the workflow is discussed in Section-4.

)�* +-, .%/�0

1!2

*43 5
*	, 6�798�: , 7�6

+�/�;�, 8

1!2

<=8�>-/�*$? 89? /

Figure 4: Decentralized Gaming Architecture

It is important to note that using a CS and media mixer
might cause some centralization. However, there are two
helpful facts. Firstly, the need to do SIP signaling with a CS
arises only when a client changes its zone (or any other pol-
icy parameter requiring audio session transitions). Secondly,
the media mixers are dedicated hardware components with
the capacity of handling numerous conferences and partici-
pants. In addition, it is always possible to use decentralized
conferencing architectures like those proposed in [5, 10]. We
do not focus on such architectures in this paper.

Providing seamless dynamic conferencing in a decentral-
ized gaming architecture requires an additional component
at the game client. This is because of the requirement to
shield the audio-session transition (ending one session and
starting another) from the client. In the centralized sce-
nario, the GS acting as a B2B UA provided this feature.
We will discuss this in detail in the next section.

4. SIP WORKFLOWS
In this section, we discuss exact messaging and workflow

details that are involved in the total infrastructure. First,
we discuss the SIP workflow for setting up and joining a con-
ference. Recall that, we provide appropriate routing mecha-
nisms (by SIP proxy configurations), in which any SIP URL
which does not have an entry in the registry is routed to the
machine in the domain field of the URL (conference server,
in our case). This allows us to have on-the-fly conferencing.

4.1 Multiuser Conferencing Workflows
The SIP workflow for a conference joining process is shown

in Figure-5. The 1INVITE message contains UA SDP in-
dicating the media path information (IP/Port along with
choice of encoding etc.). The CS extracts this media path
information from the SDP and sends that as media param-
eters in the 2INVITE message. This means that the CS is
instructing the mixer to perform media exchange with the
IP/Port of the UA, while doing signaling with the CS. The
Mixer then sends its SDP in 3OK. The CS extracts that info
and sends it as part of SDP in 4OK, thus informing the UA
of the IP/Port of the mixer (for its media path). After the
ACKs, media path is established between the UA and the
mixer. Note that the CS needs to keep an open dialog with
the mixer on behalf of every participant in the conference. It

101

is through this open dialog that various session controlling
messages can be transmitted (using SIP). For example, if a
user wants to leave the conference, it can send a SIP BYE
message to the CS and the CS sends BYE to the mixer
through the open dialog for that particular participant, ad-
vising the mixer to free resources for that participant and
adjust conference audio mixing. In the workflow figures, the
SIP signaling done by the CS always depicts the signaling
done on the UA’s behalf through this open dialog.

����������

���	��

����

�

�
������

�
������

�
��

�

��

�
���

�
���

Figure 5: SIP Workfow for a Conference Join

4.2 Gaming Workflows
We distinguish between two main kinds of conferencing

that can be used with multiplayer games - Static team-based

and Dynamic context-aware.

Static Team-Based Conferencing: For static team-based
conferencing, there will be one conference for each team.
The GS maintains the conference IDs for all the conferences
(it can be made same as the team name, thus keeping it
unique). The first player to join a team will cause the GS
to establish the conference context. We avoid reserving re-
sources in advance, since SIP based conference creation pro-
cess is extremely fast and does not hurt performance when
the team is initialized. The complete SIP workflow for this
process is depicted in Figure-6. This conference stays static
throughout the game, i.e. the user is always part of its
team’s conference irrespective of the game state. A similar
mechanism can also be used if the players wants to be able
to talk to its opponents only, for example, when there are
multiple players all playing solo against each other.

��

��

����

�	
���

��

����

�
���	�

�

������

�

��

�

������

�

������

��

!
��

"
���#

���

$

���

Figure 6: Game Join

When the user joins the game it sends a join message4

to the game server. It also needs to specify the choice of
its SIP audio device for the game. This can either be done
through the join message itself or can be stored as a user
profile characteristic at the game server. The GS initializes
the game like it ordinarily does, but also sets up the audio
conference accordingly. The message details are as follows.
1INVITE invites the SIP UA to join the conference. The GS
does not initialize the CS until the UA has accepted the IN-
VITE. This is to prevent allocating resources when the user
fails to respond. As a result, the mixer does not reserve
any ports for this UA and the GS sends the first INVITE
message without any SDP. The UA then sends 2OK with its
SDP, indicating the IP/Port of the UA device. The GS ex-
tracts the media path information from that SDP and sends
that as media information in 3INVITE. The CS completes
the conferencing transaction with mixer and sends 6OK with
the appropriate SDP. The GS will then extract the media
path information from that message and sends it as SDP in
7ACK. It will then also ACK the CS which in turn ACKs
the mixer. This completes the audio session initiation pro-
cess. The audio session is terminated whenever the client
leaves the game (which can be voluntary or forced by the
GS based on the gaming policy).

Notice that it is easy to provide static conferencing in a
decentralized gaming architecture as well. In the absence of
the GS, the clients perform SIP signaling directly with the
CS. The client directly sends an INVITE message, with its
IP/Port info in the SDP, to the CS for the conference based
on its team. The CS uses that IP/Port info to set up the
media path with the media mixer. The workflow is similar
to a regular multiuser conferencing (Figure-5) and we omit
the details. The session is terminated when the client sends
a BYE message while leaving the game.

Dynamic Conferencing: The static scenario is similar
to what some of the current systems provide. Using our
infrastructure, it is also possible to have context-aware dy-
namic conferencing. For example, players can talk to other
players based on game contexts like same physical location,
access to communication device like a phone booth in the
game, a wireless handset etc. This is especially interesting
for Role Playing Games (RPGs) [18, 12], where players por-
tray a certain character and characters need to interact with
each other. Rather than having a specified set of interac-
tions, context-aware VoIP support can let them talk to each
other and hence form on-the-fly alliances, betrayals, thus
increasing the overall experience. The important issues in
facilitating this infrastructure are:

• Identifying Transition Points: The game server needs
to be able to identify when the audio session for a
participant needs to be changed. This is accomplished
through game state information. As mentioned before,
whenever a player moves/takes an action, it notifies
the game server of that action. Based on game and
its audio-session policies, the game server will detect
when it needs to change an audio session. It can then
initiate the transition, which involves terminating the
old audio session and starting the session based on the
new context. For example, if a player changes a room

4Not a SIP message, but the regular message that initializes
the game

102

in the game arena, its audio conference should now
include players in the new room and not the old one.

• Seamless Transition: Another important requirement
is that the transition of the audio conference should be
seamless and an explicit user action, like pressing but-
tons on the console should not be essential. A seamless
transition requires that there should be no termination
of the session with the player’s SIP UA (audio device).
This is because if the session is terminated (using a
BYE), then the creation of the new session would re-
quire the user to explicity make a new call or accept an
incoming call. However, our architecture is equipped
to handle this situation efficiently. Since we use the
game server to do SIP signaling with the CS on behalf
of the UA, it can just change the media path informa-
tion of the session (reflecting the new media mixing
requirements for the participants of both old and new
conference), without explicitly ending the session with
the UA. The precise SIP workflow for such a seamless
transition is shown in Figure-7.

Based on the new game state of the player, the GS can de-
cide to switch the user’s conference (indicated by the 0Switch
message). 1BYE is the indication of the GS to the CS to
remove the user from its conference. The CS, in turn, sends
2BYE which intructs the mixer to free up resources allocated
to that user and to change its mixing for that conference.
After the BYEs are OK’d by the Mixer and the CS, the GS
needs to initiate the process for the new conference. The
GS first confirms5 the media path from the device through
5RE-INVITE. The UA sends its SDP in the 6OK, which
provides enough information to the GS to initiate the new
session. The rest of the workflow is similar to the join pro-
cedure shown in Figure-6.

��

��

��
���	

�
�� �

��

� ��

�
���

������

�

��
�

������

�
��

�

������

�
��

�� ��

��
���

��
��� ��

���

�

� �!"#

Figure 7: Audio Session Transition

Note that since a BYE is never sent to the UA, the UA
does not have any session terminations. Just the new media
path is negotiated and immediately set up. Our experience
with a demo multiplayer game shows that this happens ex-
tremely fast and the user gets a seamless transition. We
believe that using such an infrastructure can significantly
improve the gaming experience.

Seamless transition is tough to achieve in the decentral-
ized gaming architecture. This is because of the fact that
while the GS hides the audio session termination (by acting
as a B2B UA never sending a BYE to the client), there is no

5Many SIP based audio devices change their media IP/Port
information every time a new media path is set up.

such entity to do this in the current decentralized scenario.
We have two options to perform this shielding:

– Modifying CS: We can modify the CS to not send a
BYE to the client when its audio session is supposed to
transition and just do a RE-INVITE for establishing
the change in media path. This requires the ability
to distinguish between a transition and termination,
in which case a BYE has to be sent. Originally we
just simulated the transition by a termination followed
by an initiation. From the onset this does not look
like the ideal solution since it involves changing the
semantics of the CS, which is just supposed to “co-
ordinate” conferences and will also lead to dedicated
servers for gaming.

– Modifying Client: A more reasonable solution is to
modify the game client by adding a “light” B2B UA
at the client itself. The SIP audio device of the client
will communicate through this UA. We use the term
“light” since it does not have to be a full SIP UA, just
the ability to accept messages to initiate the audio-
session transition and minimal SIP signaling capabil-
ity to perform the transition. However, this could very
well be a functionality of a full SIP based client service
as proposed in [16] or a regular SIP UA. The architec-
ture is shown in Figure-8 and the workflow is same as
Figure-7 with the GS role being played by the light
B2B UA. The only difference being the fact that the
switch is now initiated by the client itself whereas in
the centralized version, the GS initiated the switch.

Note that a modified client architecture can also be used

for the centralized architecture when we wish to keep the GS

independent of SIP. In that case, the client will exchange

game state with the GS and perform SIP signaling, for ini-

tiation, transition and termination of audio sessions, with

the client B2B UA.

@A�B%C D�E D�B%FGD
H�D�E I�D�E

J�K�JML�N

OQP R D�E

L�N

H�SUT
H P V B9W�X P B V O D9Y P W

HSUT
Z

H�[P \ F^] O D%_G_`W V D @!X P D�B \

Figure 8: Decentralized Transition

5. USING ADHOC CONFERENCING
As mentioned before, an adhoc conference is one in which

a user creates the conference on-the-fly without any apriori
reservation of resources with the CS. In Section-3.1.1, we
described how our infrastructure provides support for cre-
ating such conferences and allowing appropriate routing of
messages. It is easy to see how adhoc conferencing can be ex-
ploited in general VoIP conferencing services. A user (say,
a project manager) wishing to invite other users (project
members) in a conference without prior notice, can create
an adhoc conference and pass on the SIP URL through an
Instant Messaging (IM) based service, allowing an immedi-
ate conference.

103

Now, we will describe two scenarios which explain the use
of adhoc conferencing for multiplayer gaming and how it can
enhance the overall gaming experience.

5.1 Handling Conference Creation
As detailed in previous sections, the GS is responsible

for managing the audio sessions of all the players in the
game. It coordinates with the CS and sets up appropri-
ate conferences for all the participants. While it is possi-
ble for a GS to identify all possible conferences in advance
(like the zone based conferencing in the location based pol-
icy), some audio-session policies can be very complex and
dynamic making such an apriori identification difficult. As
an example, consider a policy which says that in Room-A,
players of type daemons are in conference with players of
type aliens and similar for numerous other type of players.
As a result depending upon the game context, there can
be a number of possible conferences just for Room-A itself.
This makes it difficult for the GS to reserve resources for
all possible conferences with the CS (which in the example
scenario would include many combinations of player types).
Adhoc conferencing plays a critical role in alleviating such
issues. Using adhoc conferencing features, the GS can create
a conference on-the-fly whenever the policy dictates a new
conference. Thus, for our example scenario, there need not
be any existing conference for Room-A and whenever two
types of players (which should be in a conference, as coded
in audio session policy) are in Room-A, the GS creates an
adhoc conference (can guarantee a unique URL by using
player types in the conference URL) and sets up players’
audio sessions accordingly. Also, when one of the players
moves out of that room, the conference can be terminated.

5.2 Providing Sub-Interactions
Our current infrastructure allows a game to define an au-

dio session policy according to which, players are confer-
enced into appropriate context-based conferences. However,
it will be interesting to allow a player to select a sub-group
of players in the game and initiate a new conference. If such
an interaction does not violate gaming policies, it can be an
exciting mode of interaction. For example, assume a team
based static conferencing for a simulated war game with
two teams of armies. Allowing a player to talk to a select
sub-group of players within the team allows for new modes
of interactions providing for planning intra-team strategy
(maybe, a coup). Also, if allowed it can be used to talk to
members of opposite teams (gathering intelligence). This
can lead to very interactive gaming, increasing the overall
impact of the game. Since we cannot have any apriori knowl-
edge of conferences in these scenarios, it certainly requires
adhoc conferencing support.

Note that for facilitating the Sub-Interaction mechanisms,
we will need to have interface support within the game. The
enhanced interface should now allow a player to select and
invite a subgroup of players into a conference, and depend-
ing upon game policies and players acceptance, the GS can
create a new conference.

6. ENHANCED AUDIO MIXING FOR NEAR
VIRTUAL REALITY EXPERIENCE

In this section, we propose an extension to the infrastruc-
ture, which further enhances the gaming experience. Notice

that till now, all the proposed mechanisms assume a binary
level of participation in a conference. Either a player is in
the conference or is not in the conference. As a result, for a
conference with n participants {p1, p2, . . . , pn}, with audio
signals {V1, V2, . . . , Vn}, the signal received by a participant
pi at time t is given by:

Ri(t) =
a

Vj(t), where 1 ≤ j ≤ n and j 6= i

However, we can also think of scenarios where a more
sophisticated evaluation of the signal can be better. For ex-
ample, assume a soccer game in which each game player acts
as one player on the field and all players are in a conference.
Clearly, mixing which takes into account the distance of the
speaker from the recipient would enhance the overall game.
Then a forward would hear the fellow forwards and opposi-
tions’ defense the loudest, the midfielders a little less louder
and not hear the defenders at all. Similarly, various other
factors like voice shrillness can also be accumulated to form
an overall feature vector ~X. Now, the received audio signal
can be given as the dot product of the feature vector with
the voice vector (it will also be a vector, with each dimen-
sion corresponding to the value of attributes of the feature
vector, like distance, shrillness etc).

Ri(t) =
a

~Xj(t).~V j(t), where 1 ≤ j ≤ n and j 6= i

Such a scenario requires a sophistication at the level of
audio mixing. Though currently avialable hardware mixers
do not support a mechanism to associate a feature vector
with the audio signals, software mixing can be easily en-
hanced to take such mechanisms into consideration. Also,
it is feasible to relay this information using SIP only. For
example, SIP INFO message6 [4] can be used to convey the
feature vectors. More precisely, whenever a player moves
or takes an action, the GS would compute the new feature
vectors for appropriate participants and send an INFO mes-
sage to the CS/Mixer. To optimize on the communication
overheads, only the minimal change information (∆’s) can
be appropriately encoded in the message. We believe that
such a scenario would be a poor man’s Virtual Reality (VR)
if not being very close to the actual VR experience.

7. PROTOTYPE IMPLEMENTATION
In this section, we describe the implementation of the pro-

totype context-aware VoIP enabled multiplayer game, we
developed at IBM T.J.Watson Research Center. The aim of
the implementation was not to design an entire game, but
just to demonstrate the context-aware VoIP support ideas.
First, we desribe the SIP infrastructure available at IBM
T.J.Watson. It has a merged SIP proxy/registrar service
and a SIP gateway which talks to PSTN to exchange calls
between the IP network and PSTN. This allows using even
a regular PSTN phone or a mobile phone as a SIP UA for
voice communication.

The complete system architecture is shown in Figure-9.
We developed the CS using Java. It uses an IBM built Java
SIP stack and an overlying SIP interface layer which allows
the control mechanism to interact with SIP using top level
function calls. The manager component of the CS hosts the
overall control logic and state information. It uses abstrac-
tions for a SIP conference and a SIP session as part of the

6INFO message is used to convey session related information
on the signaling path.

104

b`c dbfe gUh i

b`c dj k e lnm o gUh l

prqrk e m qfstGu lnkUe

prqrk o lfm lnknh lbflnm vnlnm
pwqnk e m qnsx q u c h

brj y�z e g h i
b`j y�j kUe lUm o g h l

{ gnkUg u l m prqrk o lnm lnknh l
brlnz z c qrk

brj y�z e g h i
b`j y�j kUe lUm o g h l

{ gnkUg u l m prqrk o lnm lnknh l
brlnz z c qrk

|9gn}l�brlnm vnlnm

~'� �G�9�~'� �G�9�

brj y� t|Ggn}l�pws c lnk e

pGs c lnkUe

brj y� t|Ggn}l�pws c lnk e

pGs c lnkUe

Figure 9: Prototype System Architecture

state information. The manager is also responsible for ad-
ministrative tasks like configuring pre-arranged conferences,
showing the conference server state to the administrator etc.
For gaming, we used the distinct game server architecture,
since the CS and mixers were being used for other VoIP ser-
vices as well. The game server was enabled with the SIP
stack and a SIP interface layer. It also hosts a control logic
which defines the audio sessions for the players depending
upon the game state. We used the Convedia CMS-1000 me-
dia mixer [3]. It is a SIP enabled mixer and uses an INVITE
message of the form sip:conf=<conf-id>@mixer to establish
a conference context, where <conf-id> is an identifier for
the conference [3]. The rest of the signaling is usual.

The game we implemented defines a 2*2 playing arena,
with each block representing a game room and is considered
a shared context. The audio session policy for the proto-
type was that all players in the same quadrant should be
in the same conference. The game protocol was a simple
state exchange mechanism, in which each player sends its
co-ordinates (whenever there is an update) to the GS and
the GS notifies other players of the update (to change their
client displays) and also checks if any audio transitions needs
to be made. The players are represented by different colored
circles and the client interface consisted of displaying the
arena, the position of players and a panel mapping the color
of circles to player names. A screenshot at a client with 3
players in the game, is shown in Figure-10. The players can
move in four directions - right, left, up and down.

Figure 10: Client screen shot

For example, in Figure-10, players arup and edie are in a
single conference and player aameek is not part of their con-
ference. When arup moves to the left and enters aameek’s
quadrant, it will be removed from the conference with edie

and seamlessly transitioned into the conference with aameek.
We tested the system with various SIP devices like PC soft-
phones, IP phones, PSTN desk and mobile phones. Our
experience with the prototype implementation was very en-
couraging. The transitions were very smooth and enabling
servers with SIP turns out to be a relatively easy task.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we have described mechanisms to provide

context-aware VoIP support to multiplayer networked games.
We use a SIP based conferencing architecture to support ad-
hoc conferencing and integrate it with multiplayer games to
accomplish context-awareness. SIP also provides us with the
desired interoperabililty of audio devices. We have also pro-
posed mechanisms to further enhance the gaming experience
by using sophisticated audio mixing. We have developed a
prototype of the system and it is found to have desired func-
tional and performance characteristics. In future, we intend
to look at the possibility for developing middleware solutions
which can provide such generic context-aware VoIP support
for a variety of gaming architectures.

9. REFERENCES
[1] N. E. Baughman and B. N. Levine. Cheat-proof

playout for centralized and distributed online games.
In Proceedings of IEEE INFOCOM, 2001.

[2] A. R. Bharambe, S. Rao, and S. Seshan. Mercury: a
scalable publish-subscribe system for internet games.
In NETGAMES, 2002.

[3] Convedia. http://www.convedia.com, 2003.

[4] S. Donovan. The SIP INFO method. RFC 2976,
Internet Engineering Task Force, 2000.

[5] C. Elliot. A ’sticky’ conference control protocol.
Internetworking: Research and Experience, 1994.

[6] S. Fiedler, M. Wallner, and M. Weber. A
communication architecture for massive multiplayer
games. In NETGAMES, pages 14–22, 2002.

[7] T. A. Funkhouser. RING: A client-server system for
multi-user virtual environments. In Symposium on

Interactive 3D Graphics, pages 85–92, 209, 1995.

[8] GameSpy. http://www.gamespyarcade.com, 2003.

[9] L. Gautier and C. Diot. Design and evolution of
mimaze, a multi-player game on the internet. In IEEE

Multimedia Systems Conference, July 1998.

[10] J. Lennox and H. Schulzrinne. A protocol for reliable
distributed conferencing. In NOSSDAV, 2003.

[11] Online Multiplayer Games Network.
http://www.omgn.com, 2003.

[12] The Role Playing Games Network.
http://www.roleplayinggames.net, 2003.

[13] Sony PlayStation. http://www.playstation.com, 2003.

[14] J. Rosenberg et al. SIP: Session initiation protocol.
RFC 3261, IETF, June 2002.

[15] D. Saha, S.Sahu, and A. Shaikh. A service platform
for on-line games. In NETGAMES, 2003.

[16] A. Singh, P. Mahadevan, A. Acharya, and Z. Y. Shae.
Design and implementation of sip client and network
services. In IBM Research Report - RC 23148, 2004.

[17] Terena. http://gnrt.terena.nl, 2003.

[18] WebRPG. http://www.webrpg.com, 2002.

[19] Microsoft Xbox. http://www.xbox.com, 2003.

105

