IMDraw: An Instant Message and Drawing Program

By Tim Poley and Kelly Whitacre

Semester Project Paper

CS522

Computer Communications

University of Colorado at Colorado Springs

December 2006
Abstract

IMDraw is an instant message and drawing program written in the CSharp (C#) language following a Client/Server Model. Messages between the Client and Server are defined using an IMDraw Message Protocol, developed purposefully for transmission of text and draw messages between the IMDraw Server and IMDraw Clients.
Table of Contents

iiAbstract

4Introduction

4What is Instant Messaging?

4Brief History of Instant Messengers

4Early Instant Messengers

4Major Players Today

4Instant Messaging Protocols

5Why Create IMDraw?

6IMDraw Design

6TCP Transport Protocol

6Client/Server Model

7Design Diagram

7IMDraw Message Protocol

8Implementation

8Server

8Initialization

8Connecting Clients

8Sending and Receiving Messages

9Client

9Initialization

10Sending and Receiving Messages

10IMDraw Library

10IMDraw Message Protocol

10Client Message Processing

10Server Message Processing

12Development Discussion

12Programming Hurdles

12Updating Controls across Threads

12Server Crash on Client Application Termination

13Conclusion

13Follow-on Efforts

14References

15Appendix A: Installation/Run

15Server

15Client

16Appendix B: User’s Manual

16Server

17Client

Table of Figures

7Figure 1: IMDraw Configuration Diagram

Introduction
What is Instant Messaging?
Instant messaging (IM) is defined as “the transmission of an electronic message over a computer network using software that immediately displays the message in a window on the screen of the recipient [1].” As such, this section will discuss a brief history of IM programs and introduce IMDraw, an instant message and drawing program created by the authors.
Brief History of Instant Messengers

Early Instant Messengers
One example of early instant message software is Talk, a UNIX program used by engineers and academia during the 1980’s and early 1990’s [1]. Talk was designed to transmit each character to the other User as it was typed. Therefore, text would become garbled if both users typed simultaneously and users were unable to review and edit their messages before sending. “Users more familiar with other forms of instant text communication would sometimes find themselves in embarrassing situations by typing something and deciding to withdraw the statement, unaware that the other user(s) had seen it all happen in real time” [1]. Later, Talk was redesigned to separate the User’s message exchange to lessen confusion.
Another example of an early instant message program is Zephyr, the first IM program to utilize a graphical user interface (GUI). Zephyr was created by MIT as part of Project Athena [1] in 1987. While Zephyr was well used in academia, it never made it to the main stream public.

Major Players Today

Instant Messengers evolved from early IM Programs into those most widely used today, the most popular being AOL Instant Messenger (AIM), .Net Messenger Service, Yahoo! Messenger, Jabber, Trillion, and GAIM. AIM being the most popular with 53 million active users around August 2005, statistics gathered by Nielsen//NetRatings [2].
Instant Messaging Protocols

One of the main problems with IM programs today is that most use different message protocols. Additionally, most are proprietary (Jabber is one exception). As a result, a user on one service cannot talk to a user on another service. Therefore a user who wanted to talk to others on both AIM and MSN would have to have both Clients running at the same time. This led to the development of several multi-protocol Client programs [2]. Programs such as Trillion and GAIM allow a user to access each service using a single Client and combine common features like buddy lists.

Why Create IMDraw?
It was found that the available IM programs lacked a method to communicate certain messages and perform tasks that involved drawing, such as the communication of formulas and design diagrams or the inclusion of simple games (tic-tac-toe, hangman, etc.). It was left as an exercise for the authors to implement an instant message program with a drawing component as well as a text component. Doing such would provide valuable experience into the modeling and design of said program. The remainder of this document describes the design, implementation, and experiences of creating IMDraw.
IMDraw Design
TCP Transport Protocol

One of the most important design decisions that will be discussed is the transport protocol used for communication used in IMDraw. Transmission Control Protocol (TCP) was chosen for a variety of reasons. The first being valuable experience. Since TCP is the most widely used protocol [4], the authors felt they had the most to gain from implementing the TCP transport protocol. The second is the connected nature of TCP. An instant message program essentially establishes a connection between users and lets them pass information back and forth. Knowing when those connections are available and when they are lost is an important part of that functionality. Another reason for using TCP is guaranteed, in order delivery [4]. It’s important for a conversation to be complete and not garbled. If messages became lost between two users of an IM program, their conversation can quickly become disjointed and lose its meaning. TCP provides the aforementioned capabilities, out-of-the box. If User Datagram Protocol (UDP) was chosen, additional functions would have to be created to monitor when users became unavailable and if messages where lost during transmission.
Client/Server Model

Another important design decision that will be discussed is the interaction model of the IMDraw system. IMDraw utilizes a basic Client/Server model. The practical experience of working with Server side software is one of the reasons behind choosing this approach. Additionally, a Client/Server model gives the ability for a number of desired features in the software. For example, a Server gives a single point of contact for each Client. To communicate with each other, the Clients only need the connection information of the Server. The Server can then relay messages between connected Clients eliminating the need for Clients to know the connection information of any of the others. Additionally, the inclusion of a Server allows for the creation of offline messages (IMDraw currently does not have this feature—but is able to at a future date). The Client/Server model would allow the temporary store of messages intended for a user that is not currently connected. When that user connects, they’ll be able to receive those messages, even if the sending user is no longer connected.

Design Diagram

[image: image1.png]‘ Client

Figure 1: IMDraw Configuration Diagram
IMDraw Message Protocol

The last design decision that will be discussed is the message protocol. A new message protocol was developed in order to include all the functionality, mainly the drawing aspect that was sought by the authors. Experience was a bonus to this design choice. It allowed the authors to design a protocol with a drawing aspect, instead of limiting the functionality so as to fit an existing message protocol. IMDraw Message Protocol creates a common framework allowing both the Server and Client side systems to assemble and process the byte arrays used for TCP communication.

Note from the Authors

After initial research on TCP vs. UDP, a Client/Server vs. Peer to Peer interaction model, and IM message protocols as discussed above, the authors sought out similar projects implemented in C# and found one which was used as the basis of the IMDraw implementation, a project created by John and posted to The Code Project, a Visual Studio and .NET tutorial and source depository [3]. Although IMDraw’s implementation is in many ways different, (Written in VS 2005, Server is a Console Application, message protocol has been changed to allow drawing objects, Client GUI is dramatically dissimilar, IMDraw does not have a notion of a “conference”, etc.) there are such similarities (Server/Client Model, Message Protocol Library, and the use of TCP socket programming) that the authors felt acknowledgement should be given to John of The Code Project.

Implementation

Server
The Server was written in the C# language in the Visual Studio 2005 Development Environment as a Console Application. A console application is a computer program designed to be used via a text-only computer interface, such as a Windows Command Prompt (CMD) [5]. The program is started from the command line and requires the IP address and port that the Server should use as arguments.
Initialization

Once started, the application creates a new thread. This thread utilizes a C# TcpListener to listen for connecting Clients, and will run for the life of the Server as depicted here:
thrListenForClients = new Thread(new ThreadStart(ListenForClients));

thrListenForClients.Start();
Connecting Clients

Each time a Client connects a new Client object is created. The Client object contains a C# TcpClient instance which maintains the connection to the Client. A delegate is then used to listen for incoming messages from the Clients as displayed below:

Client acceptClient = new Client();

try

{

acceptClient.Socket = listener.AcceptTcpClient();

listenForMessageDelegate = new ListenForMessageDelegate(ListenForMessages);

listenForMessageDelegate.BeginInvoke

 (acceptClient, new AsyncCallback(ListenForMessagesCallback), "Completed");

}

Sending and Receiving Messages

The Message object defined in the IMDraw Protocol (described in a later section) defines two kinds of messages sent by the Server. The first is a Client list, which the Server sends to all connected Clients every time a Client connects or disconnects. The second is a standard data message sent by a Client intended for another Client. The Server will partially reconstruct these messages to determine who the receiving Client is. This Client will be pulled from the Client collection maintained by the Server and the message forwarded. The following is the code used to send the message:

NetworkStream stream = tcpClient.GetStream();

stream.Write(sendMessage.GetRawMessage(), 0, sendMessage.GetRawMessage().Length);

In addition to login and data messages received from the Clients, the Server can also receive a logout message. When a logout message is received, the Server removes the Client from the list of Client objects and sends the new list to the Clients. The logout code is included below:

ChatMessage logoutMessage = new IMDrawLibrary.Message();

 logoutMessage.Sender = IMDrawLibrary.Common.BossName;

 logoutMessage.Receiver = ClientName;

logoutMessage.MessageCommand = IMDrawLibrary.Command.Logout;

 for (int i = 0; i < ClientCollection.Count; i++)

 {

 if (ClientCollection[i].Name.Equals(logoutMessage.Receiver))

 {

 ClientCollection[i].Socket.Close();

 ClientCollection.Remove(ClientName);

 }

 }

 Console.WriteLine("Disconnected: " + ClientName);

 SendClientList();

Client
The Client was written in the C# language as a Windows Application. It is made up of two main Graphical User Interfaces (GUI), the buddylist and Client window. The buddylist has two functions, to connect to the Server and to display the available list of users.
Initialization

Once the user has elected to connect to the Server, the Client application connects to the Server using the built in C# object, TcpClient, and creates a Thread to listen for messages from the Server on the TCP Stream as depicted below:
IPEndPoint remoteIpEndPoint = new IPEndPoint(Server, port);

 tcpClient = new TcpClient();

 tcpClient.Connect(remoteIpEndPoint);

Thread listenForMessages = new Thread(new ThreadStart(ListenForServerMessages));

 listenForMessages.Start();

The Client then sends the Server a login message. Because only byte arrays can be sent on the TCP stream, the message (message) is created using the IMDraw Library. Details of the IMDraw Library implementation are described in the next section. The byte array is sent out over the TCP stream using the code shown below:

NetworkStream stream = tcpClient.GetStream();

 byte[] rawMessage = message.GetRawMessage();

 stream.Write(rawMessage, 0, rawMessage.Length);
Sending and Receiving Messages

The Client window is launched after the user selects a name on the buddylist by double-clicking it or by the user receiving a message from another user (sent by the Server). The user can then create drawings or notes to be sent to its “buddy” using the Client window interface (See Appendix B: User’s Manual for instruction on how to send correspondence between users). Anytime the user presses the “Send” button, a message (message) is created using the IMDraw Library from the drawings or notes and is sent over the TCP stream as a byte array. The same code as above is used to send the message.
NetworkStream stream = tcpClient.GetStream();

 byte[] rawMessage = message.GetRawMessage();

 stream.Write(rawMessage, 0, rawMessage.Length);
IMDraw Library
IMDraw Message Protocol

The IMDraw Message Protocol is defined as the following:

IMDraw|<Sender>|<Receiver>|<Command>|<TextDetails>|<Point1 x>|<Point1 y>|<Point2 x>|<Point2 y>|*|<Point1 x>|<Point1 y>|…
IMDraw is the header that must be on all messages. <Sender> is the string name as defined by the sender of the message. <Receiver> is the string name of the intended receiver of the message. <Command> is defined as an integer value of the following command types: 0-Login, 1-Message, 2-ClientList, and 3-Logout. <TextDetails> can contain either a list of names if it’s sent by the Server or the notes sent by a user if it’s sent by the Client. <Point1 x> and <Point1 y> is one point of one line of the drawing the user creates, <Point1 x> and <Point1 y> are repeated until all points on the line are included in the message. The * is included to separate the lines of the drawing.
Client Message Processing

The Client receives a byte array containing the message sent by the Server. The IMDraw Library processes the byte array into a Message object for the Client to consume. The Client will only process commands of command type Message and ClientList
Server Message Processing
The Server receives a byte array containing the message sent by the Client. The IMDraw Library processes the byte array into a Message object for the Client to consume. The Server will only process commands of command type Login, Message, Logout. With a message command type, it is only concerned with the sender and receiver to route the messages accordingly.
Development Discussion

Programming Hurdles

Updating Controls across Threads

Visual Studio 2005 and the .Net 2.0 libraries required the program to implement safe threading. As such, we were unable to update controls across threads. If a control was created on one thread, we could not update it from another. This caused a little bit of a headache. After researching on the problem a bit, we found that delegates and their events were designed to fix this problem. A delegate is a pointer to a function [6]. By declaring a delegate we were able to call said delegate to update controls across threads. All associated errors were corrected with their inclusion.
Server Crash on Client Application Termination

The Server was crashing whenever a Client disconnected. Our design called for the Client to send a logout message to the Server whenever it wanted to disconnect. The Server would then close the connection. For some reason, the C# sockets would get ahead of us and close the connection before sending the logout message. The Server would attempt to read the stream and throw an exception. We never got the logouts to work correctly, but even if we did, we still wanted to the Server to handle a premature disconnection with out crashing. We discovered that the C# sockets had an easy way to check if the socket was still connected. We were then able to properly catch it disconnecting and execute the Server logout code.

Conclusion

We learned a lot throughout the course of creating IMDraw and feel it was very worth while to take the time to create such a project. We learned that taking on this project was not an easy task. It took many hours of research and implementation. In addition, we learned the interaction model between computers and TCP streaming in C#. The C# language itself had a relatively large learning curve considering only one of us has experience with the language, also. We’d like to thank Dr. Chow for the opportunity to create IMDraw and the platform for the lessons we’ve learned from doing so.
Follow-on Efforts
The following is a list of follow-on efforts that we feel would be worthwhile to pursue at a later date:

Secure Message Transfer—it would be interesting to add data encryption to our software, perhaps for a future computer security class.

UDP Message Protocol—while we felt we gained a lot of capabilities with TCP, UDP would reduce the size of our packages and increase speed. We felt it would be a worthwhile experiment to see if we could gain a significant speed advantage with UDP, even if it required some additional management.

Multicasting—we’d like to add a multicasting feature to IMDraw. This would allow users to create a group or chat room, where every user in the group could send a single message to all other users in the group.
User Defined Buddy Lists—unlike most commercial IM programs, our current buddy list is simply a list of all users currently connected to the Server and available for chat. We would like to implement the ability for the user to define there own list of “buddies” whom they’d like to talk to.

Offline Messages—the ability to send messages to a user who is currently offline would be a great feature to add. The Server could be used to store the messages until the desired receiver came back online.

Additional Drawing Capabilities—our current drawing palate is very simple in nature. We’d like to add additional functionality to it, like colors and an eraser tool.

Streamline data—the current implementation sends the entire picture when ever the user hits the send button. We’d like to alter the Client tool to only send data that was added to the picture. This could reduce the size of our message objects to a fraction of they’re current size.

References

[1] http://www.answers.com/topic/instant-messaging
[2] http://en.wikipedia.org/wiki/Instant_messaging
[3] http://www.codeproject.com/useritems/Instant_Messenger.asp
[4] http://www.skullbox.net/tcpudp.php
[5] http://www.answers.com/console%20application
[6] http://msdn2.microsoft.com/en-us/library/ms173171.aspx
Appendix A: Installation/Run
Server

1. Copy the debug folder to any directory from IMDrawComplete/IMDrawServer/bin/debug in the src directoy
2. Open a cmd prompt and navigate to the folder described above.
3. Type command: IMDrawServer <ipaddress> <port>

Client

1. Copy the debug folder to any directory from IMDrawComplete/IMDraw/bin/debug in the src directoy

2. Double-click the IMDraw.exe

Appendix B: User’s Manual

Server
1. Open a cmd prompt and navigate to the folder IMDrawServer.exe is located.

2. Type command: IMDrawServer <ipaddress> <port>

[image: image2.png][Server Started

3. To disconnect type ctrl-c. type y. click enter.
[image: image3.png]128.198.60.203 777
[Server Started

onnected:
lessage sent from tin to kels
lessage sent from kels to tim

Dicconnected: kels

CTerninate batch job C¥/N)? y_

Client

1. Double-click the IMDraw.exe. The following is what the program will look like on startup:
[image: image4.png]=% Connect to IMDraw
Connect Information

Server

Username.

BUDDYLIST

Cornest

Discorneet

2. Type the Server ipaddress in the text box labeled Server
3. Type the Port in the text box labeled Port
4. Type a name in the text box labeled Username
5. Click Connect
[image: image5.png]=% Connect to IMDraw
Connect Information

Server

12819860203

Username.

3

BUDDYLIST

Cornest

6. Wait for other users to connect. Once you see one you want to talk to Double-Click name.

[image: image6.png]=% Connect to IMDraw
Connect Information

Server

12819860203

Username.

im

BUDDYLIST

Cornest

kels

7. This will bring up a Client window.

[image: image7.png]Draw Area

Conversation

Enter Text

8. Type or draw a message

[image: image8.png]Draw Area

Conversation

fm: it

Enter Text

9. Other user should see same window

[image: image9.png]Draw Area

Conversation

fem: it

Enter Text

10. Click Clear button to clear the picture

[image: image10.png]Draw Area

Conversation

fem: it

Enter Text

11. Disconnect using the Disconnect button

[image: image11.png]=% Connect to IMDraw
Connect Information

Server

12819860203

Username.

3

BUDDYLIST

Cornest

12. It will ask if you are sure. Click Yes.
[image: image12.png]I4Draw.

\i) are yousue?

IMDraw

Page 13

